

Thermal Evolution of Neutron Stars

Dany Page

Instituto de Astronomía Universidad Nacional Autónoma de México

1

Thermal Evolution of Neutron Stars

Overview of neutron star structure and a simple analytical cooling model

- URCA processes
- Problem 1: pairing
- Problem 2: envelope chemical composition and magnetic fields
- Minimal Cooling
- Problem 3: data interpretation
- Examples of fast cooling scenarios
- Conclusion and prospects

"Dense Matter in Compact Stars: Theoretical Developments and Observational Constraints"*,* Page D. & Reddy S., 2006ARNPS..56..327P

Envelope (100 m):

gradient: it determines the relationship between T_{int} and T_{e} . Contains a huge temperature Extremely important for the cooling, strongly affected by magnetic fields and the presence of "polluting" light elements.

Crust (1 km):

 \prod Little effect on the long term cooling. BUT: may contain heating sources (magnetic/ rotational, pycnonuclear under accretion). Its thermal time is important for very young star and for quasi-persistent accretion

Dany Page Thermal Evolution of Neutron Stars FRIB Workshop on "Bulk Nuclear Properties", NSCL-MSU, Nov. 2008 4

Dany Page Thermal Evolution of Neutron Stars FRIB Workshop on "Bulk Nuclear Properties", NSCL-MSU, Nov. 200 Inner Core (x km ?): The hypothetical region. Possibly only present in massive NSs. May contain Λ , Σ ⁻, Σ ⁰, π or K condensates, or/and deconfined quark matter. Its εν dominates the outer core by many orders of magnitude. *T_c* ?

+ Neutron superfluid Neutron superfluid Neutron vortex proton superconductor Magnetic flux tube-

Atmosphere (10 cm):

thermal radiation (the spectrum). میں
mm Of upmost importance for interpretation of X-ray (and optical) observation. However it as NO effect on the thermal evolution of the star.

Outer Core (10-x km):

densities, containing *n*, *p*, *e* & μ . Nuclear and supranuclear Provides about 90% of *cv* and *εν* unless an inner core is present. Its physics is basically under control except pairing T_c which is essentially unknown.

"Dense Matter in Compact Stars: Theoretical Developments and Observational Constraints"*,* Page D. & Reddy S., 2006ARNPS..56..327P

Neutron star cooling on a napkin

Assume the star's interior is isothermal and neglect GR effects.

Thermal Energy, E_{th} , balance:

$$
\frac{dE_{th}}{dt} = C_v \frac{dT}{dt} = -L_\gamma - L_\nu + H
$$

 \Rightarrow 3 essential ingredients are needed:

- \bullet C_v = total stellar specific heat
- *Lγ* = total surface photon luminosity
- L_v = total stellar neutrino luminosity

H = "heating", from B field decay, friction, etc ...

Surface photon emission on a napkin

$$
L_{\gamma} = 4\pi R^2 \sigma_{SB} T_e^4
$$

Lγ: erg s-1 *Te*: effective temperature, is *defined* by this relation (in analogy to blackbody emission)

Relationship between T_e and $T=T_{int}$ (interior T): provided by an envelope model.

Simple ("rule of thumb") formula:

$$
T_e \simeq 10^6 \left(\frac{T_{int}}{10^8 \text{K}}\right)^{1/2}
$$

A sample of neutrino emission processes

A simple analytical solution

$$
\frac{dE_{th}}{dt} = C_v \frac{dT}{dt} = -L_\gamma - L_\nu
$$

$$
C_v = CT \quad L_\nu = NT^8 \quad L_\gamma = ST^{2+4\alpha}
$$

$$
L_{\gamma} = 4\pi R^2 \sigma T_e^4
$$
 using $T_e \propto T^{0.5+\alpha}$ with $\alpha \ll 1$

• **Neutrino Cooling Era:** $L_v \gg L_v$

$$
\frac{dT}{dt} = -\frac{N}{C}T^7 \Rightarrow t - t_0 = \frac{C}{6N} \left[\frac{1}{T^6} - \frac{1}{T_0^6} \right]
$$

$$
T \propto t^{-1/6} \text{ and } T_e \propto t^{-1/12}
$$

• **Photon Cooling Era:** *L*^γ >> *L*^ν

$$
\frac{dT}{dt} = -\frac{N}{S}T^{1+\alpha} \Rightarrow t - t_0 = \frac{C}{4\alpha S} \left[\frac{1}{T^{\alpha}} - \frac{1}{T_0^{\alpha}} \right]
$$

$$
T \propto t^{-1/\alpha} \text{ and } T_e \propto t^{-1/2\alpha}
$$

Neutrino cooling time scales

$$
\frac{dE_{th}}{dt} = C_v \frac{dT}{dt} = -L_v \qquad C_v = CT \quad \text{and} \quad L_v^{\text{slow}} = N^{\text{slow}} T^8 \quad \text{or} \quad L_v^{\text{fast}} = N^{\text{fast}} T^6
$$

 $L_{\nu}^{\text{slow}} = \iiint \epsilon_{\nu}^{\text{slow}} dV = 10^{38} - 10^{40} \times T_9^8 \text{ erg s}^{-1} \equiv N_9^{\text{slow}} T_9^8$ **• Slow neutrino cooling:** (lowest value corresponds to the case where extensive

pairing in the core suppresses its neutrino emission and only the crust e-ion bremsstrahlung process is active)

$$
\frac{dT}{dt} = -\frac{N}{C}T^7 \Rightarrow t - t_0 = \frac{C}{6N^{\text{slow}}} \left[\frac{1}{T^6} - \frac{1}{T_0^6} \right] \qquad \tau_{\nu}^{\text{slow}} \sim \frac{6 \text{ months}}{T_9^6} \times \left[\frac{C_9/10^{39}}{6 N_9^{\text{slow}}/10^{40}} \right]
$$

 $L_{\nu}^{\text{sfast}} = \iiint \epsilon_{\nu}^{\text{sfast}} dV = 10^{44} - 10^{45} \times T_9^6 \text{ erg s}^{-1} \equiv N_9^{\text{fast}} T_9^6$ **• Fast neutrino cooling:**

$$
\frac{dT}{dt} = -\frac{N}{C}T^5 \Rightarrow t - t_0 = \frac{C}{4N^{\text{fast}}} \left[\frac{1}{T^{\alpha}} - \frac{1}{T_0^{\alpha}} \right] \qquad \tau_{\nu}^{\text{fast}} \sim \frac{4 \text{ minutes}}{T_9^4} \times \left[\frac{C_9/10^{39}}{4 N_9^{\text{fast}}/10^{45}} \right]
$$

Thermal Evolution of Neutron Stars

- Overview of neutron star structure and a simple analytical cooling model
- **URCA processes**
- Problem 1: pairing
- Problem 2: envelope chemical composition and magnetic fields
- Minimal Cooling
- Problem 3: data interpretation
- Examples of fast cooling scenarios
- Conclusion and prospects

n

The direct URCA process

Basic mechanism: β and inverse β decays:

 $n \longrightarrow p + e^- + \overline{\nu}_e$ and $p + e^- \longrightarrow n + \nu_e$

EFn = EFp + EFe

p

e-

Energy conservation: Momentum conservation:

"Triangle rule":
$$
pr_n < pr_p + pr_e
$$

\n
$$
n_i = \frac{k_{F_i}^3}{3\pi^2} \Rightarrow n_n^{1/3} \le n_p^{1/3} + n_e^{1/3} = 2n_p^{1/3}
$$

$$
x_p \equiv \frac{n_p}{n_n + n_p} \ge \frac{1}{9} \approx 11\%
$$

"Direct URCA process in neutron stars", JM Lattimer, CJ Pethick, M Prakash & P Haensel, 1991 PhRvL 66, 2701

A sample of neutrino emission processes

Direct vs modified URCA cooling

Models based on the PAL EOS:

adjusted (by hand) so that DURCA becomes allowed (triangle rule !) at $M > 1.35$ M_{Sun} .

This value is arbitrary: we DO NOT know the value of this critical mass, and hopefully observations will, some day, tell us what it is !

"The Cooling of Neutron Stars by the Direct Urca Process", Page & Applegate, ApJ 394, L17 (1992)

Thermal Evolution of Neutron Stars

- Overview of neutron star structure and a simple analytical cooling model
- URCA processes
- **Problem 1: pairing**
- Problem 2: envelope chemical composition and magnetic fields
- Minimal Cooling
- Problem 3: data interpretation
- Examples of fast cooling scenarios
- Conclusion and prospects

Nucleon pairing

"Possible Analogy between the Excitation Spectra of Nuclei and Those of the Superconducting Metallic State", Bohr, Mottelson, Pines, 1958 Phys. Rev. 110, 936

Dany Page **Thermal Evolution of Neutron Stars** FRIB Workshop on "Bulk Nuclear Properties", NSCL-MSU, Nov. 2008 15

unam

instituto de astronomío

Suppression of *cv* and *ε*ν by pairing

$$
c_{v} \rightarrow c_{v}^{\text{Paired}} = R_{c} c_{v}^{\text{Normal}}
$$

$$
\epsilon_{\nu} \rightarrow \epsilon_{\nu}^{\rm Paired} = R_{\nu} \epsilon_{\nu}^{\rm Normal}
$$

Phase shifts: presumption for pairing channels

Possible channels:

- Low momentum: ¹S₀
- Larger momentum: ³P₂

 $3P_2$ is mixed with $3F_2$ by the tensor interaction

"Superfluid State in Neutron Star Matter. I Generalized Bogoliubov Transformation and Existence of ³P₂ Gap at High Density", Tamagaki, R., 1970 PThPh..44..905T

Pairing T_c models

unam

Size and extent of pairing gaps is highly uncertain

Specific heat on a napkin

Sum over all degenerate fermions: $C_V = \sum C_{V,i}$ $c_{V,i} = N(0) \frac{\pi^2}{3} k_B^2 T$ with $N(0) = \frac{m^* p_F}{\pi^2 h^3}$

$$
\mathcal{C}_v = \iiint c_v dV \simeq 10^{38} - 10^{39} \times T_9 \text{ erg K}^{-1} \equiv \mathcal{C}_9 T_9
$$

(lowest value corresponds to the case where extensive pairing of baryons in the core suppresses their *cv* and only the leptons, $e \& \mu$, contribute)

Distribution of *cv* in the core of a 1.4 M_{Sun} neutron star build with the APR EOS (Akmal, Pandharipande, & Ravenhall, 1998), at

 $T = 10^9 K$

Slow vs fast cooling with pairing

38 Slow neutrino emission "Slow cooling" 37 (modified URCA process) 24 "Fast $\overline{}$ =
Tast \quad , n = $25 \epsilon_{\nu}^{\rm slow} \sim 10^{21} T_9^8 \text{ erg cm}^{-3} \text{ s}^{-1}$ 36 cooling cooling" 26 35 Fast neutrino emission Log La (erg/s) SF (almost anything else) 34 $\epsilon_{\nu}^{\text{fast}} \sim 10^{n} T_9^6 \text{ erg cm}^{-3} \text{ s}^{-1}$ N 33 SF 32 31 N • $n = 24$ ~ Kaon condensate • $n = 25$ ~ Pion condensate 30 • $n = 26$ ~ Direct Urca 29 $\overline{2}$ $\overline{3}$ 5 Ω $\overline{\mathbf{A}}$ 6 7 Log t (yrs)

Thermal Evolution of Neutron Stars

- Overview of neutron star structure and a simple analytical cooling model
- URCA processes
- Problem 1: pairing
- **Problem 2: envelope chemical composition and magnetic fields**
- Minimal Cooling
- Problem 3: data interpretation
- Examples of fast cooling scenarios
- Conclusion and prospects

Envelope models

Ingredients:

RESULT: " T_b - T_e " relationship. T_b = T at ρ_B = 10¹⁰ g cm⁻³

Neutron star envelopes Gudmundsson, E. H.; Pethick, C. J.; Epstein, R. I., 1982ApJ...259L..19G

Structure of neutron star envelopes Gudmundsson, E. H.; Pethick, C. J.; Epstein, R. I. 1983ApJ...272..286G

Envelope models

RESULT: " T_b - T_e " relationship. T_b = T at ρ_B = 10¹⁰ g cm⁻³

Neutron star envelopes Gudmundsson, E. H.; Pethick, C. J.; Epstein, R. I., 1982ApJ...259L..19G

Structure of neutron star envelopes Gudmundsson, E. H.; Pethick, C. J.; Epstein, R. I. 1983ApJ...272..286G

The sensitivity strip

Structure of neutron star envelopes Gudmundsson, E. H.; Pethick, C. J.; Epstein, R. I. 1983ApJ...272..286G

The sensitivity strip

Structure of neutron star envelopes Gudmundsson, E. H.; Pethick, C. J.; Epstein, R. I. 1983ApJ...272..286G

ΔMlight = mass of light in the upper envelope

Cooling Neutron Stars with Accreted Envelopes Chabrier, Gilles; Potekhin, Alexander Y.; Yakovlev, Dmitry G., 1997ApJ...477L..99C

 ΔM_{light} = mass of light in the upper envelope

Cooling Neutron Stars with Accreted Envelopes Chabrier, Gilles; Potekhin, Alexander Y.; Yakovlev, Dmitry G., 1997ApJ...477L..99C

 ΔM_{light} = mass of light in the upper envelope

Cooling Neutron Stars with Accreted Envelopes Chabrier, Gilles; Potekhin, Alexander Y.; Yakovlev, Dmitry G., 1997ApJ...477L..99C

 ΔM_{light} = mass of light in the upper envelope

unam

Cooling Neutron Stars with Accreted Envelopes Chabrier, Gilles; Potekhin, Alexander Y.; Yakovlev, Dmitry G., 1997ApJ...477L..99C

 ΔM_{light} = mass of light in the upper envelope

Cooling Neutron Stars with Accreted Envelopes Chabrier, Gilles; Potekhin, Alexander Y.; Yakovlev, Dmitry G., 1997ApJ...477L..99C

 ΔM_{light} = mass of light in the upper envelope

Cooling Neutron Stars with Accreted Envelopes Chabrier, Gilles; Potekhin, Alexander Y.; Yakovlev, Dmitry G., 1997ApJ...477L..99C

 ΔM_{light} = mass of light in the upper envelope

Cooling Neutron Stars with Accreted Envelopes Chabrier, Gilles; Potekhin, Alexander Y.; Yakovlev, Dmitry G., 1997ApJ...477L..99C

Effect of light element envelopes

Light element envelopes: - star looks warmer during neutrino cooling era, but - cools faster during photon cooling era

Heat transport with magnetic field

$$
\vec{F} = -\kappa \cdot \vec{\nabla} T
$$
\n
$$
\kappa_0 = \frac{1}{3} c_v \vec{v}^2 \tau = \frac{\pi^2 k_B^2 T n_e}{3m_e^*} \tau
$$
\n
$$
\tau = \text{electron relaxation time}
$$
\nIn the presence of a strong magnetic field κ becomes a tensor:
\n
$$
\kappa = \begin{pmatrix} \kappa_\perp & \kappa_\wedge & 0 \\ -\kappa_\wedge & \kappa_\perp & 0 \\ 0 & 0 & \kappa_\parallel \end{pmatrix}
$$
\n
$$
\kappa_\parallel = \kappa_0
$$
\n
$$
\kappa_\perp = \frac{\kappa_0}{1 + (\omega_B \tau)^2}
$$
\n
$$
\kappa_\wedge = \frac{\kappa_0 \omega_B \tau}{1 + (\omega_B \tau)^2}
$$
\n
$$
\omega_B = \frac{eB}{m_e^* c} = \text{electron cyclotron frequency}
$$

Temperature distribution in magnetized neutron star crusts U Geppert, M Kueker & D Page, 2004A&A...426..267G

Surface temperature distributions

With the Greenstein-Hartke interpolation formula one can take any field geometry at the surface (envelope) and calculate the surface temperature distribution:

Surface temperature of a magnetized neutron star and interpretation of the ROSAT data. I. Dipolar fields D Page, ApJ 442, 273 (1995)

Surface temperature of a magnetized neutron star and interpretation of the ROSAT data. II. D Page & A Sarmiento, ApJ 473, 1067 (1996)

Magnetized T_b - T_e relationships

The star's effective temperature is then easily calculated:

$$
L = \iint \sigma_B T_s(\theta, \phi)^4 dS = 4\pi R^2 \sigma T_e^4
$$

$$
(dS = R^2 \cdot d\Omega)
$$

$$
T_e^4 = \frac{1}{4\pi} \iint T_s(\theta, \phi)^4 d\Omega
$$

This directly generates a T_b - T_e relationship for any surface magnetic field geometry

Surface temperature of a magnetized neutron star and interpretation of the ROSAT data. II. D Page & A Sarmiento, ApJ 473, 1067 (1996)

Structure of the field in the crust ?

$$
\vec{\nabla} \wedge \vec{B} = \frac{4\pi}{c} \vec{j} \quad \Longrightarrow
$$

Choosing a field geometry means choosing where the currents are !

First natural choice: separate currents in the **crust** from currents in the **core** ("crustal" versus "core"

Temperature distribution in magnetized neutron star crusts, Geppert, Küker & Page, 2004 A&A 426, 267

Fig. 7. Representation of both field lines and temperature distribution in the crust whose radial scale $(r(\rho_n) \le r \le r(\rho_b))$ is stretched by a factor of 5, assuming $B_0 = 3 \times 10^{12}$ G and $T_{\text{core}} = 10^6$ K. Left panel corresponds to a crustal field, right panel to a star-centered core field. Bars show the temperature scales in units of $T_{\rm core}$.

Addition of a toroidal component

Toroidal field: winded as a dotnut inside the star.

Unseen from outside but may leave an imprint at the surface through its effect on the heat transport

Temperature distribution in magnetized neutron star crusts. II. The effect of a strong toroidal component, Geppert, Küker & Page, 2006 A&A 457, 937

Surface temperatures with toroidal fields

Dipolar poloidal field (10¹³ G) with only envelope effects taken into account

Same dipolar poloidal field (10¹³ G) with only a strong toroidal field in the crust

High field PSR J1119-6127

Fig. 2.—X-ray pulse profiles of PSR J1119-6127 in the (a) 0.5–2.0 keV and (b) 2.0–10.0 keV ranges. Errors bars are 1 σ , and two cycles are shown. The peak of the radio pulse is at phase 0. The dashed lines represent our estimates for the contribution from the pulsar's surroundings (see \S 5.1). (c) EPIC-PN spectra obtained for the pulsed (black) and unpulsed (gray) regions of the pulse profile with their respective best-fit blackbody plus power-law model (solid curves). [See the electronic edition of the Journal for a color version of this figure.]

> "Unusual Pulsed X-Ray Emission from the Young, High Magnetic Field Pulsar PSR J1119-6127" Gonzalez, M. E.; Kaspi, V. M.; Camilo, F.; Gaensler, B. M.; Pivovaroff, M. J. 2005ApJ...630..489G

High field PSR J1119-6127

"Unusual Pulsed X-Ray Emission from the Young, High Magnetic Field Pulsar PSR J1119-6127" Gonzalez, M. E.; Kaspi, V. M.; Camilo, F.; Gaensler, B. M.; Pivovaroff, M. J. 2005ApJ...630..489G

Thermal Evolution of Neutron Stars

- Overview of neutron star structure and a simple analytical cooling model
- URCA processes
- Problem 1: pairing
- Problem 2: envelope chemical composition and magnetic fields
- **Minimal Cooling**
- Problem 3: data interpretation
- Examples of fast cooling scenarios
- Conclusion and prospects

Minimal Cooling or, do we need fast cooling ?

Minimal Cooling assumes: nothing special happens in the core, i.e., no direct URCA, no π ⁻ or *K*⁻ condensate, no hyperons, no deconfined quark matter, no ...

(and no medium effects enhance the modified URCA rate beyond its standard value)

Minimal Cooling is not naive cooling:

it takes into account uncertainties due to

- Large range of predicted values of T_c for n & p.
- Enhanced neutrino emission at *T≤ Tc* from the Cooper pair formation mechanism.
- Chemical composition of upper layers (envelope), i.e., iron-peak elements or light (H, He, C, O, ...) elements, the latter significantly increasing *Te* for a given *Tb*.
- Equation of state.
- Magnetic field.

: astronomíc unam

Minimal Cooling: neutrino vs photon eras

Minimal Cooling: effects of gap uncertainty

Range of predicted luminosities mostly due to uncertainties on T_c for n ${}^{3}P_2$ pairing

Minimal Cooling: envelope composition

Range of predicted luminosities due to uncertainties on envelope chemical composition

Minimal Cooling versus data

Neutron star initial mass function

Fig. 24. The initial mass function of neutron stars as predicted by stellar evolution theory. The continuous line shows results from Fryer & Kalogera (2001) and the dotted line is adapted from Timmes et al. (1996). The difference between these two predictions is that the former authors included fall-back after the supernova explosion. (Figure from Page & Reddy 2006.)

Thermal Evolution of Neutron Stars

- Overview of neutron star structure and a simple analytical cooling model
- URCA processes
- Problem 1: pairing
- Problem 2: envelope chemical composition and magnetic fields
- Minimal Cooling
- **Problem 3: data interpretation**
- Examples of fast cooling scenarios
- Conclusion and prospects

Data: with H atmosphere spectral fits

NEUTRON STAR PROPERTIES WITH HYDROGEN ATMOSPHERES

Data: with blackbody spectral fits

NEUTRON STAR PROPERTIES WITH BLACKBODY ATMOSPHERES

Star	$\log_{10} t_{sd}$ yr	$\log_{10} t_{kin}$ уr	$\log_{10} T_{\infty}$ K	R_∞ km	d kpc	$\log_{10} L_{\infty}$ erg/s
RX J0822-4247 1E 1207.4-5209 RX J0002+6246	3.90 $5.53^{+0.44}_{-0.19}$	$3.57^{+0.04}_{-0.04}$ $3.85_{-0.48}^{+0.48}$ $3.96^{+0.08}_{-0.08}$	$6.65^{+0.04}_{-0.04}$ $6.48_{-0.01}^{+0.01}$ $6.15_{-0.11}^{+0.11}$	$1 - 1.6$ $1.0 - 3.7$ $2.1 - 5.3$	$1.9 - 2.5$ $1.3 - 3.9$ $2.5 - 3.5$	$33.60 - 33.90$ $32.70 - 33.88$ $32.18 - 32.81$
PSR 0833-45 (Vela) PSR 1706-44	4.05 4.24	$4.26^{+0.17}_{-0.31}$	$6.18^{+0.02}_{-0.02}$ $6.22^{+0.04}_{-0.04}$	$1.7 - 2.5$ $1.9 - 5.8$ $7.0 - 8.5$	$0.22 - 0.28$ $1.8 - 3.2$ $0.26 - 0.32$	$32.04 - 32.32$ $32.48 - 33.08$ $32.18 - 32.97$
PSR 0656+14 PSR 0633+1748 (Geminga) PSR 1055-52	5.04 5.53 5.43		$5.71^{+0.03}_{-0.04}$ $5.75^{+0.04}_{-0.05}$ $5.92^{+0.02}_{-0.02}$	$2.7 - 8.7$ $6.5 - 19.5$	$0.123 - 0.216$ $0.5 - 1.5$	$30.85 - 31.51$ $32.07 - 33.19$
RX J1856.5-3754 RX J0720.4-3125	6.0 ± 0.2	$5.70^{+0.05}_{-0.25}$	$5.6 - 5.9$ $5.55 - 5.95$	>16 $5.0 - 15.0$	$0.105 - 0.129$ $0.1 - 0.3$	$31.44 - 31.68$ $31.3 - 32.5$

Thermal Evolution of Neutron Stars

- Overview of neutron star structure and a simple analytical cooling model
- URCA processes
- Problem 1: pairing
- Problem 2: envelope chemical composition and magnetic fields
- Minimal Cooling
- Problem 3: data interpretation
- **Examples of fast cooling scenarios**
- Conclusion and prospects

Direct URCA with pairing vs data

Pairing gaps:

Neutron ¹S₀: "SFB" Neutron ${}^{3}P_{2}$: "b" Proton ${}^{1}S_{0}$: "T73"

A "Maximal" cooling model (?)

Comparison of two models with n, p & hyperons (DUURCA with Λ is controlled by its ${}^{1}S_{0}$ gap) and n, p, hyperons + quarks (Quark DURCAs are strongly suppress by a very large gap)

Because of the strong suppression of neutrino emission by large gaps, there is little difference between the two models.

"Prospects of Detecting Baryon and Quark Superfluidity from Cooling Neutron Stars", D Page, M Prakash, JM Lattimer & AW Steiner, 2000PhRvL..85.2048P

Thermal Evolution of Neutron Stars

- Overview of neutron star structure and a simple analytical cooling model
- URCA processes
- Problem 1: pairing
- Problem 2: envelope chemical composition and magnetic fields
- Minimal Cooling
- Problem 3: data interpretation
- Examples of fast cooling scenarios
- **Conclusion and prospects**

Conclusions and

Neutrino emission can be strongly suppressed by pairing.

Minimal Cooling: most observed isolated cooling neutron star are OK.

A few serious candidates for neutrino cooling beyond minimal.

prospects

HELP !

From nuclear physicists:

- Reliable pairing gaps (for nucleons, hyperons, quarks: !?!)
- Medium effects on the modified URCA process

From astrophysicists:

- Better atmosphere models with strong magnetic fields
- Better models of T_{surf} distribution with magnetic fields.

From astronomers:

- More reliable estimates of ages
- X-ray polarimetry to determine the surface magnetic field geometry (?)

