Clusters and fragments formed in expanding nuclear matter in heavy-ion collisions

Akira Ono (Tohoku University)

Relevance of equilibrium in fragmentation Furuta and Ono, arXiv:0811.0428 [nucl-th]

Cluster correlations in the AMD approach started at NSCL in 2005

EOS and Collision Dynamics

Energy of nuclear matter

$$
E(\rho, \delta)/A = E(\rho, 0)/A + E_{sym}(\rho)\delta^{2}
$$

$$
\delta = (\rho_{n} - \rho_{p})/\rho
$$

- *E*(ρ , 0) (Symmetric matter $\rho_n = \rho_p$)
- *E*_{sym}(ρ): Symmetry energy
- Depends on temperature *T* free energy rather than energy
- LG phase transition (two components)
- Effective masses *^m*[∗]*n*(ρ, ^δ), *^m*[∗]*p*(ρ, ^δ)
- $\boldsymbol{\mathsf{NN}}$ cross sections $\sigma_{NN}(\rho,\delta)$

Clusters as bulk properties

- Many experimental observables (to probe high and low densities) are related to clusters and fragments. (*t*/³He, isoscaling etc)
- Clusters and fragments are the main part of the total system.

- Consider four nucleons in the gas at $T=\mathsf{10}$ MeV, for example.
	- **Uncorrelated:** $\langle E \rangle = \frac{3}{2}T \times 4 = 60$ MeV
	- α cluster: $\langle E \rangle$ = −28.3 MeV + $\frac{3}{2}T$ × 1 = −13.3 MeV

Clusters are important as "Bulk Nuclear Properties".

Antisymmetrized Molecular Dynamics

AMD wave function

Initial State

Branching

 $+ \binom{1}{2} + \binom{2}{2} + \binom{3}{3} + \binom{4}{4} + \ldots$

 \mathtt{C}_1

$$
|\Phi(Z)\rangle = \det_{ij} \left[exp\{-\nu \left(\mathbf{r}_j - \frac{\mathbf{Z}_i}{\sqrt{\nu}}\right)^2\} \chi_{\alpha_i}(j) \right] \qquad \qquad \text{as } \qquad \text{for } \qquad \text{
$$

 ν : Width parameter = (2.5 fm)⁻²

 χ_{α_i} \colon Spin-isospin states = $p \uparrow$, $p \downarrow$, $n \uparrow$, $n \downarrow$

Stochastic equation of motion for the wave packet centroids *Z*:

$$
\frac{d}{dt}\mathbf{Z}_i = \{\mathbf{Z}_i, \mathcal{H}\}_{PB} + \Delta \mathbf{Z}_i(t) + (\text{NN collisions})
$$

Mean field (Time evolution of single-particle wave functions)

Nucleon-nucleon collisions (as the residual interaction)

Energy is conserved. No temperature in the equation. Quantum effects are included.

∆*x*

0s

Antisymmetrization

0p

Mean field ⁺ Qauntum branching

At each time t_0 , for each wave packet $k, \, \dots$

Mean field propagation $t_0 \to t_0 + \tau$ | $+$ Branching at $t_0 + \tau$ | $- \tau$: Coherence time

$$
t = t_0 \qquad \qquad t = t_0 + \tau
$$

$$
|\mathbf{Z}_k\rangle\langle\mathbf{Z}_k|\underset{\text{Mean field}}{\longrightarrow}|\psi_k\rangle\langle\psi_k|\underset{\text{Branching}}{\longrightarrow}\int|\mathbf{z}\rangle\langle\mathbf{z}|\;w_k(\mathbf{z})d\mathbf{z}\qquad\text{for }k=1,\ldots,A
$$

$$
t_0
$$

\n
$$
t_1 = t_0 + \tau
$$

$$
i\hbar \frac{d}{dt} |\psi_k(t)\rangle = h^{\text{HF}} |\psi_k(t)\rangle \quad \text{or} \quad \frac{\partial f_k}{\partial t} = -\frac{\partial h^{\text{HF}}}{\partial \mathbf{p}} \cdot \frac{\partial f_k}{\partial \mathbf{r}} + \frac{\partial h^{\text{HF}}}{\partial \mathbf{r}} \cdot \frac{\partial f_k}{\partial \mathbf{p}}
$$

 $\tau \rightarrow$ (Strongest branching)

P

- $\tau=\tau(\rho) \quad \text{(Density-dependent)}$
	- $\tau = \tau_{\sf NN\text{-}coll}$ (Decoherence at NN collisions)

Langevin-like equation of motion

Equation of motion for the wave packet centroids

 $\frac{d}{dt} \mathbf{Z}_i$ = { \mathbf{Z}_i , $\boldsymbol{\mathcal{H}}$ }_{PB} Mean field + ∆**Z***i*(*t*) Mean field & Branching $+\mathop{\mu}\nolimits(\mathbf{Z}_{i}, {\mathcal{H}}')$ Dissipation + NN-Collision

If **Z***ⁱ* were canonical variables for simplicity,

$$
\{Z_i, \mathcal{H}\}_{PB} = \frac{1}{i\hbar} \frac{\partial \mathcal{H}}{\partial Z_i^*}
$$

\n
$$
\overline{\Delta Z_{ia}(t)} = 0, \qquad \overline{\Delta Z_{ia}(t) \Delta Z_{jb}(t)} = D_{iab}(t) \delta_{ij} \delta(t - t')
$$

\n
$$
(\mathbf{Z}_i, \mathcal{H}') = \frac{1}{\hbar} \frac{\partial \mathcal{H}'}{\partial \mathbf{Z}_i^*}, \qquad \mathcal{H}' = \mathcal{H} + \sum_m \beta_m Q_m
$$

 μ is determined by the total energy conservation.

Lagrange multipliers β_m are determined so that Q_m are not changed by the $(\mathbb{Z}_i, \mathcal{H}')$ term.

$$
\{Q_m\} = \Big\{ \Big\langle \sum_i \mathbf{r}_i \Big\rangle, \ \Big\langle \sum_i \mathbf{p}_i \Big\rangle, \ \Big\langle \sum_i \mathbf{r}_i \times \mathbf{p}_i \Big\rangle, \ \Big\langle \sum_i r_{i\sigma} r_{i\tau} \Big\rangle, \ \Big\langle \sum_i p_{i\sigma} p_{i\tau} \Big\rangle \Big\} \qquad \sigma, \tau = x, y, z
$$

5th ANL/MSU/JINA/INT FRIB Workshop on Bulk Nuclear Properties, 2008/11 – p.7/19

AMD results for fragmentation

(Cluster correlations?)

Xe + Sn at 50 MeV/u, 0 ≤ *b* ≤ 4 fm

Charge distribution

AMD $(\tau \rightarrow 0)$

 $\mathsf{AMD}\ (\tau_\mathsf{NN\text{-}coll})$

Equilibrium ensembles and caloric curves

Microcanonical ensemble \Leftarrow Simply solve the time evolution for a long time

- Total energy: *E*
- Volume: $V=\frac{4}{3}\pi R^3$ (reflections at the wall of container)
- Neutron and proton numbers: N = 18, Z = 18 $\,$
- \Rightarrow Temperature $T(E, V)$ and Pressure $P(E, V)$

Furuta and Ono, arXiv:0811.0428 [nucl-th]; PRC74 (2006) 014612.

Furuta and Ono, arXiv:0811.0428 [nucl-th].

⁴⁰Ca + ⁴⁰Ca, *^E*/*A* ⁼ ³⁵ MeV, *b* ⁼ ⁰

 $\left\{\text{States at the reaction time } t\right\} = \frac{?}{=}$ = Equilibrium ensemble(*E*, *V*, *A*)

Result of comparison

Fragment observables during the reaction (80 \leq *t* ≤ (300+) fm/*c*) are well explained as eqilibrium properties of nuclear many-body system.

Some dynamical effects

Finite flow

- Fragment radius (the figure below)
- Actual volume

arXiv:0811.0428 [nucl-th]

Cluster correlations

¹⁹⁷Au + ¹⁹⁷Au at 150 MeV/u

Cluster formation

During the time evolution of AMD,

- Cluster formation
- Propagation
- Breakup \bullet

 $N_1 + B_1 + N_2 + B_2 \rightarrow C_1 + C_2$

- $\mathsf{N}_1, \, \mathsf{N}_2$: Colliding nucleons
- $\mathsf{B}_1, \, \mathsf{B}_2$: Spectator nucleons/clusters

C¹, C² : *N*, (2*N*), (3*N*), (4*N*)

$$
\frac{d\sigma}{d\Omega} = F_{\text{kin}} |\langle \varphi_1' | \varphi_1^{+q} \rangle|^2 |\langle \varphi_2' | \varphi_2^{-q} \rangle|^2 \left(\frac{d\sigma}{d\Omega} \right)_{\text{NN}}
$$

c.f. Danielewicz et al., NPA533 (1991) 712.

5th ANL/MSU/JINA/INT FRIB Workshop on Bulk Nuclear Properties, 2008/11 – p.13/19

Non-orthogonality of final states

Non-orthogonality of final states: $N_{\text{BB'}} \equiv \langle \Phi_{\text{B}} | \Phi_{\text{B'}} \rangle \neq \delta_{\text{BB'}}$

The probability that **N** forms a cluster with one of B's:

$$
P = \langle \Phi^{\mathbf{q}} | \hat{X} | \Phi^{\mathbf{q}} \rangle \qquad \qquad \hat{X} = \sum_{\mathbf{B} \mathbf{B}'} |\Phi'_{\mathbf{B}} \rangle N_{\mathbf{B} \mathbf{B}'}^{-1} \langle \Phi'_{\mathbf{B}'} |
$$

$$
= \sum_{\mathbf{B}} |\langle \tilde{\Phi}'_{\mathbf{B}} | \Phi^{\mathbf{q}} \rangle|^{2} \qquad \qquad |\tilde{\Phi}'_{\mathbf{B}} \rangle = (N^{-1/2})_{\mathbf{B} \mathbf{B}'} |\Phi_{\mathbf{B}'} \rangle
$$

 $|\langle \tilde{\Phi}$ $\mathbf{\bar{D}^{\prime}}$ $\mathcal{B}^{|\Phi^{\mathrm{q}}\rangle|^2}$ is regarded as the probability that $\mathsf N$ forms a cluster with $\mathsf B.$

The details of cluster correlations

Formation

- $(d\sigma/d\Omega)_{NN} \Rightarrow$ Cluster formation cross section
- \blacksquare Clusters: *N*, 2*N*, 3*N*, 4*N* = $(0s)^n$
- **Pauli-blocking factor:** $\prod_{i\in\mathbb{C}}(1 f_i)$
- Avoid double countings of final states
- Take care of the non-orthogonality of final states

Propagation

Nucleons *i* in a cluster C are propagated as usual, except that the internal fluctuations are turned off:

$$
\frac{d}{dt}\mathbf{Z}_i = \{\mathbf{Z}_i, \mathcal{H}\}_{PB} + \Delta \mathbf{Z}_i(t), \quad \Delta \mathbf{Z}_i(t) := \frac{1}{C} \sum_{j \in C} \Delta \mathbf{Z}_j(t)
$$

Breakup

A cluster C is broken when a nucleon in C collides with another nucleon.

Time evolution of number of clusters

Number of nucleons in correlated clusters

Effects of cluster correlations

 $^{40}\mathrm{Ca}$ + $^{40}\mathrm{Ca}$, E/A = 35 MeV, filtered violent collisions

Results for Sn + Sn **system**

¹¹²Sn + ¹¹²Sn at *^E*/*A* ⁼ ⁵⁰ MeV/nucleon, ⁰ < *b* < ² fm With cluster correlations $\Sigma Z(70° < \theta < 110°) = 25$

Reasonable numbers of clusters.

- Maybe too much transverse emission (i.e. too large σ_{NN}).
- Exact calculation ($\propto A^4$) with Gogny force.

Summary

Clusters and fragments are important as an aspect of bulk properties of expanding nuclear matter.

Reaction and Equilibrium — A unified study with AMD

- Equivalence for fragment observables at each reaction time [80 . *^t* < (300+) fm/*c*]
- Some dynamical effects

Cluster correlations in AMD

- $\mathsf{N}_1 + \mathsf{B}_1\; + \; \mathsf{N}_2 + \mathsf{B}_2\; \rightarrow \mathsf{C}_1 + \mathsf{C}_2, \;\;$ based on $(d\sigma/d\Omega)_{NN}$
- Cluster correlations have systematic effects on *^Mp*, *^M*^α, and $\sum_{\mathsf{IMF}}Z.$
- Consistent reproduction of various multifragmentation data may be improved.

 20