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In fission, what are the shapes and related energies
iInvolved in the transition from a single ground-state
shape to two separated fission fragments?
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Five Essential Fission Shape Coordinates

< Q, >

45 Q, ~ Elongation (fission direction)

BDS a, ~ (M1-M2)/(M1+M2) Mass asymmetry
1DS g, ~ Left fragment deformation

1DS €., ~ Right fragment deformation

1DS d ~ Neck

[J 5 315 625 grid points — 306 300 unphysical points
[0 5009 325 physical grid points
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Abstract: Calculations of the deformation energy curves of relatively heavy deformed nuclei
— Ce isotopes — have been performed using the constrained Hartree-Fock technique. The two-
body interaction is the Skyrme force, and pairing effects are taken into account. Different
possible choices for the external field form are investigated and the advantage of a non-linear
dependence of the constraint is shown. One of the advantages of this type of calculation is that
deformation energy curves can be calculated without making a complete map of the deformation
energy surface. A discussion of the numerical techniques and uncertainties, particularly those
connected with truncation effects is given. General trends of the deformation energy curves,
calculated for the Ce isotopes as a function of the quadrupole moment, are found to be in good
agreement with available experimental information. Associated physical quantities are
discussed and a comparison is made with the results of phenomenological calculations using the
liquid-drop model and the Strutinsky prescription.

1. Introduction

There have been many different attempts to use self-consistent field calculations
to determine the properties of nuclei over the past ten years. These have used both
purely phenomenological and more fundamental treatments of the two-body force
and have examined a large class of different questions ranging from the exact charge
density to the quadrupole moments of deformed nuclei.

In this paper we wish to report on a phenomenological self-consistent calculation
with the Skyrme interaction ') for the energy surfaces of relatively heavy deformed
nuclei. Our main aim is not to show that these surfaces are good ones (although they
seem to be) but to give a discussion of the various techniques and problems which
arise.

The technique used is that of constrained Hartree-Fock (CHF) with pairing and
general external field forms. It has been found that the energy surface can be obtained
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to the energy surfaces show clearly that for deformations below the saddle point of
a heavy nucleus, @ and % are the most important degrees of freedom. These produce
axially symmetric shapes with an equatorial symmetry plane. In fact these are the
only shapes that our calculations can, up to now, take into account. Degrees of free-
dom like Y3, and Y, .., must be considered eventually if we wish to discuss the fission
barrier or nearly spherical nuclei.

Let us suppose that we know the energy surface E(Q, #). When we constrain only
Q we follow a path 4'(Q) defined by the equation in the plane (Q, k)

ghE(Q’ hl) =0, (15)

and we draw a curve EX(Q) = E(Q, #'(Q)). On the other hand, if we search for the
valley in the plane (Q, &) we get its equation 4*(Q) by solving
" OE(Q. ) , FE(Q.K) _
a0 a0 oh

0, (16)

and the energy curve will be
EY(Q) = E(Q, H'(Q)). (17)

In fig. 2 one can see as an example that 4! is generally distinct from 4°, It shows that
with a single constraint on Q one always gets

EY(Q) < EY0Q). (18)

—

Q Q

Fig. 2. Example of an energy surface in the (Q, #) plane showing that one does not exactly follow
the fission valley with a constraint only on Q.
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However, knowledge of dA*/dQ implies knowledge of the fission path. However this

can provide an indication on a way to improve the results obtained with a single

minimization on Q. We can make a supplementary calculation constraining the quan-

tity

dr'(Q)
dg

Within this method one searches for the minimum in a direction perpendicular to the
curve 4' and one comes closer to the true path 4*. In fact such a calculation will only
be useful if one notices in the curve 4#'(Q) a rapid variation showing that the valley
becomes rather perpendicular to the Q-axis and consequently that the constraint on
Q is not well suited. This method gives a reasonably good approximation to the valley
and avoids a complete calculation of the surface E(Q, /). One can also think of using
the good approximation given by the liquid-drop model. Indeed one can imagine
that the function #“(Q) giving the hexadecapole moment of a liquid drop as a func-
tion of its quadrupole moment indicates roughly the direction of the valley. In fact
phenomenological approaches to deformation energy surfaces show that this is in
general true up to the fission saddle point. For future calculations then, it seems also
interesting to constrain the quantity

P”=Q

P =Q+h

e2y)

+h d——hLD(Q) .
dQ

The point could be made that all this trouble in finding the valley is not really neces-
sary because all we are interested in are the minimum and maximum points, which
are correctly given in any case. This is not really so because, in particular for the
fission barrier, we would ultimately like to know something about the shape of the
curve for dynamical calculations, such as for lifetimes.

However, we do see that it is probably not necessary to calculate the whole energy
surface in order to get the information we would like. This is in some contrast to the
phenomenological shell-model approaches, which do require an extensive mapping
before the valley is identified, with certainty. This point serves to reduce the relative
computer time considerably for self-consistent calculations.

(22)

2.3. APPROXIMATE TREATMENT OF PAIRING

The single-particle level density in heavy deformed nuclei is large enough so that
the question as to which levels near the Fermi level are actually occupied becomes a
major source of computational difficulty. In principle one would have to get a sep-
arate energy surface for each possible occupation and look at the envelope of these
curves. Apart from the problems of computation and the difficulties associated with
degeneracies, such a program is really wasted effort because we know that pairing
exists in all the deformed nuclei and that the occupation probabilities are determined
more or less by the pairing. Partly because of the foregoing and partly because pairing



Saddle Search Strategies lllustrated

- SEEER




Function Value

I
&)

|
=
o

|
=
o1

- 20

One-Dimensional Paths

N Saddle point

>
)

—100 -390 0 50 100
©




—100 —-90 0 50 100



Potential Energy of Deformation

We use the macroscopic-microscopic method introduced by
Swiatecki and Strutinsy:

Epot (Shape) — Emacr(Shape) -+ Emicr(Sha’pe) (1)
The macroscopic term is calculated in a liquid-drop type

model (for a specific deformed shape).

The microscopic correction is determined in the following

steps
1. A shape is prescribed

2. A single-particle potential with this shape is generated.
A spin-orbit term is included.

. The Schrodinger equation is solved for this deformed
potential and single-particle levels and wave-functions

are obtained

. The shell correction is calculated by use of Strutinsky’s
method.

. The pairing correction is calculated in the BCS or
Lipkin-Nogami method.




Single-Proton Energy (MeV)
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Fission Calculation Details

. Fission Barriers of 5254 nuclei calculated for
170 < A < 330

Several different parameterizations are used

. 5D parameterization, energy for 5 000 000 different

shapes are calculated for each nucleus

. For small deformations a 3D parameterization is used
Elongation, neck and axial-asymmetry shape degrees of

freedom.

. An improved determination of the ground-state energy

and shape is done in a 4D space

. When multiple minima are present a special strategy is
used to establish which minimum and saddle define the
“barrier”.

(In practice this technique cannot be implemented in
HFB)




6. Just the potential energies correspond to more than 250

Gb of information.

7. Saddles, minima, valleys are determined in a completely
automated fashion. Compact result files are generated

for each nucleus

8. Data sets, such as tables of barrier heights

(Z, N, A, Er) are generated, also by automated scripts.

Results will be made available at URL
http://t16web.lanl.gov/Moller/abstracts.html

(Capital M is essential)

Results more complete than can be published will be

available here in due course.
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Fission-Barrier and Associated Shapes for ***Am

Potential Energy (MeV)
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Fission-Barrier Height (MeV)
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TABLE I: Fermi-gas level-density parameters de-
termined from adjustments of parameters of the
Fermi-gas model to microscopic calculations of intrin-
sic level densities. The numbers in parentheses are
(1) for an asymmetric saddle, and (2) for a symmetric

saddle. B and C refer to the second and third saddle,
respectively, for a triple-humped barrier, see Fig. 77?.

Density Fit Log Fit

1/2
Nucleus 2/ a FEsnist a Esnitt

(barn/2)  (MeV)~! (MeV) (MeV)™! (MeV)

€even-even Systems

232h (1) 7.75 17.708  2.483 15.403 1.177

2Th (2 7.56 20.538  2.492 18.963  1.898
odd-even systems

9Am (1) 6.04 19.369  1.275 16.906  0.607

*MAm (1) 6.04 19.879  1.232 19.156  0.980

243A m (1) 6.04 20.281  1.097 17.828  0.470
odd-odd systems

238Am (1B) 6.20 19.041  0.810 19.125 0.700

¥Am  (1C)  7.56 17.259  0.232 17.814  0.420

22Am (1)  6.04 19.740 0.618  21.961 0.980




Proton Number Z

Calculated Energy Window for EC-Delayed Fission
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TABLE I: Calculated @} values Qgrc for electron
capture and calculated fission-barrier heights Bf for
reactions where EC-delayed fission has been observed
experimentally.

Reaction QEc Bs  Qgrc — Bt
(MeV) (MeV) (MeV)
180 EX 180, 1044 9.81 0.63
228N, 2K 2287 496 513 —0.87
22Am ZX 232py 488  3.23 1.65
284Am ZX 2%4py 412 3.83 0.29
238gr  EK 2380y 477 492 —0.15
22 B 220 5922 6.16  —0.94
2 B 2440r 445 669 2 —2.24
200 ZX 2880f 369  7.16  —3.47
28ps ZX 280 998 724 —4.26




TABLE I: Fission and a-decay half-lives for selected

nuclei. .
Nuclide 10Log(Tlf/Q/y) 1OLog(Tf‘/Q/y)
Z N A Calc. Exp. Calc. Exp.
92 144 236 14.31 16.39 8.18 7.37
94 138 232 —1.29 —-3.21 —4.19
94 146 240 9.22 11.05 4.51 3.93
100 152 252 6.06 2.09 —1.14 —-2.54
100 158 258 —-7.34 —-10.91
96 126 222 9.41 —4.12
98 126 224 1.65 —4.70
100 126 226 —3.03 —5.29
96 128 224 —2.16 —8.35
96 134 230 —10.76 —1.48
98 132 230 —15.96 —4.52
112 165 277 —5.37 —11.91 —-11.11




Calculated Fission-Barrier Heights
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