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Reactions of Heavy Nuclei

Late in a reaction, matter describable in terms of a local temp T
and velocity ~v . Dissipation is responsible for equilibration.
⇒ ?Pace of the dissipation? ?Quantitative description of the
dissipative transport??

Reactions well described in terms of the Boltzmann equation
∂f
∂t

+
∂εp
∂p

∂f
∂r
−
∂εp
∂r

∂f
∂p

=

∫
dp2 dΩ′ v12

dσ
dΩ′

(
f̃1 f̃2 f ′1 f ′2 − f̃ ′1 f̃ ′2 f1 f2

)
where f - nucleon Wigner function, f̃ = 1− f - blocking factor,
ε - single-nucleon energy related to the equation of state

Boltzmann valid at low-n/high-T . At high-n - phenomenological.
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Dissipative Transport

Examples of the transport on the way towards equilibrium:

Transport of momentum Transport of isospin, i.e. of
neutron-proton imbalance

Transport of isospin of interest due to availability of exotic
beams - with unusual neutron-proton content.
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Transport Coefficients
For slow changes, the flux of
a transported quantity
is linear in gradients,
with proportionality coefficients
characteristic for the matter.

Complication: Different gradients
present in a reaction
- many coefficients?!

⇒ Curie (Pierre) Principle allows some sorting of relations.

Strategy: Identify nuclear reaction observables sensitive to
a particular transport coefficient.
Manipulate the Boltzmann equation to reproduce data→
deduce the coefficient; make sure that the sensitivity exclusive.

⇒ Need to know Boltzmann-eq. transport coefficients
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Shear Viscosity

x

z

Flux of z-momentum in the x-direction, Πzx , proportional to
collective velocity gradient:

Πzx = −η ∂uz

∂x

where η - shear viscosity coefficient.
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Elementary estimate
Density n = const:

�
�

�

�

Net Momentum Flux Up = Flux Up - Flux Down

Πzx =
1
6

n vkin m uz(x − λ)− 1
6

n vkin m uz(x + λ)

' − 1
3

n vkin m λ
∂uz

∂x

Thus, the shear viscosity coefficient:

η ' n m vkin

3
λ ∼ 0.16 fm−3 939 MeV/c2 0.3 c

3
2 fm ∼ 30 MeV/fm2c
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Solving Boltzmann Equation
∂fj
∂t

+
∂εj
∂p

∂fj
∂r
−
∂εj
∂r

∂fj
∂p

= Ij

where j = 1,2 for neutrons and protons. Collision integrals Ij
vanish, if the local equilibrium Wigner functions are substituted

f eq
i =

1

exp
(

(p−m u)2
2m −µi

T

)
+ 1

However, the LHS does not vanish if there are gradients in the
system. Thus, f eq

i cannot be a precise solution and

fi = f (0)
i + f (1)

i + f (2)
i + . . .

where f (0)
i ≡ f eq and f (n) is of n’th order in gradients.

f eq produces no dissipative fluxes, while f (1) yields lowest-order
fluxes linear in gradients & transport coefficients. f (1) obtained
by substituting f (0) to the LHS and expanding I in f (1).
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Shear Viscosity from Boltzmann Eq
From the structure of the Boltz-
mann equation

f (1)
i = φi f (0)

i (1− f (0)
i )

where φ is a smooth function

Following the Curie principle, anisotropy of symmetric
momentum-flux tensor should be driven by the anisotropy of
symmetric tensor of velocity gradient:

φi = bi

(
pk p` −

p2

3
δk`

) (
∇k u` +∇` uk −

2
3
δk`∇n un

)
Upon substituting to the Boltzmann eq, the result on viscosity is

η =
5T
9

(∫
dp f p2)2∫

dp1 dp2 dΩ f1 f2 (1− f ′1) (1− f ′2) v12
dσ
dΩ p4

12 sin2 θ

Shi&PD PRC68(03)064604
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Numerical Results

Free-space cross-sections
used; density n in units of
normal n0

At low-T and high-n,
divergence due to
diverging mean-free-path.
Simple estimate gave
η ∼ 30 MeV/fm2 c.

Validation in terms of data??

Calcs of in-medium cross-sections for Boltzmann eq.: Schnell
PRC57(98)806 & Fuchs PRC64(01)024003 - effects of Pauli &
eff mass on intermediate states; general suppression of
cross-section, particulary of low-energy resonant behavior
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FOPI Measurements of Stopping

Central symmetric collisions of different nuclei from 0.09 to 1.93
GeV/nucleon. Generally, all ptcles with Z < 10, excluding
pions, weighted with their charge.

Reisdorf et al.
PRL92(04)232301

Rapidity distributions wider
in the longitudinal than
transverse direction:
incomplete stopping

Ratio of rapidity widths:

vartl =
∆ yt

∆ yl
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vartl Excitation Function
Stopping↔ In-Medium Cross-Sections↔ Viscosity
Boltzmann equation simulations by Brent Barker.
vartl = ∆ yt/∆ yl . In the model A ≤ 3, while FOPI data Z < 10:
only Elab & 400 MeV/nucleon relevant; note the INDRA point.

symbols - data

free cross-sections?
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vartl Excitation Function
Stopping↔ In-Medium Cross-Sections↔ Viscosity
Boltzmann equation simulations by Brent Barker.
vartl = ∆ yt/∆ yl . In the model A ≤ 3, while FOPI data Z < 10:
only Elab & 400 MeV/nucleon relevant; note the INDRA point.

symbols - data

free cross-sections
yield far too much
stopping

microscopic cross-
sections?

From Stopping to Viscosity Danielewicz, Barker, Shi



Introduction Shear Viscosity Data Comparisons Conclusions

vartl Excitation Function
Stopping↔ In-Medium Cross-Sections↔ Viscosity
Boltzmann equation simulations by Brent Barker.
vartl = ∆ yt/∆ yl . In the model A ≤ 3, while FOPI data Z < 10:
only Elab & 400 MeV/nucleon relevant; note the INDRA point.

symbols - data

free cross-sections
yield far too much
stopping

Rostock cross-sections
yield still too much
stopping; Fuchs’
similarly
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Cross-Section Phenomenology
’Microscopic’ cross-sections don’t include effects of other
collisions in the vicinity. Phenomenology: size of strong-int
cross-section should not exceed interparticle distance.

σ . σ0 = ν n−2/3

Practical realization:

σ = σ0 tanh
(
σfree

σ0

)
with ν adjusted.

For n→ 0, σ → σfree.
For n→∞, σ → σ0.
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Cross-Section Phenomenology
’Microscopic’ cross-sections don’t include effects of other
collisions in the vicinity. Phenomenology: size of strong-int
cross-section should not exceed interparticle distance.

σ . σ0 = ν n−2/3

Practical realization:

σ = σ0 tanh
(
σfree

σ0

)
with ν adjusted.

For n→ 0, σ → σfree.
For n→∞, σ → σ0.

ν ∼ 0.6 best
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Ca+Ca vartl Excitation Function

FOPI central Ca+Ca events - symbols
(Reisdorf et al. PRL92(04)232301)

Again free cross-
sections yield far too
much stopping.

ν ∼ 0.4 seems favored,
but there may be an
issue of the quality of
central-event selection.
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Stopping: Linear Momentum Transfer

Linear mo transfer:
Mass asymmetric
reactions (b ∼ 0)
examined in lab frame

Velocity component along the beam of the most massive
fragment determined and its average compared to the cm
velocity.

Limits:

Little stopping: 〈v‖〉 ∼ 0 small c.s.?
Large stopping, fusion: 〈v‖〉 ' vcm large c.s.?
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In-Medium Cross-Section Reduction?
Data: Conlin et al. PRC57(98)R1032 - symbols
Ar + Cu, Ag, Au High multiplicity events 〈b〉 ∼ bmax/4
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Free cross-sections overestimate stopping.
Low ν ∼ 0.4 favored.
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Net In-Medium Cross-Sections??
Number of collisions:
Rostock σ yields the same
〈v‖〉/vcm at all energies, as
tempered σ with ν = 1, but
very different collision No.
What do these σs share that
decides on the same 〈v‖〉?

No of collisions with viscous
weight q4 sin2 θ′ is nearly the
same for the two σs, ∼ 3/4 of
the No for free σ. Found at all
the energies in question.
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Viscosity from Transport Analysis of Reaction Data
Shi&PD PRC68(03)064604:

η =
5T
9

(∫
dp f p2)2∫

dp1
∫

dp2
∫

dΩ f1 f2 f̃ ′1 f̃ ′2 v12
dσ
dΩ

p4
12 sin2 θ

Significant
enhancement of
the viscosity due to
in-medium cross-
section & effective-
mass reduction.

At n ∼ n0,
η ∼ 75 MeV/fm2 c
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Conclusions

Transport theory may be used for deducing macroscopic
transport coefficients of nuclear matter.
Free cross-sections yield more stopping in collisions than
exhibited by data.
Close correspondence results in simulations between
reduced stopping and inferred shear viscosities.
In-medium modifications appear to raise nuclear viscosity
by nearly a factor of 2, compared to expectations based on
free-space cross sections and dispersion relation.
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Viscosity at Low & High Energies

Viscosity vs EOS
QGP phase-transition search focused now on tricritical point
Empirical evidence: close to critical temperature viscosity
normalized to entropy minimizes.

Compilation
Csernai et al. PRL97(06)152303

At RHIC η limited from above
by the strength of collective
flow (v2).

Lower limit from strong-
coupling limit of gauge
theories: η/s ≥ 1/4π ∼ 1/12.

⇒Where is nuclear matter in medium-energy collisions?
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Viscosity at Low & High Energies

Entropy from Cluster Yields
Simple formula: S/A ' 3.9− log (Nd/Np)
Siemens&Kapusta PRL43(79)1486

Independent testing in transport theory
PD&Bertsch NPA533(81)712
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Normalized Viscosity
In intermediate-energy reactions, s/n ≡ S/A = (3-4.5),
corresponding to T = (40-70) MeV at n = n0,
yielding η/s = (0.5-0.7)

Results fall in the ball-
park of other but follow
from nuclear data.
Lacey et al PRL98(07)092301
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