From Stopping to Viscosity in Nuclear Reactions

Pawel Danielewicz, Brent Barker and Lijun Shi

Natl Superconducting Cyclotron Lab, Michigan State U

5th ANL/MSU/JINA/INT FRIB Workshop on Bulk Nuclear Properties Michigan State University, November 19-22, 2008

э

Reactions of Heavy Nuclei

Shear Viscosity

Late in a reaction, matter describable in terms of a local temp T and velocity \vec{v} . Dissipation is responsible for equilibration.

 \Rightarrow ?Pace of the dissipation? ?Quantitative description of the dissipative transport??

Reactions well described in terms of the Boltzmann equation $\frac{\partial f}{\partial t} + \frac{\partial \epsilon_{\mathbf{p}}}{\partial \mathbf{p}} \frac{\partial f}{\partial \mathbf{r}} - \frac{\partial \epsilon_{\mathbf{p}}}{\partial \mathbf{r}} \frac{\partial f}{\partial \mathbf{p}} = \int d\mathbf{p}_2 \, d\Omega' \, v_{12} \, \frac{d\sigma}{d\Omega'} \left(\tilde{f}_1 \, \tilde{f}_2 \, f'_1 \, f'_2 - \tilde{f}'_1 \, \tilde{f}'_2 \, f_1 \, f_2 \right)$ where *f* - nucleon Wigner function, $\tilde{f} = 1 - f$ - blocking factor, ϵ - single-nucleon energy related to the equation of state

Reactions of Heavy Nuclei

Shear Viscosity

Late in a reaction, matter describable in terms of a local temp T and velocity \vec{v} . Dissipation is responsible for equilibration.

 \Rightarrow ?Pace of the dissipation? ?Quantitative description of the dissipative transport??

Reactions well described in terms of the Boltzmann equation $\frac{\partial f}{\partial t} + \frac{\partial \epsilon_{\mathbf{p}}}{\partial \mathbf{p}} \frac{\partial f}{\partial \mathbf{r}} - \frac{\partial \epsilon_{\mathbf{p}}}{\partial \mathbf{r}} \frac{\partial f}{\partial \mathbf{p}} = \int d\mathbf{p}_2 \, d\Omega' \, \mathbf{v}_{12} \, \frac{d\sigma}{d\Omega'} \left(\tilde{f}_1 \, \tilde{f}_2 \, f'_1 \, f'_2 - \tilde{f}'_1 \, \tilde{f}'_2 \, f_1 \, f_2\right)$ where f - nucleon Wigner function, $\tilde{f} = 1 - f$ - blocking factor, ϵ - single-nucleon energy related to the equation of state

Boltzmann valid at low-n/high-T. At high-n - phenomenologica

Reactions of Heavy Nuclei

Shear Viscosity

Late in a reaction, matter describable in terms of a local temp T and velocity \vec{v} . Dissipation is responsible for equilibration.

 \Rightarrow ?Pace of the dissipation? ?Quantitative description of the dissipative transport??

Reactions well described in terms of the Boltzmann equation $\frac{\partial f}{\partial t} + \frac{\partial \epsilon_{\mathbf{p}}}{\partial \mathbf{p}} \frac{\partial f}{\partial \mathbf{r}} - \frac{\partial \epsilon_{\mathbf{p}}}{\partial \mathbf{r}} \frac{\partial f}{\partial \mathbf{p}} = \int d\mathbf{p}_2 d\Omega' \, \mathbf{v}_{12} \frac{d\sigma}{d\Omega'} \left(\tilde{f}_1 \, \tilde{f}_2 \, f'_1 \, f'_2 - \tilde{f}'_1 \, \tilde{f}'_2 \, f_1 \, f_2 \right)$ where *f* - nucleon Wigner function, $\tilde{f} = 1 - f$ - blocking factor, ϵ - single-nucleon energy related to the equation of state Boltzmann valid at low-*n*/high-*T*. At high-*n* - phenomenological.

Dissipative Transport

Examples of the transport on the way towards equilibrium:

Transport of momentum

Z₁,N₁

Transport of isospin, i.e. of neutron-proton imbalance

Transport of isospin of interest due to availability of exotic beams - with unusual neutron-proton content.

> < ≣

Introduction

Transport Coefficients

For slow changes, the flux of a transported quantity is linear in gradients, with proportionality coefficients characteristic for the matter.

Complication: Different gradients present in a reaction - many coefficients?!

\Rightarrow Curie (Pierre) Principle allows some sorting of relations.

Strategy: Identify nuclear reaction observables sensitive to a particular transport coefficient.

Manipulate the Boltzmann equation to reproduce data \rightarrow deduce the coefficient; make sure that the sensitivity exclusiv

 \Rightarrow Need to know Boltzmann-eq. transport coefficients

Introduction

Transport Coefficients

For slow changes, the flux of a transported quantity is linear in gradients, with proportionality coefficients characteristic for the matter.

Complication: Different gradients present in a reaction - many coefficients?!

 \Rightarrow Curie (Pierre) Principle allows some sorting of relations.

Strategy: Identify nuclear reaction observables sensitive to a particular transport coefficient.

Manipulate the Boltzmann equation to reproduce data \rightarrow deduce the coefficient; make sure that the sensitivity exclusive.

S NSCL

 \Rightarrow Need to know Boltzmann-eq. transport coefficients

Introduction

Transport Coefficients

For slow changes, the flux of a transported quantity is linear in gradients, with proportionality coefficients characteristic for the matter.

Complication: Different gradients present in a reaction - many coefficients?!

 \Rightarrow Curie (Pierre) Principle allows some sorting of relations.

Strategy: Identify nuclear reaction observables sensitive to a particular transport coefficient.

Manipulate the Boltzmann equation to reproduce data \rightarrow deduce the coefficient; make sure that the sensitivity exclusive.

⇒ Need to know Boltzmann-eq. transport coefficients

Shear Viscosity

Flux of z-momentum in the x-direction, Π^{zx} , proportional to collective velocity gradient:

$$\Pi^{zx} = -\eta \, \frac{\partial u^z}{\partial x}$$

where η - shear viscosity coefficient.

э

Elementary estimate

Thus, the shear viscosity coefficient:

$$\eta \simeq \frac{n \, m \, v_{kin}}{3} \, \lambda \sim \frac{0.16 \, \text{fm}^{-3} \, 939 \, \text{MeV}/c^2 \, 0.3 \, c}{3} \, 2 \, \text{fm} \sim 30 \, \text{MeV/fm}^2 \, \text{Scl}^2$$

Danielewicz, Barker, Shi

Elementary estimate

Net Momentum Flux Up = Flux Up - Flux Down $\Pi^{zx} = \frac{1}{6} n v_{kin} m u^{z} (x - \lambda) - \frac{1}{6} n v_{kin} m u^{z} (x + \lambda)$ $\simeq -\frac{1}{3} n v_{kin} m \lambda \frac{\partial u^{z}}{\partial x}$

Thus, the shear viscosity coefficient:

$$\eta \simeq \frac{n \, m \, v_{kin}}{3} \, \lambda \sim \frac{0.16 \, \text{fm}^{-3} \, 939 \, \text{MeV} / c^2 \, 0.3 \, c}{3} \, 2 \, \text{fm} \sim 30 \, \text{MeV} / \text{fm}^2 \, \text{MeV}$$

Solving Boltzmann Equation $\frac{\partial f_j}{\partial t} + \frac{\partial \epsilon_j}{\partial \mathbf{p}} \frac{\partial f_j}{\partial \mathbf{r}} - \frac{\partial \epsilon_j}{\partial \mathbf{r}} \frac{\partial f_j}{\partial \mathbf{p}} = \mathcal{I}_j$

where j = 1, 2 for neutrons and protons. Collision integrals \mathcal{I}_j vanish, if the local equilibrium Wigner functions are substituted

$$f_i^{eq} = \frac{1}{\exp\left(\frac{\frac{(\mathbf{p}-m\,\mathbf{u})^2}{2m}-\mu_i}{T}\right)+1}$$

However, the LHS does not vanish if there are gradients in the system. Thus, f_i^{eq} cannot be a precise solution and

$$f_i = f_i^{(0)} + f_i^{(1)} + f_i^{(2)} + \dots$$

where $f_i^{(0)} \equiv f^{eq}$ and $f^{(n)}$ is of *n*'th order in gradients. f^{eq} produces no dissipative fluxes, while $f^{(1)}$ yields lowest-order fluxes linear in gradients & transport coefficients. $f^{(1)}$ obtained by substituting $f^{(0)}$ to the LHS and expanding \mathcal{I} in $f^{(1)}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Solving Boltzmann Equation $\frac{\partial f_j}{\partial t} + \frac{\partial \epsilon_j}{\partial \mathbf{p}} \frac{\partial f_j}{\partial \mathbf{r}} - \frac{\partial \epsilon_j}{\partial \mathbf{r}} \frac{\partial f_j}{\partial \mathbf{p}} = \mathcal{I}_j$

where i = 1, 2 for neutrons and protons. Collision integrals \mathcal{I}_i vanish. if the local equilibrium Wigner functions are substituted

$$f_i^{eq} = \frac{1}{\exp\left(\frac{(\mathbf{p}-m\mathbf{u})^2}{2m} - \mu_i\right) + 1}$$

However, the LHS does not vanish if there are gradients in the system. Thus, f_i^{eq} cannot be a precise solution and

$$f_i = f_i^{(0)} + f_i^{(1)} + f_i^{(2)} + \dots$$

where $f_i^{(0)} \equiv f^{eq}$ and $f^{(n)}$ is of *n*'th order in gradients.

Solving Boltzmann Equation $\frac{\partial f_j}{\partial t} + \frac{\partial \epsilon_j}{\partial \mathbf{p}} \frac{\partial f_j}{\partial \mathbf{r}} - \frac{\partial \epsilon_j}{\partial \mathbf{r}} \frac{\partial f_j}{\partial \mathbf{p}} = \mathcal{I}_j$

where j = 1, 2 for neutrons and protons. Collision integrals \mathcal{I}_j vanish, if the local equilibrium Wigner functions are substituted

$$f_i^{eq} = \frac{1}{\exp\left(\frac{\frac{(\mathbf{p}-m\,\mathbf{u})^2}{2m}-\mu_i}{T}\right)+1}$$

However, the LHS does not vanish if there are gradients in the system. Thus, f_i^{eq} cannot be a precise solution and

$$f_i = f_i^{(0)} + f_i^{(1)} + f_i^{(2)} + \dots$$

where $f_i^{(0)} \equiv f^{eq}$ and $f^{(n)}$ is of *n*'th order in gradients. f^{eq} produces no dissipative fluxes, while $f^{(1)}$ yields lowest-order fluxes linear in gradients & transport coefficients. $f^{(1)}$ obtained by substituting $f^{(0)}$ to the LHS and expanding \mathcal{I} in $f^{(1)}$.

Shear Viscosity from Boltzmann Eq

From the structure of the Boltzmann equation

$$f_i^{(1)} = \phi_i f_i^{(0)} (1 - f_i^{(0)})$$

where ϕ is a smooth function

Following the Curie principle, anisotropy of symmetric momentum-flux tensor should be driven by the anisotropy of symmetric tensor of velocity gradient:

$$\phi_i = b_i \left(p_k p_\ell - \frac{p^2}{3} \delta_{k\ell} \right) \left(\nabla_k u_\ell + \nabla_\ell u_k - \frac{2}{3} \delta_{k\ell} \nabla_n u_n \right)$$

Upon substituting to the Boltzmann eq, the result on viscosity is

 $\eta = \frac{5T}{9} \frac{\left(\int d\mathbf{p} f p^2\right)^2}{\int d\mathbf{p}_1 d\mathbf{p}_2 d\Omega f_1 f_2 (1 - f_1') (1 - f_2') v_{12} \frac{d\sigma}{d\Omega} p_{12}^4 \sin^2 \theta}$ Shi&PD PRC68(03)064604

Conclusions

Numerical Results

Free-space cross-sections used; density n in units of normal n_0

At low-*T* and high-*n*, divergence due to diverging mean-free-path.

Simple estimate gave $\eta \sim 30 \,\mathrm{MeV/fm^2}\,c.$

Validation in terms of data??

Calcs of in-medium cross-sections for Boltzmann eq.: Schnell PRC57(98)806 & Fuchs PRC64(01)024003 - effects of Pauli & eff mass on intermediate states; general suppression of cross-section, particulary of low-energy resonant behavior

ъ

Conclusions

Numerical Results

Free-space cross-sections used; density n in units of normal n_0

At low-*T* and high-*n*, divergence due to diverging mean-free-path.

Simple estimate gave $\eta \sim 30 \,\mathrm{MeV/fm^2}\,c.$

Validation in terms of data??

Calcs of in-medium cross-sections for Boltzmann eq.: Schnell PRC57(98)806 & Fuchs PRC64(01)024003 - effects of Pauli 8 eff mass on intermediate states; general suppression of cross-section, particulary of low-energy resonant behavior

э

Conclusions

Numerical Results

Free-space cross-sections used; density n in units of normal n_0

At low-*T* and high-*n*, divergence due to diverging mean-free-path.

Simple estimate gave $\eta \sim 30 \,\mathrm{MeV/fm^2}\,c.$

Validation in terms of data??

Calcs of in-medium cross-sections for Boltzmann eq.: Schnell PRC57(98)806 & Fuchs PRC64(01)024003 - effects of Pauli & eff mass on intermediate states; general suppression of cross-section, particulary of low-energy resonant behavior

Conclusions

Numerical Results

Free-space cross-sections used; density n in units of normal n_0

At low-*T* and high-*n*, divergence due to diverging mean-free-path.

Simple estimate gave $\eta \sim 30 \,\mathrm{MeV/fm^2}\,c.$

Validation in terms of data??

Calcs of in-medium cross-sections for Boltzmann eq.: Schnell PRC57(98)806 & Fuchs PRC64(01)024003 - effects of Pauli & eff mass on intermediate states; general suppression of cross-section, particulary of low-energy resonant behavior

FOPI Measurements of Stopping

Central symmetric collisions of different nuclei from 0.09 to 1.93 GeV/nucleon. Generally, all ptcles with Z < 10, excluding pions, weighted with their charge.

Reisdorf *et al.* PRL92(04)232301

Rapidity distributions wider in the longitudinal than transverse direction: incomplete stopping

Ratio of rapidity widths:

$$vartl = \frac{\Delta y_t}{\Delta y_l}$$

vartl Excitation Function

Stopping \leftrightarrow In-Medium Cross-Sections \leftrightarrow Viscosity Boltzmann equation simulations by Brent Barker. *vartl* = $\Delta y_t / \Delta y_l$. In the model $A \leq 3$, while FOPI data Z < 10: only $E_{lab} \gtrsim 400$ MeV/nucleon relevant; note the INDRA point.

symbols - data

free cross-sections?

vartl Excitation Function

Stopping \leftrightarrow In-Medium Cross-Sections \leftrightarrow Viscosity Boltzmann equation simulations by Brent Barker. *vartl* = $\Delta y_t / \Delta y_l$. In the model $A \leq 3$, while FOPI data Z < 10: only $E_{lab} \gtrsim 400$ MeV/nucleon relevant; note the INDRA point.

symbols - data

free cross-sections yield far too much stopping

microscopic crosssections?

vartl Excitation Function

Stopping \leftrightarrow In-Medium Cross-Sections \leftrightarrow Viscosity Boltzmann equation simulations by Brent Barker. *vartl* = $\Delta y_t / \Delta y_l$. In the model $A \leq 3$, while FOPI data Z < 10: only $E_{lab} \gtrsim 400$ MeV/nucleon relevant; note the INDRA point.

symbols - data

free cross-sections yield far too much stopping

Rostock cross-sections yield still too much stopping; Fuchs' similarly

Cross-Section Phenomenology 'Microscopic' cross-sections don't include effects of other collisions in the vicinity. Phenomenology: size of strong-int cross-section should not exceed interparticle distance.

$$\sigma \lesssim \sigma_0 = \nu \, \textit{n}^{-2/3}$$

Practical realization:

$$\sigma = \sigma_0 \tanh\left(\frac{\sigma_{\rm free}}{\sigma_0}\right)$$

with ν adjusted.

For $n \rightarrow 0$, $\sigma \rightarrow \sigma_{\text{free}}$. For $n \rightarrow \infty$, $\sigma \rightarrow \sigma_0$.

3

Cross-Section Phenomenology 'Microscopic' cross-sections don't include effects of other collisions in the vicinity. Phenomenology: size of strong-int cross-section should not exceed interparticle distance.

$$\sigma \lesssim \sigma_0 = \nu \, n^{-2/3}$$

Practical realization:

$$\sigma = \sigma_0 \tanh\left(\frac{\sigma_{\rm free}}{\sigma_0}\right)$$

with ν adjusted.

For
$$n \rightarrow 0$$
, $\sigma \rightarrow \sigma_{\text{free}}$.
For $n \rightarrow \infty$, $\sigma \rightarrow \sigma_0$.

Ca+Ca vartl Excitation Function

FOPI central Ca+Ca events - symbols (Reisdorf *et al.* PRL92(04)232301)

Again free crosssections yield far too much stopping.

 $\nu \sim 0.4$ seems favored, but there may be an issue of the quality of central-event selection.

Stopping: Linear Momentum Transfer

Linear mo transfer: Mass asymmetric reactions ($b \sim 0$) examined in lab frame Vbeam

 v_{\parallel}/v_{cm}

Velocity component along the beam of the most massive fragment determined and its average compared to the cm velocity.

Limits:

Little stopping: $\langle v_{\parallel} \rangle \sim 0$ small c.s.?Large stopping, fusion: $\langle v_{\parallel} \rangle \simeq v_{cm}$ large c.s.?

In-Medium Cross-Section Reduction?

Data: Conlin *et al.* PRC57(98)R1032 - symbols Ar + Cu, Ag, Au High multiplicity events $\langle b \rangle \sim b_{max}/4$

Free cross-sections overestimate stopping. Low $\nu \sim$ 0.4 favored.

Number of collisions: collision number

Rostock σ yields the same $\langle v_{\parallel} \rangle / v_{cm}$ at all energies, as tempered σ with $\nu = 1$, but very different collision No. What do these σ s share that decides on the same $\langle v_{\parallel} \rangle$?

weighted collision No

No of collisions with <u>viscous</u> weight $q^4 \sin^2 \theta'$ is nearly the same for the two σ s, $\sim 3/4$ of the No for free σ . Found at all the energies in question.

Net In-Medium Cross-Sections??

Number of collisions: Rostock σ yields <u>the same</u> $\langle v_{\parallel} \rangle / v_{cm}$ at all energies, as tempered σ with $\nu = 1$, but very different collision No. What do these σ s share that decides on the same $\langle v_{\parallel} \rangle$?

weighted collision No

No of collisions with <u>viscous</u> weight $q^4 \sin^2 \theta'$ is nearly the same for the two σ s, $\sim 3/4$ of the No for free σ . Found at all the energies in question.

Viscosity from Transport Analysis of Reaction Data

Shi&PD PRC68(03)064604:

Significant enhancement of the viscosity due to in-medium crosssection & effectivemass reduction.

At $n \sim n_0$, $n \sim 75 \,\mathrm{MeV/fm^2}\,c$

▲ 臣 → ▲ 臣 → .

Conclusions

- Transport theory may be used for deducing macroscopic transport coefficients of nuclear matter.
- Free cross-sections yield more stopping in collisions than exhibited by data.
- Close correspondence results in simulations between reduced stopping and inferred shear viscosities.
- In-medium modifications appear to raise nuclear viscosity by nearly a factor of 2, compared to expectations based on free-space cross sections and dispersion relation.

Conclusions

- Transport theory may be used for deducing macroscopic transport coefficients of nuclear matter.
- Free cross-sections yield more stopping in collisions than exhibited by data.
- Close correspondence results in simulations between reduced stopping and inferred shear viscosities.
- In-medium modifications appear to raise nuclear viscosity by nearly a factor of 2, compared to expectations based on free-space cross sections and dispersion relation.

Conclusions

- Transport theory may be used for deducing macroscopic transport coefficients of nuclear matter.
- Free cross-sections yield more stopping in collisions than exhibited by data.
- Close correspondence results in simulations between reduced stopping and inferred shear viscosities.
- In-medium modifications appear to raise nuclear viscosity by nearly a factor of 2, compared to expectations based on free-space cross sections and dispersion relation.

Viscosity vs EOS

QGP phase-transition search focused now on tricritical point Empirical evidence: close to critical temperature viscosity normalized to entropy minimizes.viscosity-to-entropy density ratio

Compilation Csernai *et al.* PRL97(06)152303

At RHIC η limited from above by the strength of collective flow (v_2).

Lower limit from strongcoupling limit of gauge theories: $\eta/s \ge 1/4\pi \sim 1/12$.

⇒Where is nuclear matter in medium-energy collision

Viscosity vs EOS

QGP phase-transition search focused now on tricritical point Empirical evidence: close to critical temperature viscosity normalized to entropy minimizes.viscosity-to-entropy density ratio

Compilation Csernai *et al.* PRL97(06)152303

At RHIC η limited from above by the strength of collective flow (v_2).

Lower limit from strongcoupling limit of gauge theories: $\eta/s \ge 1/4\pi \sim 1/12$.

 \Rightarrow Where is nuclear matter in medium-energy collisions?

Entropy from Cluster Yields

Simple formula: $S/A \simeq 3.9 - \log (N_d/N_p)$

Siemens&Kapusta PRL43(79)1486

PD&Bertsch NPA533(81)712

Normalized Viscosity

In intermediate-energy reactions, $s/n \equiv S/A = (3-4.5)$, corresponding to T = (40-70) MeV at $n = n_0$, yielding $\eta/s = (0.5-0.7)$

Results fall in the ballpark of other but follow from nuclear data.

Lacey et al PRL98(07)092301

Danielewicz, Barker, Shi