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TABLE 2
COOLING CURVE FIT PARAMETERS

Parameter nsa nsa nsa bbodyrad
D = 10 kpc D = 5 kpc D = 13 kpc

Flux

Normalization, a1 4.5± 0.1 6.5± 0.2 3.8± 0.1 3.2± 0.3
e-folding time, b (days) 240± 8 259± 9 241± 8 241± 21

Constant, c2 1.7± 0.1 3.3± 0.2 1.3± 0.1 1.5± 0.1
χ2

ν
1.2 0.9 1.1 0.4
Temperature

Normalization, a (eV) 73± 2 54± 1 82± 2 176± 11
e-folding time, b (days) 472± 24 485± 27 473± 24 437± 43
Constant, c (eV) 54± 1 45± 1 58± 1 141± 3

χ2
ν

1.5 1.3 1.4 0.7

NOTE. — The model fit to the cooling curves is of the form y(t) = aexp[!(t !
t0)/b]+ c, where t0 = 52159.5. All uncertainties are 1σ.
1 in units of 10!13 erg cm!2 s!12 in units of 10!14 erg cm!2 s!1

FIG. 2.— Comparison of the cooling curves for MXB 1659!29 (black,
filled circles) and KS 1731!260 (red, open circles). Both exponential + con-
stant cooling curve fits (solid lines) and power-law cooling curve fits (dashed
lines) are shown (see text for details). Data for KS 1731!260 is taken from
Cackett et al. (2006). Error bars are 1σ.

(see Figure 2 for a log-log plot), it appears that the middle sec-
tion of the curve does appear to follow a power-law. Fitting a
power-law to just these middle data points (excluding the first
and last observation) achieves a good fit to those points. For
fits to the temperatures from the nsa results with D=10 kpc
we find the power-law index b = !0.34± 0.02 and χ2

ν
= 1.1,

for fits to the flux the power-law index b = !1.36± 0.09 and
χ2

ν
= 1.2. The last observation is a 5σ deviation from an ex-

trapolation of this best-fitting power-law to the temperatures,
and a 4σ deviation for the fit to the fluxes. This again strongly
indicates that the temperature is now remaining constant, and
the crust is thermally relaxed.

3. DISCUSSION

We have presented an new observation of the quasi-
persistent neutron star X-ray transient MXB 1659!29 in qui-
escence. This new observation extends the quiescent monitor-
ing of this source to 6.6 yr, with 7 observations in total during
this period. Results from the previous 6 observations showed
that the source had cooled rapidly and indicated that the neu-
tron star crust may have returned to thermal equilibrium with
the core. This new observation shows that the neutron star
has remained at a flux and temperature consistent with the
previous two Chandra observations performed approximately
1000 days before.

The model dependence of the thermal relaxation timescale
was investigated with 2 different neutron star atmosphere
models as well as a simple blackbody model. Moreover, we
assumed 3 different distances to MXB 1659!29. The result-
ing cooling curves from all the spectral fits gave e-folding
timescales that are consistent with each other, demonstrat-
ing the robustness of the measurement, and we found results
consistent with fits to the first 6 observations by Cackett et al.
(2006). The shape of the cooling curve not depending on the
assumed distance is consistent with a constant R/D, as ex-
pected if the luminosity is indeed due to surface emission (as
opposed to residual accretion).
With the crust thermally relaxed, we can compute the core

temperature (here we use the values assuming D=10 kpc).
We integrated the thermal structure equation in the neu-
tron star envelope, following the calculation in Brown et al.
(2002). We find the inferred core temperature to range from
3.5× 107 K, for a deep He layer (column of 108 gcm!2)
overlaying a pure Fe layer to 8.3× 107 K for a shallow He
layer (column of 104 gcm!2) overlaying a layer of heavy
rp-process ashes. For modified Urca cooling according to
the “minimal cooling model” (Page et al. 2004), this im-
plies a core neutrino luminosity of Lν = 1.4× 1029 ergss!1

to 1.9× 1032 ergss!1. Even in the most optimistic case, Lν

would still be a factor of ≈ 30 less than the time-averaged
crust nuclear heating (∼ 6× 1033 ergss!1 for a distance of
10 kpc). The inferred core temperature is therefore consistent
with the presence of moderately enhanced neutrino emission
(see Yakovlev & Pethick 2004, for a review) from the core, as
noted earlier (Cackett et al. 2006; Heinke et al. 2007).
Although the exponential plus constant fits are not phys-

ical, they do give a figure-of-merit for the thermal relax-
ation time of the crust. This relaxation time depends on
the crust composition and lattice structure (Rutledge et al.
2002; Shternin et al. 2007), on the crust thickness and hence
surface gravity of the neutron star (Lattimer et al. 1994),
and on the distribution of heat sources (Shternin et al. 2007;
Horowitz et al. 2008b; Brown & Cumming, in preparation).
Shternin et al. (2007) showed that the cooling timescale in
KS 1731!260 was best fit by having a high thermal con-
ductivity in the crust, as if it were composed of a locally
pure lattice. This matches molecular dynamics simulations
(Horowitz et al. 2007, 2008a), which find that the dense crust
plasma does indeed freeze into an ordered lattice with a high
thermal conductivity. As in KS 1731!260, our fits to the
cooling of MXB 1659!29 are again consistent with such
an ordered, low-impurity crust. Shternin et al. (2007) noted
that the crust may not have completely thermally relaxed;
we find a single power-law decay also fits the cooling curve
for KS 1731!260 well (see Fig. 2), with a power-law index
= !0.12± 0.01 and χ2

ν
= 0.3 when fitting to the tempera-

tures and an index = !0.50± 0.03 and χ2
ν
= 0.3 when fit-

ting to the fluxes. Further observations are required to de-
termine whether KS 1731!260 has continued to cool fol-
lowing a power-law decay or if KS 1731!260 has indeed
reached a constant kT∞

eff indicative of a thermally relaxed
crust. As pointed out by Shternin et al. (2007), the cooling
of KS 1731!260 can be fit without invoking enhanced neu-
trino emission in the core. If so, then the measured cooling
curves for these two sources would imply that the neutron star
in MXB 1659!29 is somewhat more massive than the one in
KS 1731!260.

quiescent lightcurves

• Wijnands et al., Cackett et al. 
measured this cooling

• Shternin ’07 suggested that 
crust must have a high thermal 
conductivity

• This talk: what we can learn 
from the lightcurve about the 
thermal state and transport 
properties of the neutron star 
crust (Brown & Cumming ’08)

Cackett et al. ‘08



crust models

• hydrostatic structure

• fixed core structure

• APR eos

• mass = 1.6 Msun

• inner crust: Mackie & Baym 
neutron eos, relativistic deg. 
electrons

• solve time-dependent thermal 
equations on fixed hydrostatic 
grid

2

sets the shape of the cooling lightcurve, and calculating in de-
tail the constraints on Qimp and other crust parameters com-
ing from the cooling lightcurves of both KS 1731−260 and
MXB 1659−29. Cackett et al. (2006) found that both of these
decays could be fit with an exponential decay to a constant,
although a single power-law (L ∝ t−α, with α = 0.50 ± 0.03)
also adequately fits the data for KS 1731−260 (Cackett et al.
2008). We show here that the lightcurve of a cooling crust is
a broken power law. The initial power law decay gives a di-
rect measure of the temperature profile, and hence the thermal
flux during outburst, in the outer crust. The time of the break,
at hundreds of days post-outburst, corresponds to the thermal
time where the solid transitions from a classical to quantum
crystal, close to neutron drip. At late times, the luminosity
levels off at a value set by the neutron star core temperature.

We start in §2 by describing our time-dependent cooling
calculations and an analytic model of the results, and go on
in §3 to calculate the constraints on crust parameters coming
from comparison with the observed cooling of KS 1731−260
and MXB 1659−29. The Appendix discusses the details of
our crust models.

2. MODELS OF CRUST COOLING IN KS 1731−260 AND
MXB 1659−29

2.1. Hydrostatic structure of the crust
Because the temperature is always low relative to the elec-

tron and neutron Fermi energies, we can solve for the temper-
ature and luminosity using a static hydrostatic structure. In
the crust, the pressure P makes a convenient Eulerian coor-
dinate, and we integrate the equations (Thorne 1977) for the
radius r, gravitational mass M, and potential φ,

dr
d ln P

=− P
ρg

(1 + z)−1, (2)

dM
d ln P

=−4πr2 P
g
, (3)

dφ
d ln P

=−P
ρ
. (4)

Here 1 + z = [1 − 2GM/(rc2)]−1/2, g = GM(1 + z)/r2 is the
gravitational acceleration, and ρ is the density of mass-energy.
We have neglected terms O(pr3/Mc2), as appropriate in the
crust. As boundary conditions, we assume a transition den-
sity to uniform npe matter at n = 0.08 fm−3 (consistent with
recent studies of clustering in uniform nuclear matter; Oya-
matsu & Iida 2007), and set M and r according to a neutron
star model computed using the EOS of Akmal et al. (1998).
We integrate outwards to a pressure P = 2.3×1026 ergs cm−3,
corresponding to a column depth from the surface1 of P/g =
1012 g cm−2, at which point we apply the third boundary con-
dition φ(r = R) = (c2/2) ln[1 − 2GM/(Rc2)]. The integration
is performed using a standard fourth-order Runge-Kutta al-
gorithm, and the output is constrained to generate points uni-
formly distributed in ln P for use in the time-dependent code
(§ 2.2). Our equation of state, as well as our model for the
composition, is detailed in the Appendix.

2.2. Time-dependent Heating and Cooling
The time-dependent equations for the evolution of temper-

ature and luminosity are
∂

∂t

(
Teφ/c

2)
= e2φ/c2 εnuc − εν

C
− 1

4πr2ρC(1 + z)
∂

∂r

(
Le2φ/c2)

,(5)

1 The column depth
∫ ∞

r ρ dz ≈ P/g; in this paper we will use the term to
refer to y ≡ P/g.
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Fig. 1.— Temperature in the neutron star ocean (Tb) as a function of pho-
tosphere temperature Teff (solid line). For comparison, the relations of Gud-
mundsson et al. (1983, dashed line) and Potekhin et al. (1997, dotted line) are
shown. Note that for the latter two, the temperature Tb is taken at a density
1010 g cm−3.

Le2φ/c2
=−4πr2Keφ/c2

1 + z
∂

∂r

(
Teφ/c

2)
, (6)

where εnuc and εν are the specific nuclear heating and neutrino
emissivity, C is the specific heat, and K is the thermal conduc-
tivity. We solve these equations using the method of lines. We
use the common technique of defining Le2φ/c2 at the midpoints
of our grid by interpolating 4πr2Keφ/c2

/(1 + z) and differenc-
ing Teφ/c2 ; as a result the divergence term in equation (5) is
second-order and explicitly conserves flux. This procedure
yields a set of coupled ordinary differential equations, which
we then integrate using a semi-implicit extrapolation method
(see Press et al. 1992, and references therein). Our calculation
of C, K, εnuc, and εν is described in the Appendix.

We used two different boundary conditions for the core.
The first is to simply assume a constant temperature, which
we fit to observations. The second is to match the inwards
luminosity at the crust-core boundary to the neutrino emis-
sion from the core using a tabulated Tc-Lν relation for differ-
ent assumptions of the core neutrino emissivity. In this way,
we self-consistently solve for the core temperature appropri-
ate for the assumed core physics rather than treat it as a free
parameter. Unless the quiescent interval is long, we find that
the core temperature is essentially constant over an outburst-
quiescence cycle.

The boundary condition at the surface is more ambiguous.
During an outburst, the temperature in the neutron star en-
velope is set by the burning of hydrogen and helium, and
(possibly) fusion of light elements such as 12C. Our code
does not track this burning, and so we fix the temperature at
P/g = 1012 g cm−2 at a fixed value. This column is roughly
where superburst ignition occurs, and should demarcate the
bottom of the region containing light element, unstable reac-
tions. During quiescence, we calculate the cooling flux at the
top of the grid using a tabulated relation between T∞eff and the
temperature obtained by integrating the steady-state thermal
structure of the neutron star envelope (Brown et al. 2002).
In these integrations, we fix the atmosphere to be pure 4He
down to a depth P/g = 109 g cm−2, with a layer of pure
56Fe down to a depth P/g = 1012 g cm−2. The resulting rela-
tion (Fig. 1, solid line) resembles that of Gudmundsson et al.
(1983, dashed line) at low Teff , but trends towards the fully
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sets the shape of the cooling lightcurve, and calculating in de-
tail the constraints on Qimp and other crust parameters com-
ing from the cooling lightcurves of both KS 1731−260 and
MXB 1659−29. Cackett et al. (2006) found that both of these
decays could be fit with an exponential decay to a constant,
although a single power-law (L ∝ t−α, with α = 0.50 ± 0.03)
also adequately fits the data for KS 1731−260 (Cackett et al.
2008). We show here that the lightcurve of a cooling crust is
a broken power law. The initial power law decay gives a di-
rect measure of the temperature profile, and hence the thermal
flux during outburst, in the outer crust. The time of the break,
at hundreds of days post-outburst, corresponds to the thermal
time where the solid transitions from a classical to quantum
crystal, close to neutron drip. At late times, the luminosity
levels off at a value set by the neutron star core temperature.

We start in §2 by describing our time-dependent cooling
calculations and an analytic model of the results, and go on
in §3 to calculate the constraints on crust parameters coming
from comparison with the observed cooling of KS 1731−260
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gravitational acceleration, and ρ is the density of mass-energy.
We have neglected terms O(pr3/Mc2), as appropriate in the
crust. As boundary conditions, we assume a transition den-
sity to uniform npe matter at n = 0.08 fm−3 (consistent with
recent studies of clustering in uniform nuclear matter; Oya-
matsu & Iida 2007), and set M and r according to a neutron
star model computed using the EOS of Akmal et al. (1998).
We integrate outwards to a pressure P = 2.3×1026 ergs cm−3,
corresponding to a column depth from the surface1 of P/g =
1012 g cm−2, at which point we apply the third boundary con-
dition φ(r = R) = (c2/2) ln[1 − 2GM/(Rc2)]. The integration
is performed using a standard fourth-order Runge-Kutta al-
gorithm, and the output is constrained to generate points uni-
formly distributed in ln P for use in the time-dependent code
(§ 2.2). Our equation of state, as well as our model for the
composition, is detailed in the Appendix.
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where εnuc and εν are the specific nuclear heating and neutrino
emissivity, C is the specific heat, and K is the thermal conduc-
tivity. We solve these equations using the method of lines. We
use the common technique of defining Le2φ/c2 at the midpoints
of our grid by interpolating 4πr2Keφ/c2

/(1 + z) and differenc-
ing Teφ/c2 ; as a result the divergence term in equation (5) is
second-order and explicitly conserves flux. This procedure
yields a set of coupled ordinary differential equations, which
we then integrate using a semi-implicit extrapolation method
(see Press et al. 1992, and references therein). Our calculation
of C, K, εnuc, and εν is described in the Appendix.

We used two different boundary conditions for the core.
The first is to simply assume a constant temperature, which
we fit to observations. The second is to match the inwards
luminosity at the crust-core boundary to the neutrino emis-
sion from the core using a tabulated Tc-Lν relation for differ-
ent assumptions of the core neutrino emissivity. In this way,
we self-consistently solve for the core temperature appropri-
ate for the assumed core physics rather than treat it as a free
parameter. Unless the quiescent interval is long, we find that
the core temperature is essentially constant over an outburst-
quiescence cycle.

The boundary condition at the surface is more ambiguous.
During an outburst, the temperature in the neutron star en-
velope is set by the burning of hydrogen and helium, and
(possibly) fusion of light elements such as 12C. Our code
does not track this burning, and so we fix the temperature at
P/g = 1012 g cm−2 at a fixed value. This column is roughly
where superburst ignition occurs, and should demarcate the
bottom of the region containing light element, unstable reac-
tions. During quiescence, we calculate the cooling flux at the
top of the grid using a tabulated relation between T∞eff and the
temperature obtained by integrating the steady-state thermal
structure of the neutron star envelope (Brown et al. 2002).
In these integrations, we fix the atmosphere to be pure 4He
down to a depth P/g = 109 g cm−2, with a layer of pure
56Fe down to a depth P/g = 1012 g cm−2. The resulting rela-
tion (Fig. 1, solid line) resembles that of Gudmundsson et al.
(1983, dashed line) at low Teff , but trends towards the fully
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although a single power-law (L ∝ t−α, with α = 0.50 ± 0.03)
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recent studies of clustering in uniform nuclear matter; Oya-
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where εnuc and εν are the specific nuclear heating and neutrino
emissivity, C is the specific heat, and K is the thermal conduc-
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Integrated heating, HZ08

• heating rate is proportional to 
dM/dt

• outer crust: electron captures

• inner crust: electron captures, 
neutron emissions, pycnonuclear 
reactions

• relatively insensitive to 
composition (but see Gupta et 
al. ’07, ’08)



crust models

• 3 parameters that we adjust

• Ttop

• Tcore

• Qimp

Qimp ≡ n−1
ion

∑

i

ni(Zi − 〈Z〉)2 ! 10

11

Nuclear heating and neutrino cooling
Following Brown (2000), we define a smooth heating distribution in the crust, rather than resolving the heating from individual

reaction layers. We choose our heating function to be such that dLnuc/d ln y = const, and we do this separately in both the inner
crust, and in the outer crust where the pressure is P > 1027 ergs cm−3. The integrated nuclear luminosity is plotted in Fig. A2. We
normalized the heat distribution so that the total heat deposited, per accreted nucleon, into the inner crust is 1.5 MeV (cf. Haensel
& Zdunik 1990, 2003, 2008) and the total heat deposited, per accreted nucleon, into the outer crust is 0.2 MeV (cf. Gupta et al.
2007).
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Fig. A2.— Integrated nuclear heating, divided by the proper mass accretion rate, in the crust as a function of column.

For the neutrino cooling, our model includes (for a review of neutrino emission mechanisms, see Yakovlev et al. 2001) neutrino
cooling from electron-nucleus bremsstrahlung. The neutrino emissivity from neutrons paired in the 1S 0 state in the inner crust is
suppressed by a factor (vF/c)2 (Leinson & Perez 2006; Sedrakian et al. 2007). Recent calculations (Steiner & Reddy 2008) show
that this suppression follows from conservation of baryon vector current. The pair, photo, and plasmon emissivities (Schinder
et al. 1987) do not contribute substantially at the temperatures of interest.

Thermal conductivities
Our implementation of the thermal conductivities mediated by electron-ion scattering follows that of Potekhin et al. (1999) and

Gnedin et al. (2001). We compute the electron thermal transport in the relaxation-time approximation using the Wiedemann-Franz
law,

K =
π2

3
nek2

BT
m"e ν

, (A3)

where m"e = (p2
F/c

2 + m2
e)1/2, with pF being the Fermi momentum, and ν is the scattering frequency. In the ocean, ν is set by

electron-ion scattering. As the ions crystallize, electron-phonon scattering mediates the thermal transport. Where the temperature
is above the Debye temperature, the scattering frequency is approximately

νep ≈ 13α
kBT
!
, (A4)

where α = e2/(!c) is the fine-structure constant. In the inner crust, the electron-ion scattering frequency is strongly reduced for
T < Tp, the plasma temperature, and impurity scattering becomes dominant with scattering frequency

νeQ =
4πQimpe4nion

p2
FvF

Λimp, (A5)

where pF and vF are the momentum and velocity of electrons at the Fermi surface and the impurity parameter Qimp ≡
n−1

ion
∑

i ni(Zi − 〈Z〉)2 measures the distribution of nuclide charge numbers.
For the Coulomb logarithm termΛimp we use the formula of Potekhin et al. (1999) with the modification that the structure factor

is set to unity, reflecting the lack of long-range correlations in the impurities. With this modification Λimp becomes (Potekhin,
private communication)

Λimp =
1
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Cooling, MXB 1659–522
Brown & Cumming ‘08
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monte carlo using 
approximate model

• observations fix thermal 
conductivity of inner crust

• Qimp < 10

• agrees with Shternin et al. ’08

• degenerate with gravity, 
accretion rate

• crust thickness (Lattimer 
et al. ’94)

•  

8

Fig. 11.— Constraints on T∞c , Tb, and Qimp, as Figure 8, but now including
variations in M, R, and Ṁ.

on Qimp is considerably relaxed for MXB 1659−29. However,
for both sources, Qimp values greater than several are ruled out
even with the additional parameters included. The central val-
ues of T∞c and Tb are similar to the values previously derived.

The sensitivity of the derived value of Qimp on M and R
is illustrated for MXB 1659−29 in Figure 12 (we see the
same effect for the KS 1731−260 data). We show the derived
probability distribution for Qimp for three different choices
of neutron star mass and radius. In each case, we keep the
accretion rate fixed at our fiducial value Ṁ = 1017 g s−1.
The allowed values of Qimp increase with increasing surface
gravity. This can be understood by considering the thermal
time from a given density to the surface, which depends on
the thickness of the layer and therefore varies with surface
gravity (Lattimer et al. 1994). Rewriting the integral for the
thermal time, equation (9), as an integral over pressure gives
τ∞ ∝ (1 + z)/g2 ∝ R4M−2(1 + z)−1. An increase in surface
gravity shortens the cooling time, and Qimp must increase to
bring it back into agreement with the observed value.

The joint probability density for M and R is given in Fig-
ure 13 for each source. Although M and R are only weakly
constrained, we see that the best-fitting values of M and R
are correlated. The mass and radius enter the calculation
of the lightcurve in several places besides the thermal time
τ∞. The relation between crust temperature and T∞eff de-
pends on the surface gravity; for a fixed crust temperature,
T∞eff ∝ g1/4/(1+z). The initial temperature profile also changes
with gravity. Using the Newtonian equations for the steady-
state thermal profile, we see that dT/dP = (1/g)(3κF/4acT 3),
dF/dP = −ε/g, so that the increase in flux due to the deep
heating is smaller by a factor g, and the change in tempera-
ture for a given flux is smaller by a factor g. The combina-
tion of these different effects results in the observed correla-
tion between the best fitting values of M and R. By inspec-
tion we find that the slope of the relation is well-described by
g ∝ (1 + z)3.

4. DISCUSSION AND CONCLUSIONS

We have presented numerical simulations of the cool-
ing of the neutron star crust in both KS 1731−260 and
MXB 1659−29 following the end of long accretion outbursts.
Our main results are:

1. The lightcurve of a cooling crust is a broken power-law
going to a constant at late times. The luminosity at late times

Fig. 12.— The probability distribution of Qimp derived for MXB 1659−29,
for three different choices of neutron star mass and radii. Left to right, in
order of increasing surface gravity, they are (i) M = 1.4 M$, R = 13 km,
g14 = 1.4, 1+ z = 1.21 (ii) M = 1.6 M$, R = 11.2 km, g14 = 2.3, 1+ z = 1.32
and (iii) M = 2 M$, R = 10 km, g14 = 4.2, 1 + z = 1.57. In each case, the
accretion rate is fixed at our fiducial value Ṁ = 1017 g s−1.

Fig. 13.— Constraint on the neutron star mass and radius. We assume a
constant prior in mass between 1.1 and 2.5 M$ and in radius between 8 and
16 km. The peak of the probability distribution is marked with a cross, and
the contours enclose 68% and 95% of the probability.

is set by the neutron star core temperature. The slope of the
early part of the lightcurve provides a direct measure of the
flux in the outer crust during outburst (eq. [12]). The time of
the break is set by the transition from a classical to quantum
crystal, close to neutron drip. The good fit of our models to the
data provides evidence that the neutrons in the inner crust do
not contribute significantly to the heat capacity, as expected if
they are superfluid.

2. As our models have shown, the observations to date are
probing the thermal relaxation timescale of the inner crust.
The cooling timescale increases with increasing Qimp, poten-
tially giving a tight constraint on this parameter. The fits to
the lightcurves of MXB 1659−29 and KS 1731−260 both re-
quire Qimp< 10, in agreement with the result of Shternin et
al. (2007) for KS 1731−260. For our fiducial model, which
has neutron star parameters M = 1.6 M$, R = 11.2 km, and
outburst accretion rate Ṁ = 1017 g s−1, the best fit values are
Qimp= 4 for MXB 1659−29, and Qimp= 1.5 for KS 1731−260.
Reducing the surface gravity or increasing the accretion rate
allows smaller values of Qimp. Impurity scattering sets the

τ ∝ (∆r)2(1 + z)3
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Is the crust 
amorphous?

No—cooling timescale is too long
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Implications

• Crust has high thermal 
conductivity (not 
amorphous)—agrees with MD 
simulations (Horowitz et al. 07, 
08); cf. Shternin et al. (07)
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what can we learn from 
cooling transients?

• thermal timescale in the “outer” inner crust

• combination of conductivity, crust thickness, 
specific heat

• core temperature

• interpretation of neutrino cooling requires 
knowing the time-averaged dMdt

• distribution of heating in the crust



Is the heating consistent 
with other phenomena?

• Look to unstable nuclear burning in the neutron 
star atmosphere

• temperature sensitive ignition

• temperature in NS atmosphere, ocean depends 
on thermal flux if no other heat sources (H 
fusion)



KS 1731–260 superburst 
(Kuulkers 2002)

• About 103 more 
energetic than type I 
XRB (H, He burning)

• cooling time ~ hrs

• recurrence time ~ 
yrs



Determining ignition 
mass

• Can’t use total energetics because of significant 
neutrino emission; (Strohmayer & Brown 02, Schatz 
et al. 03)

• Cooling follows broken power-law, with change of 
slope at thermal timescale at ignition depth 
(Cumming et al. 07)

5

FIG. 4.— Left panel: best fitting E17 and y, and the associated reduced χ2, as a function of assumed peak flux F24. The fitted values approximately follow the

scalings E17 ≈ 0.8F4/7
24

and y∝ F
5/7
24
. We show results for 4U 1254-690 (short-dashed), KS 1731-260 (long dashed-short dashed), 4U 1735-444 (solid), Ser X-1

(long-dashed), GX 17+2 (burst 2 dot-dashed, burst 3 long-dot-dashed), and 4U 1636-54 (dotted). Right panel: same as left panel, but now using the observed

peak flux to plot everything in terms of the distance to the source. The χ2 for 4U 1636-54 (dotted curves) is off scale in the lower panel.

FIG. 5.— Fitted lightcurve for KS 1731-260, assuming the distance given
in Table 1. Solid data points are included in the fit, open data points (with
fluxes less than 0.1 of the peak flux) are not included.

indicate that the burning does not extend all the way to the
surface, which our models assume, but instead stalls at a loca-
tion where the thermal time to the surface is of order minutes.
More generally, our models are not valid for times less than
the superburst rise time. Also, we have not fitted our mod-
els to the superburst from 4U 1820-30, which was observed

FIG. 6.— Fitted lightcurve for 4U 1636-54.

by RXTE/PCA (Strohmayer & Brown 2002). This superburst
had a complex lightcurve, with an extended period of photo-
spheric radius expansion, lasting about 1000 seconds, indicat-
ing a large energy release. More detailed 1D models which
can follow the superburst rise are needed to address both of
these issues.
The best-fitting column depths are in the range 0.5–3×

break gives 
thermal timescale 
at ignition depth

From Cumming et al. 07
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shallow crustal heating?

• Best-fits have “inverted 
temperature profile”

• inward-directed heat 
flux

• requires heat source at 
place where thermal 
diffusion time < 30 d



superburst ignition
8

TABLE 2
CORE NEUTRINO EMISSION

Label Typea Prefactorb Comment

(erg cm!3 s!1)

a fast 1026 fast cooling

b slow 3× 1021 enhanced

c slow 1020 mURCA

d slow 1019 nn Bremsstrahlung

e slow 1017 suppressed

aFast and slow cooling laws are of the form Qν = Qf (Tc/109 K)6 and Qν =

Qs(Tc/109 K)8 respectively.
bEither Qs or Qf for slow or fast cooling, respectively.

FIG. 11.— The effect of core neutrino emissivity on superburst ignition
conditions at ṁ = 0.3 ṁEdd. We assume a disordered lattice in the crust,
and do not include Cooper pairing. The accreted composition is 20% 12C

(XC = 0.2) and 80% 56Fe by mass. From top to bottom, the temperature
profiles are for increasing core neutrino emissivity; the letters refer to Table
2. The long-dashed line shows the carbon ignition curve for XC = 0.2, and the
vertical dotted line indicates a column depth of 1012 g cm!2.

and a larger maximum temperature, but the results are simi-
lar and so we do not show them here. Cooper pair emission
was not considered by Brown (2004) and Cooper & Narayan
(2005); however we show here that it has a dramatic effect on
the crust temperature profile.
For the core neutrino emissivity, we consider the “fast”

and “slow” cooling laws Qν = Qf (Tc/109 K)6 and Qν =

Qs(Tc/109 K)8 (e.g. Yakovlev & Haensel 2003; Yakovlev &
Pethick 2004, Page et al. 2005). The “standard” slow cool-
ing by modified URCA processes has Qs ∼ 1020 erg cm!3 s!1.
However, if either the core protons or neutrons are super-
fluid, with very high values of Tc (" 109 K), then this pro-
cess is totally suppressed, leading to cooling by nucleon-
nucleon Bremsstrahlung (involving the non-superfluid com-
ponent). This process is roughly a factor of ten slower than
modified URCA, and so we take Qs ∼ 1019 erg cm!3 s!1 in
this case. If both protons and neutrons are strongly super-
fluid in the core, the neutrino emission will be supressed
further. To model this case, we assume that the core neu-
trino emission is suppressed by a further factor of 100, giving
Qs ∼ 1017 erg cm!3 s!1. However, in the more reasonable case

FIG. 12.— The effect of crust composition and conductivity on superburst
ignition conditions. Temperature profiles for superburst ignition models at
ṁ = 0.3 ṁEdd. We show two cases of core neutrino emissivity: slow cooling
with Qs = 10

19 erg cm!3 s!1 and fast cooling with Qf = 10
26 erg cm!3 s!1.

Solid lines are for a composition of 56Fe and a disordered lattice. Short-
dashed lines have a heavier composition (A = 106,Z = 46), and dot-dashed
lines are for a larger thermal conductivity (Q = 100). The long-dashed line
shows the carbon ignition curve for XC = 0.2, and the vertical dotted line
indicates a column depth of 1012 g cm!2.

that the neutron and/or proton Tc in the core are of the order
of 109 K there is intense neutrino emission from the Cooper
pair formation, resulting in an enhanced slow cooling rate
which we model by considering Qs ∼ 3× 1021 erg cm!3 s!1

(see, e.g., Figures 20 and 21 in Page et al. 2004). Finally, we
also consider a fast cooling rate with Qf ∼ 1026 erg cm!3 s!1

corresponding, e.g., to the direct Urca process. These mod-
els are summarized in Table 2. The core temperature Tc
can be estimated in each case. For slow cooling, we find

Tc ≈ 4.9× 108 K ( f
1/8
in /Q1/8s,20)

(

ṁ/ṁEdd
)1/8

and fast cooling

Tc ≈ 5.0× 107 K ( f
1/6
in /Q1/6f ,26)

(

ṁ/ṁEdd
)1/6

where fin is the

fraction of heat released in the crust that is conducted into the
core.
For the composition of the crust, we use the composition

calculated by either Haensel & Zdunik (1990) or Haensel &
Zdunik (2003). The difference between these two calcula-
tions is the nucleus assumed to be present at low densities, ei-
ther 56Fe (Haensel & Zdunik 1990), or a heavy nucleus 106Pd
(Z = 46) (Haensel & Zdunik 2003), as would be appropriate
if rp-process hydrogen burning is able to run to its endpoint
(Schatz et al. 2001). We calculate results for these two cases
to illustrate the variation expected from changes in composi-
tion. For the conductivity, we consider two cases. The first
is a “disordered” crust, for which we take the conductivity
to be that of a liquid phase, in the second case, we calculate
the contributions from phonons (Baiko & Yakovlev 1996) and
electron-impurity scattering (Itoh & Kohyama 1993), taking
the impurity parameterQ =100 (see Itoh &Kohyama 1993 for
a definition of the impurity parameter, written as 〈(∆Z)2〉 in
their notation). Note that a crust with Q = 100 is very impure.
However, we do not consider smaller values of the impurity
parameter because as we will show they would not agree with
observed X-ray burst properties.

• 12C likely cause of superbursts 
(Cumming & Bildsten 01, 
Strohmayer & Brown 02)

• Hot crust required to match 
inferred ignition depth (Brown 
04; Cooper & Narayan 05; 
Cumming et al. 06)

• No enhanced cooling

• low thermal conductivity 
(impure, amorphous crust)

heating from crust 
reactions

∂T ln εnuc > ∂T ln εcool

Inferred ignition 
depth from cooling 

timescale
Plot from Cumming et al. 06





Shallow Crustal Heating?

• Introduce shallow heat source   
Enuc = 0.5 MeV/u • (dM/dt)

• Could this explain superburst 
ignition when accretion rate was 
higher?

• Observations within 10 days 
post-outburst could confirm 
existence of this heating!
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questions for discussion

• what are the differences (K, C) between 

• pasta

• what is non-pasta: couscous? gruel?

• should we worry about domains—phase separated 
composition (Horowitz et al. ’08)?

• what can FRIB, PREX do to constrain the 
composition in the outer, inner crust?


