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The features of time-dependent approach 

•  Reflects time-dependent physics of unstable systems 
•  Linearity of QM equations maintained 
•  No matrix diagonalization 
•  Stability for broad and narrow resonances 
•  Direct relation to observables 
•  Ability to work with experimental data 
•  New many-body numerical techniques 

Nuclear structure and reactions 





Initial 
Hamiltonian 



Feshbach Formulations 

[1] C. Mahaux and H. Weidenmüller, Shell-model approach to nuclear reactions,  
  North-Holland Publishing, Amsterdam 1969 

Hilbert space is separated into intrinsic P (     ) and external Q-subspaces (        ) 

The Hamiltonian in P is: 

Channel-vector: 

Self-energy: 

Irreversible decay to the excluded space: 



Channel Vectors and amplitudes 

Energy-independent 
channel vector: structure 
of spectator components 

Channel amplitude 

Perturbative limit in traditional Shell Model: 

Spectroscopic factor or 
transition rate 

Single-particle decay width 



Scattering matrix and reactions 

Additional topics: 
• Angular (Blatt-Biedenharn) decomposition 
• Coulomb cross sections, Coulomb phase shifts, and interference  
• Phase shifts from remote resonances. 

Cross section: 



Stationary propagator 



Calculation Details, Propagator-
Strength Function 

• Scale Hamiltonian so that eigenvalues are in [-1 1] 
• Expand Using evolution operator in Chebyshev polynomials 

• Use iterative relation and matrix-vector multiplication to generate  

• Use FFT to find return to energy representation 
T. Ikegami and S. Iwata, J. of Comp. Chem. 23 (2002) 310-318 

• Chebyshev polynomial 



Chebyshev expansion 
Green’s function calculation 

Advantages of the method 
•  No need for full 

diagonalization or 
inversion at different E 

•  Only matrix-vector 
multiplications 

•  Numerical stability 
•  Controlled energy 

resolution 



Center-of-mass problem 
The strength-function example 

CM spurious states are moved to high energy 
• Top plot-isoscalar dipole E1 T=0 excitation 
• Center- E1 excitation with incorrect effective  

 charges 
• Bottom-E1 with ep=0.6 and en=-0.4  

Figure: Strength function for E1 and CM 
excitation in 20O  example, spsdfp –shell 
model WBP interaction.  



Full propagator 



Dysion’s equation,  
including other interaction terms 

Include non-Hermitian terms with Dyson’s equation 

Propagators in channel space 



Dyson’s equation 
• Work in channel space. 
• Include any interaction confined to channel space, Herminian, non-
Herminian or energy-dependent.  
• T-matrix                           where channel matrix 

Examples: 
• Non-Hermitian decay components                    , show unitarity. 
• Non-Hermitian components : time evolution of decaying states 
• Hermitian terms and GR collectivities 
• Position of resonances 
• Self energy, full inclusion of continuum effects    



Unitarity and flux conservation  
Figure: 6He(n,n) cross section 
• Solid curve-full cross section 
• Dashed (blue) only g.s. channel 
• Dotted (red) inelastic channel   

• Cross section has a cusp 
when inelastic channels open 
• The cross section is reduced 
due to loss of flux 
• The p-wave discontinuity E3/2 

Exact relation: 

Take: 



Time evolution of decaying states 

Time evolution of several SM states 
in 24O. The absolute value of the 
survival overlap is shown  

For an isolated narrow resonance  



Dipole collectivity  
Figure: Strength function of the 
isovector dipole operator in 22O. WBP 
SM Hamiltonian plus interaction term: 

κ=0 

κ=10 

κ=20 

κ=60 



Strength Function 
for system with dipole collectivity and neutron decay 

Dipole strength in 22O. WBP Shell Model, 
enhanced dipole collectivity k=20, neutron 
decay l=1 Woods-Saxon potential for 
reactions.  
(a) No decay 
(b) Realistic decay 
(c) Enhanced by a factor of 3 continuum 

coupling 
(d) Enhanced 10 times continuum coupling 



Strength function and decay in 220 

Upper panel: Isovector dipole 
strength in 22O low-energy 
region. 
Lower panel: Integrated strength  

In the limit of weak decay 



Manipulation with resonance positioning 

For SM eigenstate 

Include term in full Hamiltonian 

The position of the 
resonance will shift 

Advantages 
• Factorized form, Dyson’s equation 
• Fast work in channel space 
• Practical method to analyze observation  

Figure: the l=2 cross section 23O(n,n)23O. 
Solid line: USD interaction + neutron 
decay (WS potential). Dashed line 1+ state 
moved up by 1 MeV (from 5.29 to 6.29) 



The role of self-energy 

Figure: 23O(n,n)23O Effect of self-energy 
term (red curve). Shaded areas show 
experimental values with uncertainties.  

Energy-dependent contribution 
from virtual excitation to continuum, 
the self-energy. 

In channel space 

Near-threshold form 

Experimental data from:  
C. Hoffman, et.al. Phys. Lett. B672, 17 (2009) 



Correcting USD interaction 

Figure: Theory predictions for states in 24O 

Theoretical Models: 
OBE05 -A. Obertelli, et.al.  
  Phys. Rev. C 71, 024304 (2005). 
Khau02- E. Khan, et.al.  
  Phys. Rev. C 66, 024309 (2002). 
USD, USDA, USDB- B.A. Brown, et.al.  
  Phys. Rev. C 74, 034315 (2006). 
HBUSD- B.A. Brown, et.al.  
  Prog. Part. Nucl. Phys. 47, 517 (2001). 
SDPF-M – Y.Utsuno, et.al.  
Phys. Rev. C 60, 054315 (1999). 
TDCSM – This work 



Additional components 
in Hamiltonian 



States in 8B 

• Ab-initio and no core theoretical models 
predict low-lying 2+, 0+, and 1+ states 
• Recoil-Corrected CSM suggests low-lying 
states 
• Traditional SM mixed results 
• These states were not seen in 8B and in 8Li 



Experimental observation of 2+, 0+, and 1+ 
states can be done in inelastic reaction 

Elastic cross section Inelastic cross section 

TDCSM 

TDCSM 

R-matrix 

TDCSM: WBP interaction +WS potential, threshold energy adjustment. 
R-Matrix: WBP spectroscopic factors, Rc=4.5 fm, only 1+ 1+ 0+ 3+ and 2+ l=1 channels 
Experimental data from: G.Rogachev, et.al. Phys. Rev. C 64, 061601(R) (2001).  



Resonances and their positions 
inelastic 7Be(p,p’)7Be reaction in TDCSM 

CKI+WS Hamiltonian 

See animation at www.volya.net 



Position of the 2+ and its role in 7Be(p,p)7Be  

See animation at www.volya.net 



TDCSM 

R-matrix 

identical energies, identical widths, 
identical spectroscopic factors but 
different cross section   

From cross section to many-
body structure 7Be(p,p)7Be  

Phase changed  

TDCSM 

R-matrix 



CKI 

WBP 

PWT 
     R-matrix fit and TDCSM for 7Be(p,p)7Be  

Jπ p1/2, 
I=3/2 

p3/2, 
I=3/2 

p1/2, 
I=1/2 

p3/2, 
I=1/2 

FIT 2+ -0.293 0.293 0.534 

CKI 2+ -0.168 0.164 0.521 

FIT 1+ -0.821 -0.612 0.375 0.175 

CKI 1+ -0.840 -0.617 0.332 0.178 

Chanel Amplitudes from TDCM and final best fit 



Studies of the mirror nucleus 8Li 

0+ 

2+ 



From reactions to structure 
looking to the future 

• Dynamics for channels 
• Coupled channels 
• Folded potential 
• Virtual excitation dynamics on complex plane 



Resonant tunneling of composite objects 

N. Ahsan and A.Volya, in  
CHANGING FACETS OF 
NUCLEAR STRUCTURE  
World Scientific (2008) 



Variable amplitude technique 
Factorization 

Folded potential 

Center-of-mass  

Reflection 

Transmission 



Differential equations for amplitudes 
Truncation of potential leads to the following 

Y. Tikochinsky, Ann. Phys. 103, 185 (1977). 
M. Razavy, Quantum theory of tunneling  
(World Scientific, River Edge, NJ ; Singapore, 2003), p. 549. 



Role of virtual channels, convergence 
Intrinsic binding: Infinite square well External Potential : delta 
function 

Convergence Role of virtual channels 



Two-nucleon system with continuum 
finite square well binding 

Model Depth size energy WF RMS 

(a) Deep 2 1.0 -1.209 0.81 
(b) Medium 1 1.0 -0.455 1.16 
(c) Halo 0.5 1.0 -0.154 1.87 

Treat arbitrary potential 
Quantization in a box 30 
Discrete points 12k 
Virtual channels 120 



A. Lemasson, et.al. PRL 103, 232701 (2009) 

Enhanced tunneling probability for composite objects 



Summary: 
•  TDCSM new approach to many-body physics on the 

verge of stability 
–  Direct relation to physics of unstable systems 
–  Overcoming technical difficulties 
–  New numerical methods 
–  Treatment of complicated interaction terms 

•  Practical applications 
–  Adjustments of interactions 
–  Position of resonances 
–  Direct experimental test of theoretical assumptions 

•  Future methods 
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