

Florida State University

Nuclear structure and reactions

The features of time-dependent approach

- Reflects time-dependent physics of unstable systems
- Linearity of QM equations maintained
- No matrix diagonalization
- Stability for broad and narrow resonances
- Direct relation to observables
- Ability to work with experimental data
- New many-body numerical techniques

Feshbach Formulations

Hilbert space is separated into intrinsic P ($|1\rangle$) and external Q-subspaces ($|c;E\rangle$)

The Hamiltonian in P is:
$$\mathcal{H}(E) = H + \Delta(E) - \frac{i}{2}W(E)$$

Channel-vector: $|A^c(E)\rangle = P_{\mathcal{P}}H|c;E\rangle$

Self-energy:
$$\Delta(E) = \frac{1}{2\pi} \int dE' \sum_{c} \frac{|A^c(E')\rangle \langle A^c(E')|}{E - E'}$$

Irreversible decay to the excluded space: $W(E) = \sum_{c \text{(open)}} |A^c(E)\rangle \langle A^c(E)|$

[1] C. Mahaux and H. Weidenmüller, Shell-model approach to nuclear reactions, North-Holland Publishing, Amsterdam 1969

Channel Vectors and amplitudes

$$|A^c(E)\rangle = a^c(E)|c\rangle$$

Channel amplitude

Energy-independent channel vector: structure of spectator components

Perturbative limit in traditional Shell Model: $H|\alpha\rangle = E_{\alpha}|\alpha\rangle$

$$\Gamma_{\alpha} = \langle \alpha | W(E_{\alpha}) | \alpha \rangle \quad \Gamma_{\alpha} = \sum_{\alpha} \Gamma_{\alpha}^{c} \quad \Gamma_{\alpha}^{c} = \gamma_{c}(E_{\alpha}) |\langle c | \alpha \rangle|^{2}$$

Single-particle decay width

$$\gamma_c(E) = |a^c(E)|^2$$

Spectroscopic factor or transition rate

$$C^2S = |\langle c|\alpha\rangle|^2$$

$$B(EM) = |\langle c | \alpha \rangle|^2$$

Scattering matrix and reactions

$$\mathbf{T}_{cc'}(E) = \langle A^c(E) | \left(\frac{1}{E - \mathcal{H}(E)} \right) | A^{c'}(E) \rangle$$

$$\mathbf{S}_{cc'}(E) = \exp(i\xi_c) \left\{ \delta_{cc'} - i \, \mathbf{T}_{cc'}(E) \right\} \exp(i\xi_{c'})$$

Cross section:

$$\sigma = \frac{\pi}{k'^2} \sum_{cc'} \frac{(2J+1)}{(2s'+1)(2I'+1)} |\mathbf{T}_{cc'}|^2$$

Additional topics:

- Angular (Blatt-Biedenharn) decomposition
- Coulomb cross sections, Coulomb phase shifts, and interference
- Phase shifts from remote resonances.

Calculation Details, Propagator-Strength Function

$$G(E) = \frac{1}{E - H} = -i \int_0^\infty dt \, \exp(iEt) \exp(-iHt)$$

- •Scale Hamiltonian so that eigenvalues are in [-1 1]
- Expand Using evolution operator in Chebyshev polynomials

$$\exp(-iHt) = \sum_{n=0}^{\infty} (-i)^n (2 - \delta_{n0}) J_n(t) T_n(H)$$

- •Chebyshev polynomial $T_n[\cos(\theta)] = \cos(n\theta)$
- Use iterative relation and matrix-vector multiplication to generate

$$|\lambda_{n}\rangle = T_{n}(H)|\lambda\rangle$$

$$|\lambda_{0}\rangle = |\lambda\rangle, \quad |\lambda_{1}\rangle = H|\lambda\rangle \quad |\lambda_{n+1}\rangle = 2H|\lambda_{n}\rangle - |\lambda_{n-1}\rangle$$

$$\langle \lambda'|T_{n+m}(H)|\lambda\rangle = 2\langle \lambda'_{m}|\lambda_{n}\rangle - \langle \lambda'|\lambda_{n-m}\rangle, \quad n \geqslant m$$

- Use FFT to find return to energy representation
 - T. Ikegami and S. Iwata, J. of Comp. Chem. 23 (2002) 310-318

Chebyshev expansion Green's function calculation

Advantages of the method

- No need for full diagonalization or inversion at different E
- Only matrix-vector multiplications
- Numerical stability
- Controlled energy resolution

Center-of-mass problem The strength-function example

Figure: Strength function for E1 and CM excitation in ²⁰O example, spsdfp –shell model WBP interaction.

CM spurious states are moved to high energy

- Top plot-isoscalar dipole E1 T=0 excitation
- Center- E1 excitation with incorrect effective charges
- •Bottom-E1 with e_p =0.6 and e_n =-0.4

$$F_{\lambda}(E) = \langle \lambda | \delta(E - H) | \lambda \rangle = -\frac{1}{\pi} \operatorname{Im} \langle \lambda | G(E) | \lambda \rangle$$

$$|D\rangle = D|0_{\text{g.s.}}^{+}\rangle \quad \vec{D} = \sum_{a} e_{a} \vec{r}_{a}$$

Dysion's equation, including other interaction terms

$$\mathcal{H}(E) = H + V(E) \quad V(E) = \sum_{ab} |a\rangle \mathbf{V}_{ab}(E)\langle b|$$

$$G(E) = \frac{1}{E - H} \qquad \qquad \mathcal{G}(E) = \frac{1}{E - \mathcal{H}(E)}$$

Propagators in channel space

$$\mathbf{G}_{ab} = \langle a|G(E)|b\rangle \qquad \qquad \mathbb{G}_{ab} = \langle a|\mathcal{G}(E)|b\rangle$$

Include non-Hermitian terms with Dyson's equation

$$\mathcal{G}(E) = G(E) + G(E)V(E)\mathcal{G}(E)$$

$$\mathbb{G} = \mathbf{G} \left[\mathbf{1} - \mathbf{V}\mathbf{G} \right]^{-1} = \left[\mathbf{1} - \mathbf{G}\mathbf{V} \right]^{-1}\mathbf{G}$$

Dyson's equation

- •Work in channel space.
- •Include any interaction confined to channel space, Herminian, non-Herminian or energy-dependent.
- •T-matrix $\mathbf{T}=\mathbf{a}^{\dagger}\mathbb{G}\mathbf{a}$ where channel matrix $\mathbf{a}_{cc'}=\delta_{cc'}a^c(E)$

Examples:

- •Non-Hermitian decay components $\mathbf{W} = \mathbf{a}\mathbf{a}^{\dagger}$, show unitarity.
- •Non-Hermitian components : time evolution of decaying states
- •Hermitian terms and GR collectivities $V=\kappa |D\rangle\langle D|$
- Position of resonances
- •Self energy, full inclusion of continuum effects $\mathbf{V} = \mathbf{\Delta} i\mathbf{W}/2$

Unitarity and flux conservation

Take: $\mathbf{W} = \mathbf{a}\mathbf{a}^\dagger$

Exact relation:

$$\mathbf{S} = rac{\mathbf{1} - i/2 \, \mathbf{K}}{\mathbf{1} + i/2 \, \mathbf{K}} \qquad \mathbf{K} = \mathbf{a}^\dagger \mathbf{G} \mathbf{a}$$

$$\mathbf{S} \mathbf{S}^\dagger = \mathbf{S}^\dagger \mathbf{S} = \mathbf{1}$$

- •Cross section has a cusp when inelastic channels open
- •The cross section is reduced due to loss of flux
- •The p-wave discontinuity E^{3/2}

Figure: ⁶He(n,n) cross section

- •Solid curve-full cross section
- •Dashed (blue) only g.s. channel
- Dotted (red) inelastic channel

Time evolution of decaying states

Time evolution of several SM states in ²⁴O. The absolute value of the survival overlap is shown $|\langle \alpha | \mathcal{U}(t) | \alpha \rangle|$

$$\mathcal{U}(t) = -\frac{1}{2\pi i} \int_{-\infty}^{\infty} \mathcal{G}(E) \exp(-iEt) dE$$

For an isolated narrow resonance

$$|\langle \alpha | \exp(-i\mathcal{E}_{\alpha}t) | \alpha \rangle| = \exp(-\Gamma_{\alpha}t/2)$$

Dipole collectivity

Figure: Strength function of the isovector dipole operator in ²²O. WBP SM Hamiltonian plus interaction term:

$$V = \kappa |D\rangle \langle D|$$

 $|D\rangle = D|0_{\rm g.s.}^+\rangle$
 $\kappa = 10, 20, \text{ and } 60$

Strength Function

for system with dipole collectivity and neutron decay

$$F_{\lambda}(E) = -\frac{1}{\pi} \operatorname{Im} \langle \lambda | \mathcal{G}(E) | \lambda \rangle$$

Dipole strength in ²²O. WBP Shell Model, enhanced dipole collectivity k=20, neutron decay l=1 Woods-Saxon potential for reactions.

- (a) No decay
- (b) Realistic decay
- (c) Enhanced by a factor of 3 continuum coupling
- (d) Enhanced 10 times continuum coupling

Strength function and decay in ²²0

Upper panel: Isovector dipole strength in ²²O low-energy region.

Lower panel: Integrated strength

$$I_{\lambda}(E) = \int_{-\infty}^{E} F_{\lambda}(E')dE'$$

In the limit of weak decay

$$I_D(E) = \sum_{\alpha}^{E_{\alpha} < E} B(E1; \alpha \to 0_{g.s.}^+)$$

Manipulation with resonance positioning

For SM eigenstate

$$H|\alpha\rangle = E_{\alpha}|\alpha\rangle$$

Include term in full Hamiltonian

$$V = \sum_{\alpha} |\alpha\rangle V_{\alpha}\langle\alpha|$$

The position of the resonance will shift

Advantages

- •Factorized form, Dyson's equation
- •Fast work in channel space
- Practical method to analyze observation

Figure: the I=2 cross section ²³O(n,n)²³O. Solid line: USD interaction + neutron decay (WS potential). Dashed line 1⁺ state moved up by 1 MeV (from 5.29 to 6.29)

The role of self-energy

Energy-dependent contribution from virtual excitation to continuum, the self-energy.

Figure: ²³O(n,n)²³O Effect of self-energy term (red curve). Shaded areas show experimental values with uncertainties.

In channel space

$$\Delta_{cc'} = \delta_{cc'} \Delta_c(E)$$

$$\Delta_c(E) = \frac{1}{2\pi} \int dE' \frac{|a^c(E')|^2}{E - E'}$$

Near-threshold form

$$\Delta_c(\epsilon) = \frac{\varkappa^2}{2}\Theta(-\epsilon)\epsilon^l \sqrt{-\epsilon}$$

Experimental data from:

C. Hoffman, et.al. Phys. Lett. **B672**, 17 (2009)

Correcting USD interaction

Figure: Theory predictions for states in ²⁴O

Theoretical Models:

OBE05 -A. Obertelli, et.al.

Phys. Rev. C 71, 024304 (2005).

Khau02- E. Khan, et.al.

Phys. Rev. C 66, 024309 (2002).

USD, USDA, USDB- B.A. Brown, et.al.

Phys. Rev. C 74, 034315 (2006).

HBUSD- B.A. Brown, et.al.

Prog. Part. Nucl. Phys. 47, 517 (2001).

SDPF-M – Y.Utsuno, et.al.

Phys. Rev. C 60, 054315 (1999).

TDCSM - This work

Additional components in Hamiltonian

States in 8B

- •Ab-initio and no core theoretical models predict low-lying 2+, 0+, and 1+ states
- •Recoil-Corrected CSM suggests low-lying states
- Traditional SM mixed results
- •These states were not seen in ⁸B and in ⁸Li

Experimental observation of 2⁺, 0⁺, and 1⁺ states can be done in inelastic reaction

TDCSM: WBP interaction +WS potential, threshold energy adjustment. R-Matrix: WBP spectroscopic factors, R_c =4.5 fm, only 1⁺ 1⁺ 0⁺ 3⁺ and 2⁺ I=1 channels Experimental data from: G.Rogachev, et.al. Phys. Rev. C **64**, 061601(R) (2001).

Resonances and their positions inelastic ⁷Be(p,p')⁷Be reaction in TDCSM

CKI+WS Hamiltonian

Position of the 2+ and its role in ⁷Be(p,p)⁷Be

From cross section to many-body structure ⁷Be(p,p)⁷Be

identical energies, identical widths, identical spectroscopic factors but different cross section

J^{π}	E(MeV)	$p_{3/2}(g.s.)$	$p_{1/2}(gs)$	$p_{3/2}$	$p_{1/2}$
1_{1}^{+}	0.7693	-0.563	0.303	0.867	-0.138
1_{2}^{+}	1.947	0.597	0.826	0.284	0.240
0_{1}^{+}	1.967	0.693	0	0	-0.918
3_1^+	2.2098	0.612	0	0	0
2_{2}^{+}	2.628	0.149	0.326	-0.632	0

R-matrix fit and TDCSM for ⁷Be(p,p)⁷Be

Chanel Amplitudes from TDCM and final best fit

	Jπ	p _{1/2} , I=3/2	p _{3/2} , I=3/2	p _{1/2} , I=1/2	p _{3/2} , I=1/2
FIT	2+	-0.293	0.293		0.534
CKI	2+	-0.168	0.164		0.521
FIT	1+	-0.821	-0.612	0.375	0.175
CKI	1+	-0.840	-0.617	0.332	0.178

Studies of the mirror nucleus 8Li

From reactions to structure looking to the future

- Dynamics for channels
- Coupled channels
- Folded potential
- Virtual excitation dynamics on complex plane

Resonant tunneling of composite objects

N. Ahsan and A.Volya, in CHANGING FACETS OF NUCLEAR STRUCTURE World Scientific (2008)

Variable amplitude technique

Factorization
$$\Psi(R,r) = \sum \chi_n(R)\psi_n(r)$$

Folded potential
$$v_{nm}(R) = \frac{2M}{\hbar^2} \int_{-\infty}^{\infty} V(R,r) \psi_n^*(r) \psi_m(r) dr$$

Center-of-mass
$$\left(\frac{d^2}{dR^2}+k_n^2\right)\chi_n(R)-\sum_{m=0}^\infty v_{nm}(R)\chi_m(R)=0$$

Reflection

$$C_{nm}^{-} = \frac{1}{2ik_n} \sum_{p} \int dR' e^{ik_n R'} v_{np}(R') \chi_{pm}(R')$$

Transmission
$$C_{nm}^+ = \delta_{nm} + \frac{1}{2ik_n} \sum_p \int dR' e^{-ik_n R'} v_{np}(R') \chi_{pm}(R')$$

Differential equations for amplitudes

Truncation of potential leads to the following

$$C_{nm}^-(R) = e^{ik_n R} \left[2ik_m U_{nm}(R) - \tilde{\delta}_{nm} \right] e^{ik_m R}$$

$$\frac{dU_{nm}}{dR} = \delta_{nm} - i(k_n + k_m)U_{nm} - \sum_{pq} U_{np}v_{pq}U_{qm}$$

$$C_{nm}^{-}(\infty) = 0$$

Y. Tikochinsky, Ann. Phys. 103, 185 (1977).

M. Razavy, Quantum theory of tunneling (World Scientific, River Edge, NJ; Singapore, 2003), p. 549.

Role of virtual channels, convergence

Intrinsic binding: Infinite square well External Potential: delta function

Two-nucleon system with continuum finite square well binding

Model	Depth	size	energy	WF RMS
(a) Deep	2	1.0	-1.209	0.81
(b) Medium	1	1.0	-0.455	1.16
(c) Halo	0.5	1.0	-0.154	1.87

Treat arbitrary potential Quantization in a box 30 Discrete points 12k Virtual channels 120

Enhanced tunneling probability for composite objects

Summary:

- TDCSM new approach to many-body physics on the verge of stability
 - Direct relation to physics of unstable systems
 - Overcoming technical difficulties
 - New numerical methods
 - Treatment of complicated interaction terms
- Practical applications
 - Adjustments of interactions
 - Position of resonances
 - Direct experimental test of theoretical assumptions
- Future methods

Recent publication:

A. Volya, Phys. Rev. C 79, 044308 (2009).

Acknowledgements:

Thanks to: N. Ahsan, G. Rogachev, D. Robson, C. Hoffman, S. Tabor, I.

Wiedenhöver, V. Zelevinsky

Funding support: Department of Energy DE-FG02-92ER40750