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Time matters! SURREY

* Nuclei are self-bound, correlated, many-body systems

* "Scattering" approaches are limited to reaction type & energy...

» Advancements of time-dependent many-body techniques are needed for:
 Central collisions of heavy isotopes = many participants, rearrangement
* Low-energy fusion reactions = sub-barrier fusion, neck formation
° Response of finite nuclei = collective phenomena, deexcitation

& -
Time

—_—
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TDGF for nuclear reactions SURREY

+ Time-Dependent Green’s Functions formalism

* Fully quantal

- GF’s relatively well-understood in static case

- Beyond mean-field correlations in initial state and in dynamics
+ Microscopic conservation laws are preserved
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Kadanoff-Baym equations SURREY
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6t1/ 2m
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to to

Evolution of non-equilibrium systems from general principles

Include correlation and memory effects, via self-energies

Complicated numerical solution, but very universal framework
Already used in other fields.

Kadanoff & Baym, Quantum Statistical Mechanics (1962).
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Collisions of 1D slabs SURREY

» Frozen & extended y, z coordinates, dynamics in x
» Simple zero-range mean field (1D-3D connection)

3 2
U(x) = —to TL(Z’) + ]_;io.

1 ts [n(x)] T

+ Attemp to understand nuclear Green’s functions
+ 1D provide a simple visualization
* Insight into familiar quantum mechanics problems

+ Learning before correlations & higher D’s
www.surrey.ac.uk 4/30
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Mean-field evolution: implementation SURREY

« The mean-field is time-local

. EHF(lll) =40 (t1 — tll) EHF(:IZ;L,:L‘l/)
© Only t; = t;, = t elements needed: G<(t1,t1/) = G=(t)
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« The mean-field is time-local
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Mean-field evolution: implementation } SURREY

« The mean-field is time-local

. EHF(lll) =40 (t1 — tll) EHF(:IZ;L,:I‘,‘l/)
© Only t; = t;, = t elements needed: G<(t1,t1/) = G=(t)

+ KB equations reduce to one differential equation

i2 g% ={- L L v o
ot T = 2m Ox? © LT

2
- {—i 0 + U(m',t)} G (z,2'; 1)

2m Ox'?

+ Implemented via the Split Operator Method:

_d Y2 Ly lAt I peanlat
Small At = G (t + At) ~ e {Farve}a g<(t)e“{ Y2 U} 4

PSS U s U
ez(T+U)At ~ei2 AtezTAtez 3 At + O[AtS]
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Mean-field TDGF vs. TDHF
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» SURREY

+ MF-TDGF and TDHF are numerically equivalent...

* but expressed in different terms!

Time Dependent Green’s Functions

Time Dependent Hartree-Fock

2

el 1 9
i—G<(z, 2’ t) ={ —— —— + U(2) p G (=, 23 1)
ot 2m dx2

1 92
Y + UGS (2,25 t)
2m dz’2

* 1 equation ... N, x N, matrix
* Testing ground

* Natural extension to correlated case via KB

fora=1,..., Nq
) 1 92
i—dalz, t) =0 ———F +U(=) dalz,t)
ot 2m 9z2
end

* N, equations ... vectors of size N,
¢ Limited to mean-field!

* Extension needs additional assumptions

www.surrey.ac.uk
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Initial state and adiabatic switching SURREY

« Initial state should be ground state of the Hamiltonian
- Mean-field approx. = solve static Hartree-Fock equations
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Initial state and adiabatic switching SURREY

« Initial state should be ground state of the Hamiltonian
- Mean-field approx. = solve static Hartree-Fock equations

» Possible solution: use adiabatic theorem!
H(t) = f(t)Ho + [1 — f(t)] H1

1, t— —o©
f(t)_{ 0, t—to
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+ Advantage: a single code for everything!
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Initial state and adiabatic switching SURREY

« Initial state should be ground state of the Hamiltonian
- Mean-field approx. = solve static Hartree-Fock equations

» Possible solution: use adiabatic theorem!
H(t) = f(t)Ho + [1 — f(t)] H1

1, t— —o©
f(t)_{ 0, t — to

+ Advantage: a single code for everything!

* For practical applications:
* Hy & Hy with similar specira to avoid crossing
© Ho = 1ka®

© Hy = U

- Adiabatic transient: f(t) = W, T = 00
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Adiabatic switching: practical examples SURREY

Ny =2 <— A=28
1

U = fO 3k + L= FOIUm(e,t) = ()= 1o
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Adiabatic switching & observables ¥ SURREY

Adiabatic switching
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Wy
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w
=
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w

PR IR B
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Collisions of 1D slabs: fusion SURREY
G<(z,2', P) = P*G<(z,2', P = O)e—iP:c’

G<(z,2") = 3 da(2)dalz’)

a<F

Ecpy /A =0.1MeV
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Collisions of 1D slabs: break-up SURREY
G<(z,2', P) = P*G<(z,2', P = O)e—iP:c’

G<(z,2") = 3 da(2)dalz’)

a<F

Ecp /A = 4MeV
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Off-diagonal elements: origin SURREY
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Off-diagonal elements: origin SURREY

G=(z,2') = Y dalz)n(a’)

a<F

Correlation of single-particle states that are far away

www.surrey.ac.uk 12 /30
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Collisions of 1D slabs: multifragment. SURREY
G<(z,2', P) = P*G<(z,2', P = O)e—iP:c’

G<(z,2") = 3 da(2)dalz’)

a<F

Ecn /A = 25MeV
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Off-diagonal elements: origin SURREY

* G(z,2')’s are matrices in z and z’
¢ Off-diagonal elements describe correlation of single-particle states

Na
G5 (z,a') = Y dal@)dn(a)
a=0

¢ Diagonal elements yield physical properties
Na k2 ,
n(@) =g (z,2' =2) = Y nalpa(@)|® K= —G (kK =k)
a=0 % 2m
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Off-diagonal elements: importance SURREY

Conceptual issues:
* Should far away sp states be connected in a nuclear reaction?
* Decoherence and dissipation will dominate late time evolution...
* Are x # z’ elements really necessary for the time-evolution?

Practical issues:
* Green’s functions are NP x NP x N2 matrices: 20° ~ 10%
* Eliminating off-diagonalities drastically reduces numerical cost
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Off-diagonal elements: cutting procedure‘& SURREY

t=80 fm/c
20 0.25
10 0.15
£o 0.05
x
-10 0.05
0.15

-20
20 -10 0 10 20
x [fm]

* How can we delete off-diag. without perturbing diagonal evolution?
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t=80 fm/c

20 0.25

10 0.15
£ o 0.05
B3

10 -0.05

20 -0.15

20 -10 0 10 20
x [fm]

* How can we delete off-diag. without perturbing diagonal evolution?

* Super-operator: act in two positions of G< instantaneously
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SURREY

Off-diagonal elements: cutting procedure

t=80 fm/c

20 0.25
10 0.15
0.05
-10 -0.05
-20 -0.15

20 -10 0 10 20
x [fm]

x' [fm]
o

How can we delete off-diag. without perturbing diagonal evolution?
Super-operator: act in two positions of G< instantaneously

Use a damping imaginary potential off the diagonal
g<(m’ z',t + At) ~ ei(a(:c)+iW(w,:v'))Atg<(z’I/’t)e—i(e(w’)—iW(w,:v'))At

Properties chosen to preserve: norm, FFT, periodicity, symmetries
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Off-diagonally cut evolution SURREY

ECM/A = 25 MeV
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Cutting off-diagonal elements

40
20
0
-20
-40

E/A [MeV]

d(t) [fm]

= N
5 5 3

Eq/A=25 MeV

L Toal ) ]

40
t[fm/c]

" UNIVERSITY OF

» SURREY

+ Total energy and different components are unaffected!

www.surrey.ac.uk

+ Integrated quantities appear to be cut-independent

18/30



4" UNIVERSITY OF

Wigner distribution SURREY

t=80 fm/c

0.25

0.15

0.05

) x' [fm]

-0.05

-20
20 -10 0 10 20
x [fm]

* Fourier transform along relative variable (Wigner transform)

Jw (@a,Dp) :/dQ%

i X x
e P g< (ma + ?T’za - 3’,‘)
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Wigner distribution SURREY

* Fourier transform along relative variable (Wigner transform)
Tr

dz ; T
fW(xa:p):/TT:e_lpzr g< (xa‘i’?r,ma*?)

* Simultaneous information on real and momentum space!

Quantum analog of phase-space density — connected to transport
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Rotated coordinate frame SURREY
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Rotated coordinate frame SURREY

« Traditional calculations performed on N, x N, mesh
+ Periodic boundary conditions

www.surrey.ac.uk 20/ 30



< UNIVERSITY OF
Rotated coordinate frame 'b SURREY

« Traditional calculations performed on N, x N, mesh
+ Periodic boundary conditions
« Rotated coordinate frame: z, = 2£% z, =2’ —z
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Rotated coordinate frame SURREY

R R

S S S O S RS

1 a
el L 11 1
La

« Traditional calculations performed on N, x N, mesh
+ Periodic boundary conditions

« Rotated coordinate frame: z, = 2£% z, =2’ —z

Control lengths and meshpoints = (L, N,) X (L, N;)
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Rotated coordinate frame SURREY

R R

S S S O S RS

1 a
el L 11 1
La

« Traditional calculations performed on N, x N, mesh
+ Periodic boundary conditions

« Rotated coordinate frame: z, = 2£% z, =2’ —z

+ Control lengths and meshpoints = (L, N,) X (L, N;)

« Reduce numerical effort by factors of 2 — 10
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~ UNIVERSITY OF

Traditional vs. rotated evolutions SURREY
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Research program_ ssswesuem SURREY

T T T T
= 10+ "J:\\‘
=5 fmc 3
2 0 =10fmic
= =20fm/c | -29.42
TP = i A N
T aofmie B
o -20- saticHF |\
-30F !
33— — , ‘
E32f
KIS ALl
x> Pea
s AV
29 o
228k )
-1000 -800 - -

A. Rios et al., in preparation.
* Used adiabatic theorem to solve mean-field ./
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20

10

X' [fm]
o

-10

-20 -10 0 10 20 -10 O
x [fm] x [fm]

10 -20 -10 O 10 20
x [fm]

A. Rios et al., in preparation.

* Used adiabatic theorem to solve mean-field ./

* Full (N2), damped & cut (N, x N,) 1D mean-field evolution ,/

www.surrey.ac.uk 22 /30



UNIVERSITY OF

Research program SURREY

Wigner distribution
t=0 fm/c t=30 fm/c t=80 fm/c

3 0.4
2 0.3
0.2
a1 0.1

Eo 0
x g -0.1
0.2
-2 0.3
3 0.4

20 10 0 10 20 -10 0 10 -20 -10 O 10 20
x [fm] x [fm] x [fm]

A. Rios et al., in preparation.
* Used adiabatic theorem to solve mean-field ./
* Full (N2), damped & cut (N, x N,) 1D mean-field evolution ,/
* Identified lack of correlations in Wigner distribution ./
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Research program SURREY

-

VS.

* Used adiabatic theorem to solve mean-field ./
Full (N2), damped & cut (N, x N,.) 1D mean-field evolution ./
Identified lack of correlations in Wigner distribution ./

Full 1D correlated evolution: Born approximation ~ ./
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Time evolution beyond the mean-field SURREY

t tqyr
{—i— Vi /df-lEHp(li)} Gs(11") :/ AiTRAieSA1) + [ ldinsS(1)gAdr)
oty 2m to

L0

* Direct Born approximation = simplest conserving approximation

<
I (1,175t0)
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Time evolution beyond the mean-field SURREY
{_ia% - % - /dfleF(1i)}g§(11') :/t:di SRA1)GS (1) + t:ﬂdi $S(11)64(11))

<
I (1,175t0)

dp1 d

dp1 dpa
2r 2w
dp1 dp2
2r 2w

< <
S5 (p,tsp/,t) = p—p1)V (P —p2)G>(p1,t;p2,t" )15 (p — p1, t;p" — pa,t’)

< < >
15 (p, t;p',t) = G=(p1,t;p2,t" )G (p2 — ', t';p1 — p, t)

* Direct Born approximation = simplest conserving approximation
* FFT to compute convolution integrals
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Time evolution beyond the mean-field SURREY
{_ia% - % - /dfleF(1i)}g§(11') :/t:di SRA1)GS (1) + t:ﬂdi $S(11)64(11))

<
I (1,175t0)

o rdp _
I7 (p1,ty;prv, ) =/ dt/% [£7 (p1,t1;5,8) — 2<(p1,t1;5,1)] G~ (P, &; p1s, t1r)
to
b fdp s _ <(s T >0 T
_ dt/EE (p1,t1;0,8) [G< (B, T p1r s t1r) = G7 (B, & p1v s )]
to
* Direct Born approximation = simplest conserving approximation
* FFT to compute convolution integrals

* Collision integrals = memory effects in 2D = (¢,t')
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Time evolution beyond the mean-field SURREY

o 10~0 () —@
% -0 [0

* Direct Born approximation = simplest conserving approximation

* FFT to compute convolution integrals
* Collision integrals = memory effects in 2D = (¢,t')
First benchmark calculation to get acquainted with methodology
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UNIVERSITY OF

Two time Kadanoff-Baym equations SURREY

* Need of a strategy to deal with memory & two-times

+ Time off-diagonal time elements are present

- Use symmetries G5(1,2) = —[G5(2,1)]* to minimize resources
+ Self-consistency imposed at every time step

GY(t, T+AY)

G (T+Att)

t,

t
o T
Kohler et al, Comp. Phys. Comm. 123, 123 (1999)
Stan, Dahlen, van Leeuwen, Jour. Chem. Phys. 130, 224101 (2009)
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Strategy to solve two-time equations SURREY

b
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to*i::::::t,
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Strategy to solve two-time equations SURREY
G
toﬂ"i';ﬁ ————
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Strategy to solve two-time equations SURREY

b

t
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Strategy to solve two-time equations SURREY
G
t(): ; I
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Strategy to solve two-time equations } SURREY

b

e 4
G<(t1, T+ At) = 206 (1, T) — " (1 - eifm) I (t1, T + At)

G (T + At ta) = G (T, ta)e ™2 — T2 (T 4 At ta) (1 - e7*81) !

GX T+ ALT + At) = 8 [67(T,T) = IF (T + At) — I3 (T + At)| e

* Each time step involves 2N, + 1 operations
» Elimination schemes for time off-diagonal elements?
N ¢ Difficult parallelization due to inherent sequential structure
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Nuclear time-dependent correlations SURREY

+ Some experience already gathered for uniform systems
Danielewicz, Ann. Phys. 152, 239 (1984)

H. S. Kéhler, PRC 51 3232 (1995)

+ Expected physical effects

« Thermalization (0 < na < 1)

+ Damping of collective modes
+ Correlations in the initial state

+ Will a mean-field system evolve to a correlated ground state?

 Adiabatic switching on of correlations?

- Imaginary time evolution to get ground states?

+ Testing ground calculations: 1D fermions on a HO trap
+ No mean-field, only confining potential

+ Test with mock gaussian NN force
+ |ssues with cross section in 1D

www.surrey.ac.uk 26 /30
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Correlated fermions in a trap SURREY
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Research program SURREY

-

VS.

* Used adiabatic theorem to solve mean-field ./
Full (N2), damped & cut (N, x N,.) 1D mean-field evolution ./
Identified lack of correlations in Wigner distribution ./

Full 1D correlated evolution: Born approximation ~ ./
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Full 1D correlated evolution: Born approximation ~ ./

Lessons learned = Progressive understanding of higher D
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Golabek & Simenel, Phys. Rev. Lett. 103, 042701 (2009)

* Used adiabatic theorem to solve mean-field ./
* Full (N2), damped & cut (N, x N,) 1D mean-field evolution ,/
* Identified lack of correlations in Wigner distribution ./

Full 1D correlated evolution: Born approximation ~ ./
LLessons learned = Progressive understanding of higher D

Ultimately: correlated 3D evolution
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Potential & challenges
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* Potential for applications in nuclear reactions & structure

» Microscopic understanding of dissipation

www.surrey.ac.uk 29/30



- £ UNIVERSITY OF
Nuclear Kadanoff-Baym SURREY

Isoscalar Monopole Strength (fm'/MeV)
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» Potential for applications in nuclear reactions & structure
» Microscopic understanding of dissipation

* Response for nuclei including collision width
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Potential & challenges

* Potential for applications in nuclear reactions & structure
» Microscopic understanding of dissipation
* Response for nuclei including collision width

Multidisciplinary research: from quantum dots to cosmology!
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