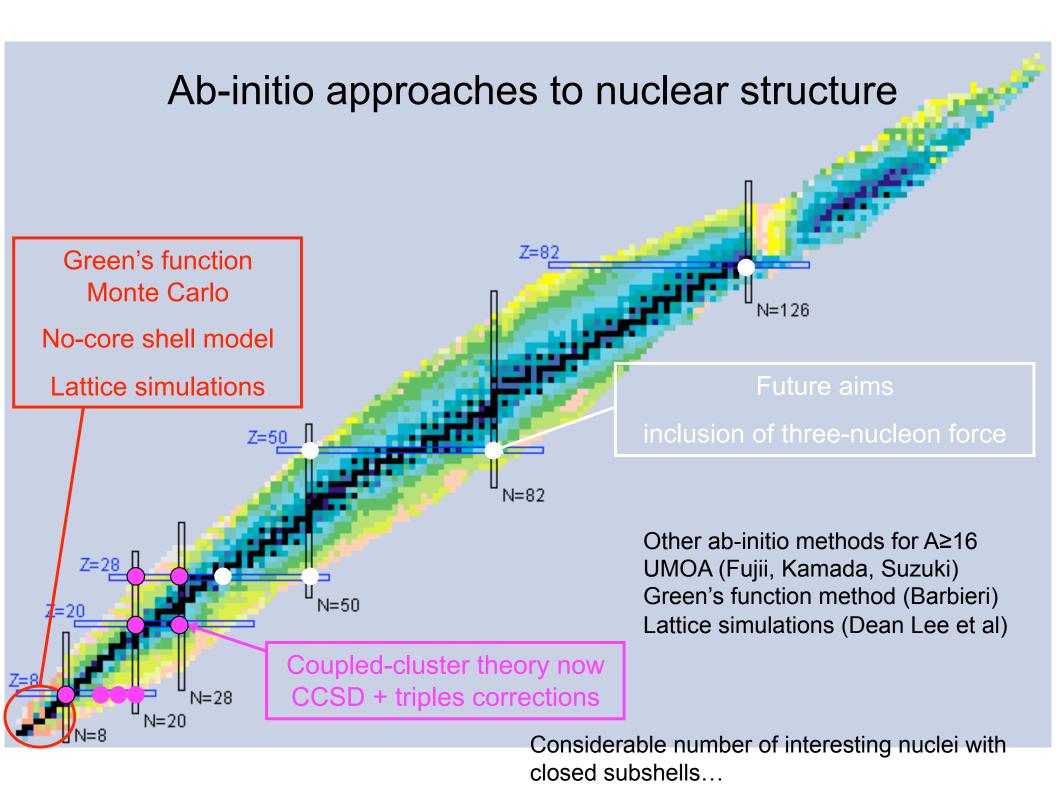
Ab initio coupled-cluster computations of nuclei

Thomas Papenbrock


and Oak Ridge National Laboratory

- G. Hagen
- D. J. Dean
- M. Hjorth-Jensen
- B. Velamur Asokan

Overview

- 1. Introduction
- 2. Medium-mass nuclei saturation properties of NN interactions [Hagen, TP, Dean, Hjorth-Jensen, Phys. Rev. Lett. 101, 092502 (2008)]
- 3. Practical solution to the center-of-mass problem [Hagen, TP, Dean, Phys. Rev. Lett. 103, 062503 (2009)]
- 4. Proton-halo state in ¹⁷F
 [Hagen, TP, Hjorth-Jensen, arXiv:1003.1995]
- 5. Does ²⁸O exist?

[Hagen, TP, Dean, Horth-Jensen, Velamur Asokan, Phys. Rev. C 80, 021306(R) (2009)]

Coupled-cluster method (CCSD)

Ansatz:
$$|\Psi\rangle = e^T |\Phi\rangle$$

$$T = T_1 + T_2 + \dots$$

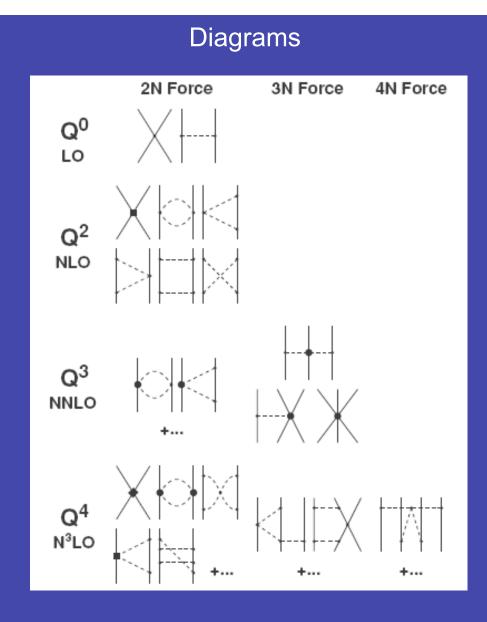
$$T_1 = \sum_{ia} t_i^a a_a^\dagger a_i$$

$$T_2 = \sum_{ijab} t_{ij}^{ab} a_a^\dagger a_b^\dagger a_j a_i$$

- © Scales gently (polynomial) with increasing problem size o²u⁴.
- © Truncation is the only approximation.
- © Size extensive (error scales with A)

Correlations are *exponentiated* 1p-1h and 2p-2h excitations. Part of np-nh excitations included!

Coupled cluster equations
$$E = \langle \Phi | \overline{H} | \Phi \rangle$$


$$0 = \langle \Phi_i^a | \overline{H} | \Phi \rangle$$

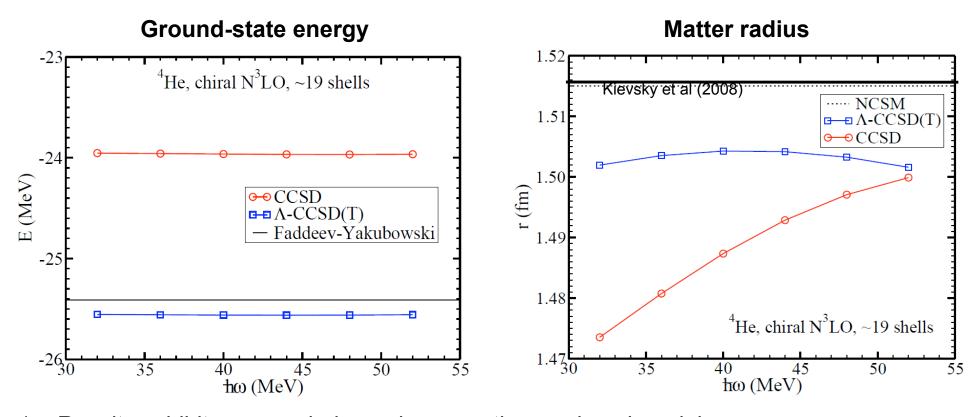
$$0 = \langle \Phi_{ij}^{ab} | \overline{H} | \Phi \rangle$$

Alternative view: CCSD generates similarity transformed Hamiltonian with no 1p-1h and no 2p-2h excitations.

$$\overline{H} \equiv e^{-T}He^{T} = (He^{T})_{c} = (H + HT_{1} + HT_{2} + \frac{1}{2}HT_{1}^{2} + \dots)_{c}$$

Nuclear potential from chiral effective field theory

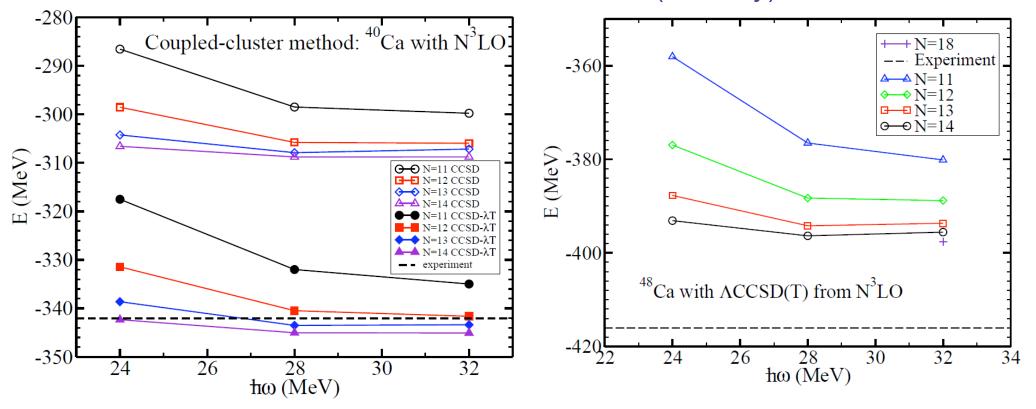
van Kolck (1994); Epelbaum et al (2002); Machleidt & Entem (2005);


Ab-initio structure calculations with potentials from chiral EFT

- A=3, 4: Faddeev-Yakubowski method
- A≤10: Hyperspherical Harmonics
- *p*-shell nuclei: NCSM, GFMC(AV18)
- 16,22,24,28O, 40,48Ca, 48Ni: Coupled cluster, UMOA, Green's functions (NN so far)
- Lattice simulations
- Nuclear matter

Questions:

- 1. Can we compute nuclei from scratch?
- Role/form of three-nucleon interaction.
- 3. Saturation properties


Precision and accuracy: ⁴He, chiral N³LO [Entem & Machleidt]

- 1. Results exhibit very weak dependence on the employed model space.
- The coupled-cluster method, in its Λ-CCSD(T) approximation, overbinds by 150keV; radius too small by about 0.01fm.
- 3. Independence of model space of N major oscillator shells with frequency ω : Nħ ω > $\hbar^2\Lambda_\chi^2/m$ to resolve momentum cutoff Λ_χ $\hbar\omega$ < N $\hbar^2/(mR^2)$ to resolve nucleus of radius R
- 4. Number of single-particle states $\sim (R\Lambda_x)^3$

Ground-state energies of medium-mass nuclei

CCSD results for chiral N³LO (NN only)

Binding energy per nucleon

Nucleus	CCSD	Λ-CCSD(T)	Experiment
⁴ He	5.99	6.39	7.07
¹⁶ O	6.72	7.56	7.97
⁴⁰ Ca	7.72	8.63	8.56
⁴⁸ Ca	7.40	8.28	8.67

Compare ¹⁶O to different approach Fujii et al., Phys. Rev. Lett. 103, 182501 (2009)

B/A=6.62 MeV (2 body clusters)
B/A=7.47 MeV (3 body clusters)

[Hagen, TP, Dean, Hjorth-Jensen, Phys. Rev. Lett. 101, 092502 (2008)]

Center-of-mass coordinate

The nuclear Hamiltonian is invariant under rotations and translations

Approach that preserves both symmetries:

- Substitution of the sub

Antisymmetry best dealt within second quantization:

- © No single-particle basis available that consists of simultaneous eigenstates of the angular momentum operator and the momentum operator.
- © Within a complete Νħω oscillator space, the wave function is guaranteed to factorize

$$\psi = \psi_{\rm cm} \psi_{\rm in}$$

Intrinsic wave function ψ_{in} invariant under translation

Center-of-mass wave function ψ_{cm} is Gaussian whose width is set by the oscillator length of the employed oscillator basis

The factorization is key. The form of ψ_{cm} is irrelevant.

Center-of-mass coordinate (cont'd)

Intrinsic nuclear Hamiltonian

$$H_{\text{in}} = T - T_{\text{cm}} + V ,$$

$$= \sum_{1 \le i \le j \le A} \left(\frac{(\vec{p}_i - \vec{p}_j)^2}{2mA} + V(\vec{r}_i - \vec{r}_j) \right)$$

Obviously, H_{in} commutes with any center-of-mass Hamiltonian H_{cm}.

Situation: The Hamiltonian depends on 3(A-1) coordinates, and is solved in a model space of 3A coordinates. What is the wave function in the center-of-mass coordinate?

Q:How can one demonstrate the factorization of wave function ψ :

A: Find a suitable center-of-mass Hamiltonian H_{cm} whose eigenstate is ψ .

Our approach:

Demonstrate that $\langle H_{cm} \rangle \approx 0$ for a center-of-mass Hamiltonian with zero-energy ground state.

$$H_{\rm cm}(\tilde{\omega}) = T_{\rm cm} + \frac{1}{2} m A \tilde{\omega}^2 R_{\rm cm}^2 - \frac{3}{2} \hbar \tilde{\omega}$$

Frequency $\widetilde{\omega}$ to be determined.

Toy problem

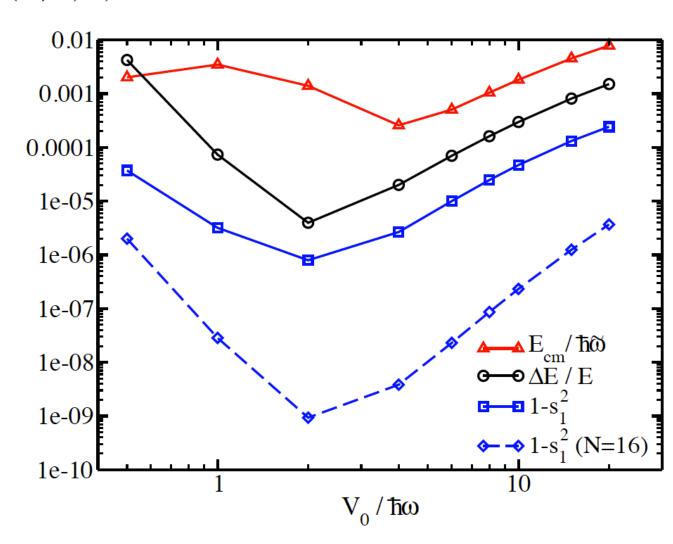
Two particles in one dimension with intrinsic Hamiltonian

$$H = \frac{p^2}{2m} + V(x)$$

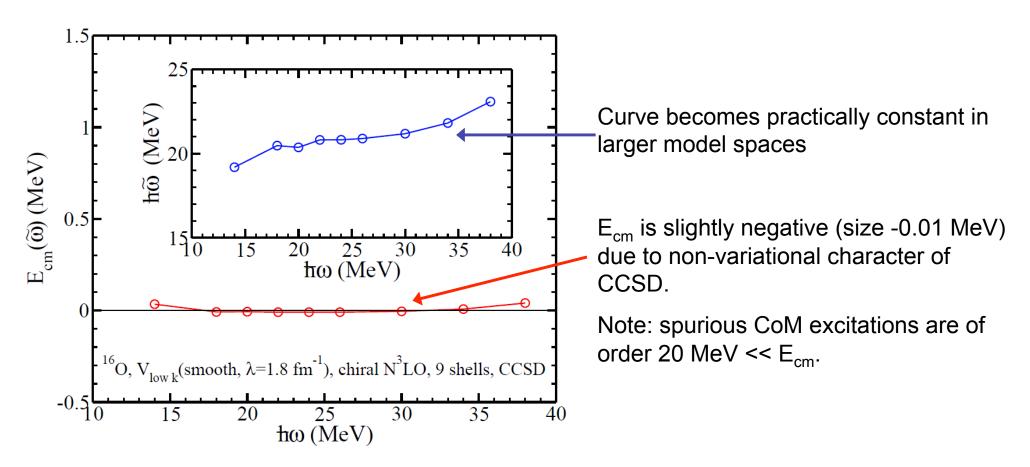
$$V(x) = -V_0 \exp(-(x/l)^2)$$

$$x = (x_1 - x_2) / \sqrt{2}$$
$$p = (p_1 - p_2) / \sqrt{2}$$

Single-particle basis of oscillator wave functions with m,n=0,...,N


$$\Phi_m(x_1/l)\Phi_n(x_2/l)$$

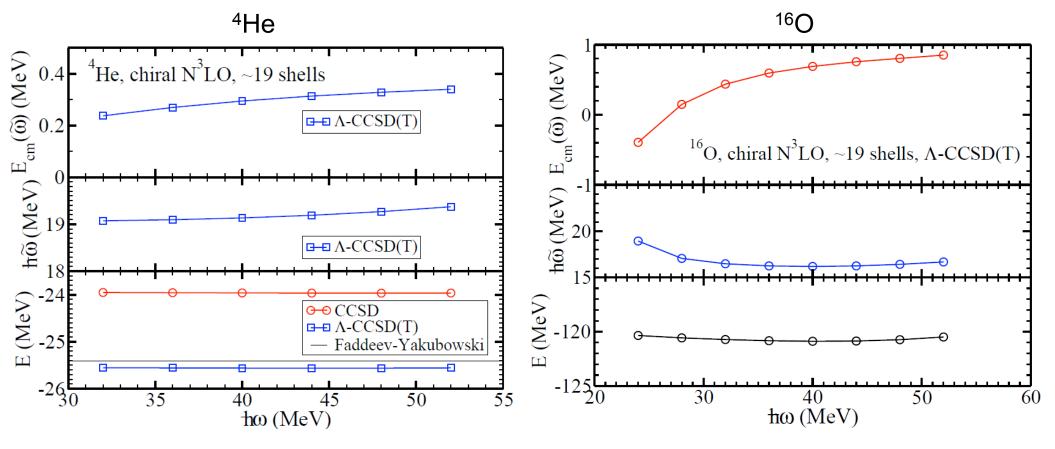
Results:


1. Ground-state is factored with $s_1 \approx 1$

$$\psi_A = \sum_j s_j \psi_{\rm cm}^{(j)} \psi_{\rm in}^{(j)}$$

2. CoM wave function is approximately a Gaussian

Coupled-cluster wave function factorizes to a very good approximation!


Coupled-cluster state is ground state of suitably chosen center-of-mass Hamiltonian.

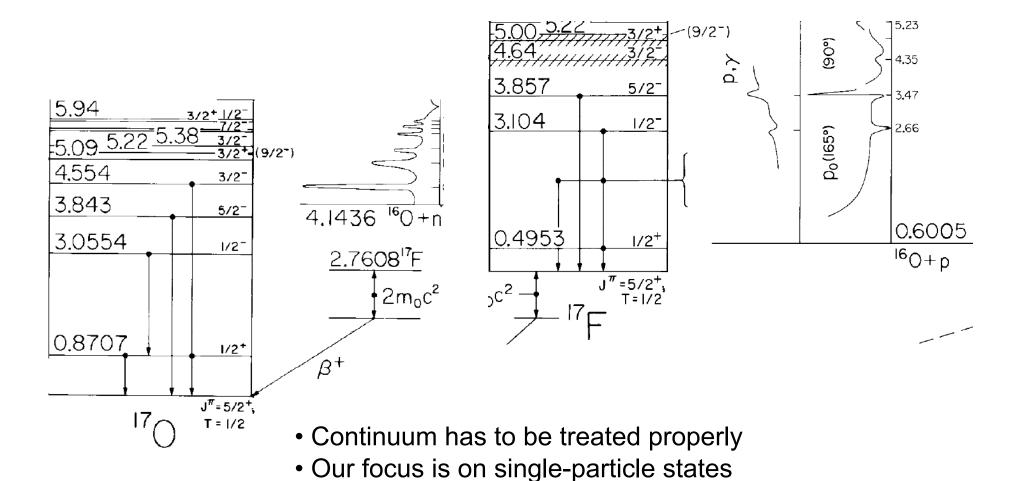
Factorization between intrinsic and center-of-mass coordinate realized within high accuracy.

Note: Both graphs become flatter as the size of the model space is increased.

Approximate factorization also for "hard" interactions:

⁴He, ¹⁶O, and ⁴⁸Ca from Entem & Machleidt's chiral N³LO

Coupled-cluster wave function factorizes approximately.


Note: spurious states are separated by about $15 - 20 \text{ MeV} >> E_{cm}$.

No understanding of Gaussian CoM wave function (yet).

Nucleus	ħῶ
⁴ He	19.1 MeV
¹⁶ O	16.5 MeV
⁴⁸ Ca	14.9 MeV

[Hagen, TP, Dean, Phys. Rev. Lett. 103, 062503 (2009)]

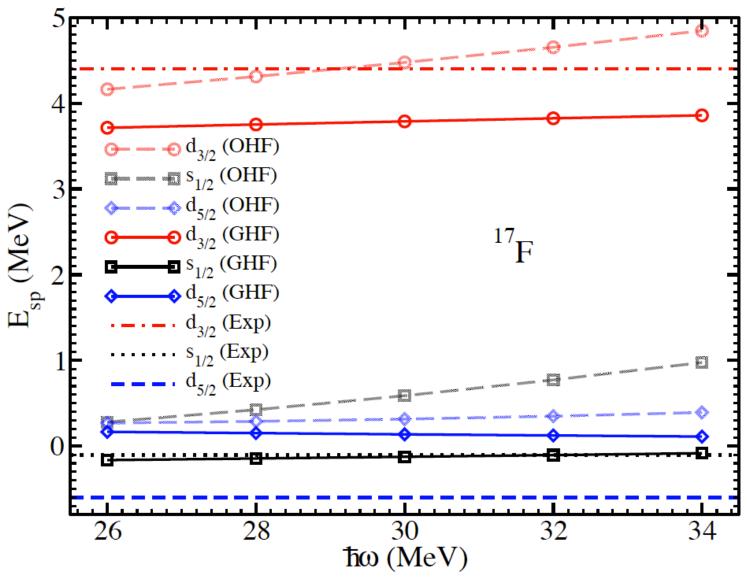
Low lying states in A=17 nuclei

[Bennaceur et al Phys. Lett. B 488, 75 (2000)]

• Previous study: shell model in the continuum with 16O core

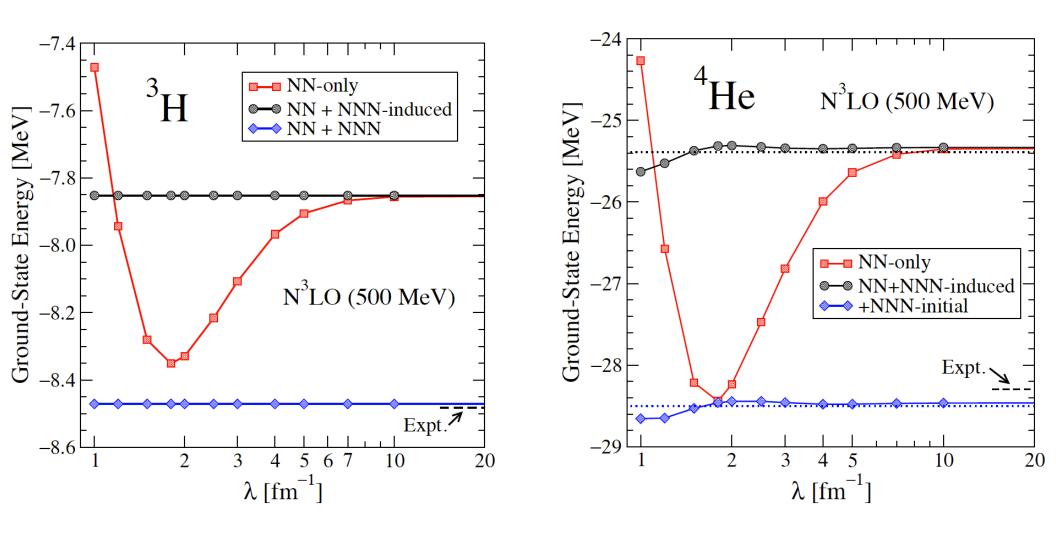
Bound states and resonances in ¹⁷F and ¹⁷O

Single-particle basis consists of bound, resonance and scattering states


- Gamow basis for $s_{1/2} d_{5/2}$ and $d_{3/2}$ single-particle states
- Harmonic oscillator states for other partial waves

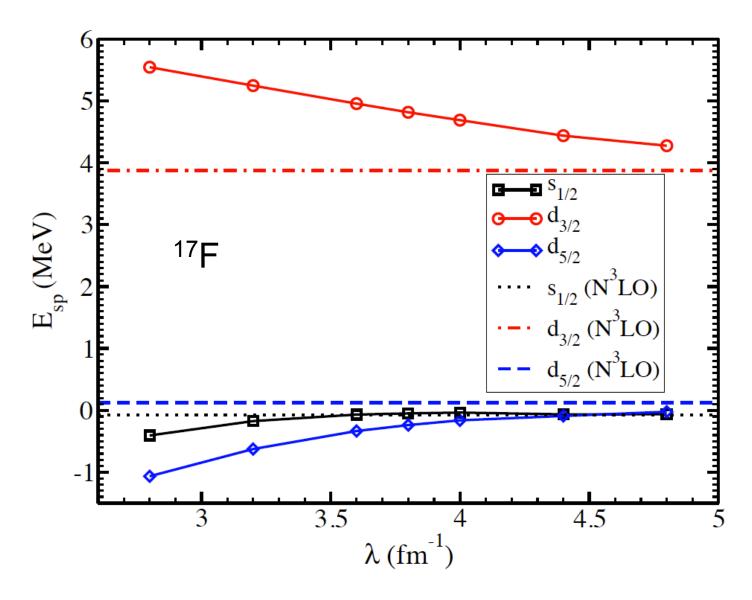
Computation of single-particle states via "Equation-of-motion CCSD"

- Excitation operator acting on closed-shell reference
- Here: superposition of one-particle and 2p-1h excitations


$$R_{\mu} = r^{a} a_{a}^{\dagger} + \frac{1}{2} r_{j}^{ab} a_{a}^{\dagger} a_{b}^{\dagger} a_{j}$$
$$\left[\overline{H}, R_{\mu} \right] |\phi_{0}\rangle = \omega_{\mu} R_{\mu} |\phi_{0}\rangle$$

Bound states and resonances in ¹⁷F

- Gamow basis weakly dependent on oscillator frequency
- d5/2 not bound; spin-orbit splitting too small
- s1/2 proton halo state close to experiment


Insights from cutoff variation ³H and ⁴He with induced and initial 3NF

Jurgenson, Navratil & Furnstahl, Phys. Rev. Lett. 103, 082501 (2009)

Cutoff-dependence hints at missing physics, specifically short-ranged many-body forces.

Variation of cutoff probes omitted short-range forces

- Proton-halo state (s1/2) very weakly sensitive to variation of cutoff
- Spin-orbit splitting increases with decreasing cutoff

Results for single-particle energies and decay widths

		¹⁷ O		$^{17}\mathrm{F}$			
	$1/2^{+}$	5/2+	$E_{\rm so}$	$1/2^{+}$	5/2+	$E_{\rm so}$	
GHF	-2.8	-3.2	4.3	-0.082	0.11	3.7	
Exp.	-3.272	-4.143	5.084	-0.105	-0.600	5.000	

- Level ordering correctly reproduced in ¹⁷O
- Spin-orbit splitting too small

Life times of resonant states

	¹⁷ O	$3/2^{+}$	17 F $3/2^{+}$		
	$E_{\rm sp}$	Γ	$E_{\rm sp}$	Γ	
This work	1.1	0.014	3.9	1.0	
Experiment	0.942	0.096	4.399	1.530	

Neutron drip line in oxygen isotopes

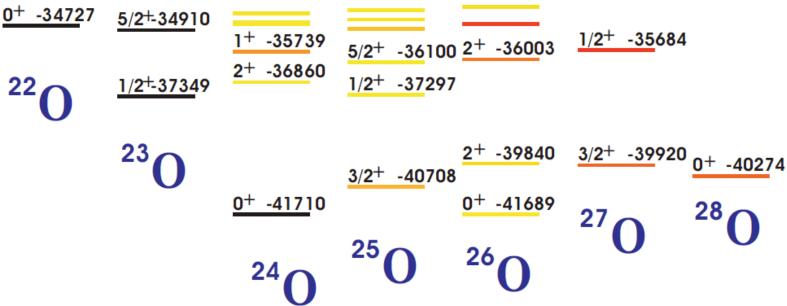
Experimental situation

- "Last" stable oxygen isotope ²⁴O
- ²⁵O unstable (Hoffman et al 2008)
- ^{26,28}O not seen in experiments
- ³¹F exists (adding on proton shifts drip line by 6 neutrons!?)

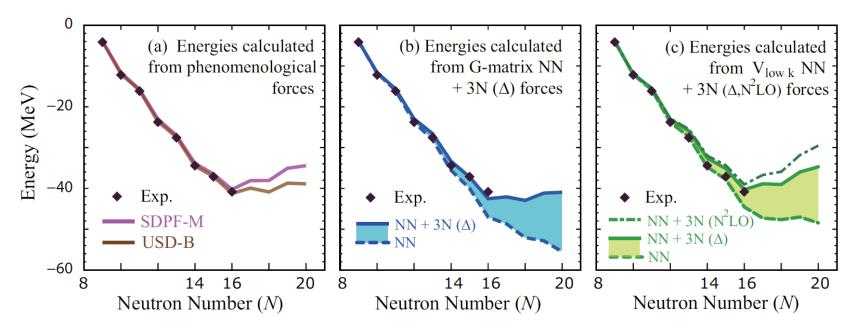
²² Ne	²³ Ne	²⁴ Ne	²⁵ Ne	²⁶ Ne	²⁷ Ne	²⁸ Ne	²⁹ Ne	³⁰ Ne	³¹ Ne	³² Ne	34Ne 200
21F	²² F	23F	²⁴ F	25F	²⁶ F	27F		²⁹ F		31F	1999
²⁰ O	²¹ O	²² O	²³ O	240	1070		'				
¹⁹ N	²⁰ N	²¹ N	²² N	²³ N	1970						
¹⁸ C	¹⁹ C	²⁰ C		²² C							

Theoretical situation

- USD interaction predicts stable ^{26,28}O (Brown)
- sd-pf shell calculation can reproduce data after adjusting TBME (Otsuka et al.)
- Shell model w/ continuum couplings employs two different interactions for oxygen isotopes near and far away from β-stability to reproduce data (Volya & Zelevinsky)
- Shell model with 3NF: ²⁴O is last bound isotope (Otsuka, Suzuki, Holt, Schwenk, Akaishi).

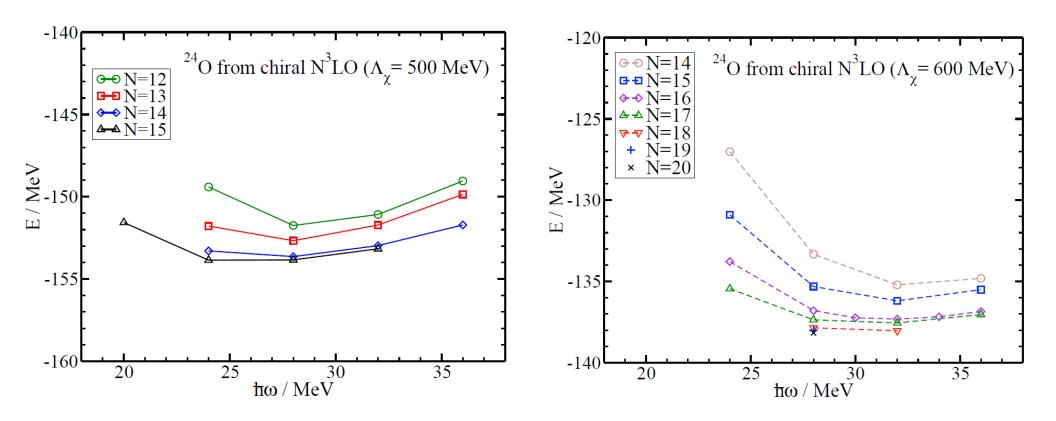

Most theoretical papers rule out a stable ²⁸O.

No approach flawless, i.e. no approach includes everything (continuum effects, 3NFs, no adjustments of interaction)


Theoretical difficulties: uncertainties in the effective interaction, quantify the resulting errors.

→ ab-initio calculations: coupled-cluster can address closed sub-shell nuclei ^{22,24,28}O with chiral interactions; study cutoff dependence

Examples of theoretical calculations



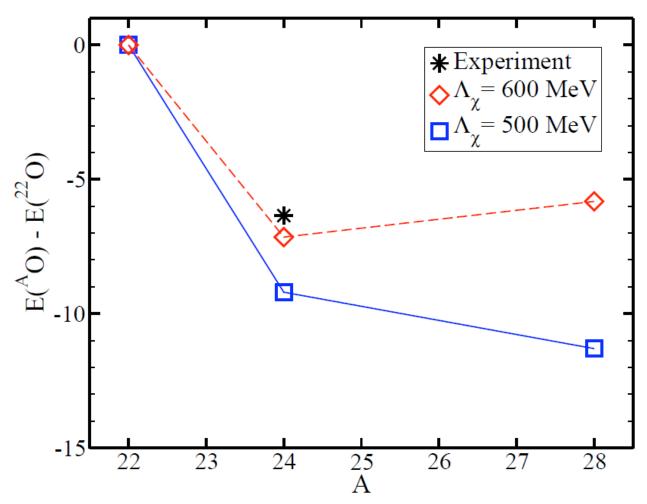
Volya & Zelevinsky, Phys. Rev. Lett. 94 (2005) 052501: Continuum + empirical interaction

Otsuka, Suzuki, Holt, Schwenk, Akaishi, arXiv:0908.2607: 3NF (T=1) in small model space

Neutron-rich oxygen isotopes

 Λ_{χ} =500 MeV potential converges in about 15 major oscillator shells Λ_{χ} =600 MeV potential converges in about 20 shells

Summary of results


Energies	¹⁶ O	²² O	²⁴ O	²⁸ O	
$(\Lambda_{\chi} = 500 \text{ MeV})$					
E_0	24.11	50.37	56.19	71.58	
ΔE_{CCSD}	-144.77	-175.79	-190.39	-207.67	← ~90% of correlation energy
ΔE_3	-13.31	-19.22	-19.64	-19.85	← ~10% of correlation energy
E	-120.66	-144.64	-153.84	-155.94	
$(\Lambda_{\chi} = 600 \text{ MeV})$					
E_0	22.08	46.33	52.94	68.57	
ΔE_{CCSD}	-119.04	-156.51	-168.49	-182.42	
ΔE_3	-14.95	-20.71	-22.49	-22.86	
E	-111.91	-130.89	-138.04	-136.71	
Experiment	-127.62	-162.03	-168.38		

Estimate of theoretical uncertainties:

- Finite model space ~2MeV
- 2. Truncation at triples clusters ~2MeV (educated guess)
- 3. Omission of three-nucleon forces (cutoff dependence) ~15MeV

[Hagen, TP, Dean, Horth-Jensen, Velamur Asokan, Phys. Rev. C 80, 021306(R) (2009)]

Is ²⁸O bound relative to ²⁴O?

Too close to call. Theoretical uncertainties >> differences in binding energies.

Chiral potentials by Entem & Machleidt's different from *G*-matrix-based interactions.

Ab-initio theory cannot rule out a stable ²⁸O.

Three-body forces largest potential contribution that decides this question.

Summary

Saturation properties of medium-mass nuclei:

- "Bare" interactions from chiral effective field theory can be converged in large model spaces
- Chiral NN potentials miss ~0.4 MeV per nucleon in binding energy in medium-mass nuclei

Practical solution to the center-of-mass problem:

- Demonstration that coupled-cluster wave function factorizes into product of intrinsic and center-of-mass state
- Center-of-mass wave function is Gaussian
- Factorization very pure for "soft" interactions and approximate for "hard" interaction

A=17 nuclei:

- Equation-of-motion CCSD combined with a Gamow basis
- Accurate computation of proton-halo state in ¹⁷F; halo weakly dependent on cutoff

Neutron-rich oxygen isotopes:

- Ab-initio theory cannot rule out a stable ²⁸O
- Greatest uncertainty from omitted three-nucleon forces

Outlook

Towards heavier masses (Ca, Ni, Sn, Pb isotopes)
Inclusion of three-nucleon forces
α-particle excitations (low-lying 0+ states in doubly magic nuclei)