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For the next hour sit quietly, and we will control what you see and hear...

You’ve heard a few talks about ab initio nuclear calculations, so here’s my quick
summary of the program:

See how much of nuclear physics can be described accurately by neutrons &
protons with vacuum interactions

Develop the interactions & currents to provide that accurate description

Provide a predictive tool for nuclear structure and reactions (e.g. for astrophysics)



Nuclear physics in a Mediterranean climate

Distinctive features of quantum Monte Carlo calculations relative to others

Lower storage & processing demands (at least to A ≤ 12)

No particular need for a soft core, a weak three-body interaction, or renormalization
to achieve those things

Keep the need for effective currents,
quenching, etc. to a minimum

Intruder states no more demanding than
natural parity

Straightforward extension to many unbound
and other strong-clustering problems
(no basis)



Potentials I

We work with the Argonne v18 nucleon-nucleon potential

It’s one of several realistic potentials on the market

• fits all pp & np data to 350 MeV in Nijmegen 1993 phase shift analysis
with χ2

ν = 1.09, also deuteron binding energy

• 18 operator terms (L · S, σ · σ, tensor, scalar...), ∼40 parameters fitted
once fifteen years ago

• local interaction, strong repulsive core, strong tensor interaction and π
exchange at longer range

• full complication of EM interaction (mag. moment, vacuum polarization...),
charge symmetry breaking, charge dependence



Potentials II

In A ≥ 3 systems, there is an important 3-nucleon interaction that provides a
large fraction of the binding energy & spin-orbit splitting

We use (mostly) the Illinois NNN interactions:
• 4 terms, spatial/spin/isospin dependence fixed by 2- & 3-pion exchange
• only 4 adjusted parameters (strengths of those terms)
• fixed by fit to ∼ 20 bound and narrow levels at A ≤ 8

• IL7 RMS deviation of 600 keV from 60 experimental states in A ≤ 10
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Illinois-7 is most recent re-fit, bug fix and added repulsion in T = 3/2 triples



The variational Monte Carlo method

Variational Monte Carlo (VMC) is built on a sophisticated Ansatz for the wave
function, built on shell-model-like structure modified by operator correlations:

ΨT = [3-body operator functions]× [2-body operator functions]
× [scalar functions]× [shell-model-like orbital/spin/isospin structure]

Two-body correlations solve sets of differential equations built on the potential,
three-body based on 1st-order perturbation

Each piece contains adjustable parameters

We evaluate ET =
〈ΨT |H|ΨT 〉
〈ΨT |ΨT 〉

, a variational bound on ground state energy

for given Jπ and isospin

We change the parameters by hand, re-compute ET , and minimize ET to
obtain improving approximations to the ground state and its energy



Green’s function Monte Carlo I

Green’s function Monte Carlo (GFMC) is an
operator method that projects the true ground
state out of a reasonable guess wave function

Ψ(τ) = exp
[
−

(
H − Ẽ

)
τ

]
ΨT

ΨT comes from VMC – a good guess is vital to
fast convergence

As τ →∞, Ψ(τ) approaches the ground state

The operator exp
[
−

(
H − Ẽ

)
∆τ

]
is written as an integral over a Green’s

function computed by Monte Carlo integration

Integration is done by generating many samples of ΨT and sending each on a
random walk through particle configurations



Green’s function Monte Carlo II

We impose a path constraint to mitigate the fermion sign problem

Final Ψ(τ) is sampled at discrete points in the particle coordinates

Expectation values are approximated by 〈ΨT |O|Ψ(τ)〉 and corrected perturbatively
to obtain 〈Ψ(τ)|O|Ψ(τ)〉

Not the case with 〈H〉 since H commutes with exp
[
−

(
H − Ẽ

)
τ

]
We have examined many bound and narrow states using this method

Energies of broad states do not converge

No way has been found to obtain widths or good estimates of error introduced
by pseudo-bound treatment of unbound states
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GFMC Calculations

• IL7: 4 parameters fit to 23 states
• 600 keV rms error, 51 states
• ~60 isobaric analogs also computed



Beyond bound & narrow states: a first pass at nonresonant capture

Several years ago, we computed three (α, γ) cross sections interesting for
astrophysics

We:

• avoided off-diagonal GFMC by using VMC bound states

• avoided scattering solutions by using phenomenological correlations
ψ(r12) in Ψi ∝ AΦ1Φ2ψ(r12)

• concentrated on currents and asymptotic clusterization of final states
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Next steps: off-diagonal GFMC matrix elements & scattering states from NN
potentials



Quantum Monte Carlo approach to scattering

Quantum Monte Carlo methods are (mostly) variational – they produce the
lowest energy level satisfying the imposed constraints

Most direct application to scattering requires setting it up an eigenvalue problem
with discrete states

Past applications (nuclear, atomic, solid state) have been “particle in a box” with
wave function constrained to zero at the box surface r12 = R0

After energy is computed, match onto

Ψ ∝
1

kr12
{Φc1Φc2YL}J [cos δJLFL(kr12) + sin δJLGL(kr12)] ,

so tan δJL = −FL(kR0)/GL(kR0)



Improving on the nodal boundary condition

There are some drawbacks to the nodal condition:

• energies have to be evaluated at different box volumes

• for low energies, box has to be enormous

A more flexible approach is an R-matrix boundary condition:

n̂ · ∇rΨ = γΨ , at r = R0.

We can then fix R0 at some “small” value (beyond nuclear interaction and
nucleon exchanges)

We choose several γ to get states of different E(γ), matching asymptotics to
find δ(E)

Generalizable to multiple open channels or higher energy with excited-state
methods



Implementation of boundary conditions

We can insert either type of boundary condition explicitly into the VMC wave
function – build into “single-particle” correlations

Just need to make sure that no pair correlations have long enough range to
mess up γ (nodal condition is easy)

point

0

GFMC walk
Image

r=R

In GFMC, we use a method of images

Integral over all space is mapped onto integral inside
box using image points with computable locations

Contributions from image points are multiplied by
[1 + γn̂ · (RI −R)] (or other extrapolation)

Their contributions are added to the propagation of
points near the boundary (. 0.01 fm)



First application: 5He

Results illuminate origins of spin-orbit splitting between 3/2− and 1/2− resonances

These are also the first-ever
calculations of resonance
widths in GFMC

Extraction of S-matrix poles shows agreement with pseudo-bound for 3
2
−

, a few

hundred keV difference for 1
2
−



Poles and scattering lengths

s-waves turn out similarly for all interactions

Scattering lengths all consistent with 2.4 fm,
compared with 2.46 fm measured

3/2− (MeV) 1/2− (MeV)
Argonne v18 1.19− 0.77i 1.7− 2.2i
AV18+UIX 1.39− 0.75i 2.4− 2.5i
AV18+IL2 0.83− 0.35i 2.3− 2.6i
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The numbers produced can also be
compared directly with cross sections

Alternatively, locations of poles off real axis
have to be fitted as you would do with
experimental data

All described in PRL 99, 022502 (2007)



Work in progress on 3 + 1 scattering

5He was expected to be “easy” because there’s only one open channel and
4He is compact

4H and 4Li should be only slightly more difficult (easier?)

Scattering is 3H + n and 3He + p

Good for benchmarking against other methods – cf. Arnoldas’ talk yesterday &
work by the Pisa group

Breakup threshold is relatively high, no underlying bound states

Channel mixing is modest except in 1− channel

A quick tour of the results so far, all VMC and AV18 alone unless otherwise
noted...
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This one was easy to set up for GFMC



For 1− scattering, singlet & triplet channels mix
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Next steps for scattering

The near-term agenda for QMC scattering is roughly:

• complete p 3He & n 3H scattering calculations with GFMC

• deal with any Coulomb surprises in 5Li, compute 5He parity violation

• resonant (and not) αα scattering and 8Be states

• continued learning on coupled channels, e.g. n+ 3He, p+ 3H, d+d

• electroweak captures with GFMC

• unbound states previously treated as bound (“successfully” and not)

• continuum lessons applicable to diffuse weakly-bound states?



Asymptotic normalization coefficients (ANCs)

At large cluster separations, correlations within nuclei have known shapes from
Schrödinger Eq. with at most Coulomb term

The many-body dynamics give the separation energy (hence η & k), and
normalization of CW−η,l+1/2(2kr)/r or C

√
k/πrKl+1/2(kr)



Asymptotic normalization coefficients (ANCs)

ANCs characterize a lot of what happens at the nuclear surface

Surface can get lots of weight in pickup/stripping, so some ANCs are experimentally
accessible & sometimes better than spectroscopic factors

Low-energy direct capture can be dominated by these long-range tails

ANCs are closely related to particle widths, at least for narrow states, because
−E −→ +E takes W −→ G+ iF

Extraction of outer parts of overlaps from QMC wave functions can be problematic

Good Monte Carlo sampling in the tails can be tricky, especially for small components

Correct asymptotics can be difficult to build into ΨT without wrecking good
parts of the wave functions – trouble for many observables, including ANCs



There is a smarter way to compute ANCs

Poking around in the tails of the VMC wave functions is not such a smart thing
to do

VMC is suited to integrals over wave function interiors

We can take advantage of the Wronskian relation

dM−η,l+1/2

dz
W−η,l+1/2 −M−η,l+1/2

dW−η,l+1/2

dz
= ζ(η, l)

to write

C12
lJ =

2µ

k~2ζ

∫
M−η,l+1/2(2kr)Φ

†
1

[
Φ†

2Ylm(r̂12)
]
J
[V12 − Vc(r12)]ΨTd

3Ar

V12 contains only terms with nucleons in different clusters, Vc is point-Coulomb
interaction between clusters



Gell-Mann-Goldberger relation

The integral method solves the sampling problem and it should give us better
ANCs than we can build explicitly into the ΨT

An easy case: 3He → d+ p with AV18+UIX

is replaced by...



Points are Monte-Carlo sampled integrand; solid curves are cumulative integrals

For 3He → dp, we haveCdps = 2.131(8) fm−1/2 ,Cdpd = −0.0885(7) fm−1/2

This gives
C
dp
d

C
dp
s

= −0.0415(4), vs. -0.0389(42) from data compilation

C
dp
d converges just where sampling gets sparse in the explicit overlap



Similarly, for 3H → dn with AV18+UIX,

Cdns = 2.139(8) fm−1/2,Cdnd = −0.0971(9) fm−1/2, for
Cdnd
Cdns

= −0.0454(5)

The compilation quotes two values,

Cdnd
Cdns

= −0.0431(25)

Cdnd
Cdns

= −0.0411± 0.0013± 0.0012

For 4He, we’ve looked at tails for n 3He and p 3H

Cpts = 6.582(23) fm−1/2

Cnτs = 6.490(21) fm−1/2

We differ from Pisa by a factor of ∼
√

8 on these, probably a Jacobian

ALL ANCs ARE PRELIMINARY



A harder case (next up in stable A→ A− 1)

InA = 3,4, the integral approach mainly clears up ambiguity from the overlaps

7Li → 6Li + n demonstrates another kind of case

Cp3/2 = 0.90(2) fm−1/2

Cp1/2 = 0.79(2) fm−1/2

Cf5/2 = −0.053(8) fm−1/2

AGAIN, PRELIMINARY

Sadly, these quantities have not been measured



Some things are hard to compute the dumb way

Solid curves are all fixed from an integral ANC calculation with computation
time roughly equal to the overlap, none quite what you’d get naı̈vely
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What ANC integrals should be good for

There are several motivations for setting up these calculations now

• a complete set of one-nucleon ANCs for bound states

• cluster-cluster ANCs (e.g. 7Li → αt)

• possibility to extract resonance widths from pseudo-bound VMC states

• pointing the way to better variational functions

• extension to GFMC

• extraction of surface amplitudes needed for coupled-channels GFMC

• sometimes more sensible to extract ANCs than spectroscopic factors
from data?

This just in: 8B → 7Be + p ANCs
Cp1/2 = 0.246(9) fm−1/2 Cp3/2 = −0.691(17) fm−1/2

Cf5/2 = (11± 2)× 10−4 fm−1/2 Cf7/2 = −(11± 5)× 10−4 fm−1/2

vs. experiment (used an assumed ratio, in agreement with ours),
|Cp1/2| ∼ 0.227 fm−1/2 |Cp3/2| = −0.643(33) fm−1/2


