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Outline of the Situation 

•! Million core systems and beyond are on the horizon 

•! Today labs and universities have general purpose 
systems with 10k-200K cores (BGL@ LLNL 200K, 

BGP@Argonne 160K, XT5@ORNL 150K cores) 

•! By 2012 there will be more systems deployed in the 

200K-1M core range 

•! By 2020 there will be systems with perhaps 100M cores 

•! Personal systems with > 1000 cores within 5 

•! Personal systems with requirement for 1M threads is not 

too far fetched (GPUs for example) 
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Looking out to Exascale… 
Concurrency will be Doubling every 18 months 
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Traditional Sources of Performance 
Improvement are Flat-Lining (2004) 

•! New Constraints 

–! 15 years of exponential clock 

rate growth has ended 

•! Moore’s Law reinterpreted: 

–! How do we use all of 

those transistors to keep 

performance increasing 

at historical rates? 

–! Industry Response: 

#cores per chip doubles 

every 18 months instead 

of clock frequency!  
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Multicore comes in a wide variety 

–!Multiple parallel general-purpose processors (GPPs) 

–!Multiple application-specific processors (ASPs) 

“The Processor is the 
new 

Transistor” [Rowen] 

Intel 4004 (1971): 
4-bit processor, 

2312 transistors, 
~100 KIPS,  

10 micron PMOS, 
11 mm2 chip  

Sun Niagara 
8 GPP cores (32 threads) 
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Intel Network Processor 
1 GPP Core 

16 ASPs (128 threads) 

IBM Cell 
1 GPP (2 threads) 

8 ASPs 

Picochip DSP 
1 GPP core 
248 ASPs 

Cisco CRS-1 
188 Tensilica GPPs 
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What’s Next? 

Source: Jack Dongarra, ISC 2008 

and this is just for the individual nodes 
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How Will We Program Them? 

!!Still an unsolved problem 

–! Many approaches being explored 

•! especially for GPUs 

!!Some believe a totally new programming model and 

language will be needed. 

!!Some mechanism for dealing with shared memory will be 

necessary 

–! This (whatever it is) plus MPI is the conservative view  

!!Whatever it is, it will need to interact properly with MPI 

!!May also need to deal with on-node heterogeneity  

!!The situation is somewhat like message-passing before 
MPI 

–! And it is too early to standardize 
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MPI is Current HPC Programming Model 

!!MPI represents a very complete definition of a well-defined 

programming model 

!!MPI programs are portable 

!! Both C and Fortran (-90) bindings 

!! There are many implementations 

–! Vendors 

–! Open source 

!! Enables high performance for wide class of architectures 

–! Scalable algorithms are key 

!! Small subset easy to learn and use 

!! Expert MPI programmers needed most for libraries, which are 

encouraged by the MPI design.  
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The MPI Forum Continues to Refresh MPI 

!! New signatures for old functions 

–! E.g. MPI_Send(…,MPI_Count,…) 

!! Details 

–! Fortran binding issues.. 

!! New features 

–! MPI_Process_Group and related functions for fault tolerance 

–! New topology routines aware of more hierarchy levels 

–! Non-blocking collective operations 

–! A simpler one-sided communication interface 

•!Or perhaps standardized semantics for interacting with shared-

memory programming systems in general 

–! More scalable versions of the “v” collectives 

–! MPI part of MPI+X independently of X 

!! See http://www.mpi-forum.org for details of working groups 
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Why Won’t “MPI Everywhere” suffice? 

!! Core count on a node is increasing faster than memory size. 

!! Thus memory available per MPI process is going down. 

!! Thus we need parallelism within an address space, while continuing 

to use MPI for parallelism among separate address spaces. 

!!We don’t have a good way to do this yet. 

!!Whatever we use, it must cooperate with parallelism across address 

spaces, so its API must interact in a well-defined way with MPI. 

!! Some applications are expressing the need for large address spaces 

that span multiple multi-core nodes, yet still are each a small part of 

the memory of the entire machine. 
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Moving Beyond MPI 

!! Any alternative to MPI (at its own level) will have to have some of the 

good properties of MPI 

–! Portability 

–! Scalability 

–! Performance 

!! Perhaps alternatives exist at different levels. 

!! But they will still have to interact with MPI, in order to provide a path 

from where we are now to more abstract models 

–! Clear interoperability semantics 

–! Can be used either above or below C/Fortran/MPI code 
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Some Families of Programming 
Models and Associated Languages 

!! Shared-memory and annotation languages 

–! Especially OpenMP 

–! Likely to coexist with MPI 

–! OpenMP 3.0 (task parallelism) 

–! Beyond 3.0 (locality-aware programming) 

!! Partitioned Global Address Space Languages 

–! UPC, Co-Array Fortran, and Titanium 

–! One step removed from MPI 

!! The HPCS languages 

–! X10, Chapel, Fortress 

–! Two steps removed from MPI 
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OpenMP 

!!OpenMP is a set of compiler directives (in comments, like HPF) plus 

some library calls 

!! The comments direct the execution of loops in parallel in a 

convenient way. 

!! Data placement is not controlled, so performance is hard to get 

except on machines with real shared memory (maybe being 

addressed). 

!! Likely to be more successful on multicore chips than on previous 

SMP’s (multicore = really, really shared memory). 

!! Can co-exist with MPI 

–! MPI’s levels of thread safety correspond to programming 

constructs in OpenMP 

•!Formal methods can be applied to hybrid programs 

!! New book by Barbara Chapman, et al. 
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Other Annotation-based approaches 

!! The idea is to retain the sequential programming model 

!! Annotations guide source-to-source transformations or compilation 

into a parallel program 

!! HPF and OpenMP (part 1) are examples 

!!Others in research mode 
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The PGAS Languages 

!! PGAS (Partitioned Global Address Space) languages attempt to 

combine the convenience of the global view of data with awareness 

of data locality, for performance 

–! Co-Array Fortran, an extension to Fortran-90) 

–! UPC (Unified Parallel C), an extension to C 

–! Titanium, a parallel version of Java 

!! Fixed number of processes, like MPI-1 

Global address 
 space 

Local address 
spaces 
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PGAS Languages Status 

!!Compilers exist 

–! In some cases more than one 

!!Applications are being tried 

!!Substantial support, at least for UPC 

!!Early experiments are encouraging with respect to 

performance 

–! Some reports are misleading. 

!!Little take-up by scientific applications so far 
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The DARPA HPCS Language Project  

!! The DARPA High Productivity Computer Systems (HPCS) Project is 

a 10-year, three-phase, hardware/software effort to transform the 

productivity aspect of the HPC enterprise. 

!! In Phase II,three vendors were funded to develop high productivity 

language systems, and each assigned a small group to language 

development 

–! IBM:  X10 

–! Cray:  Chapel 

–! Sun:  Fortress 

!! In Phase III, Sun was dropped from DARPA support.   Both IBM and 

Cray efforts are continuing.  Actually, Sun’s effort is too, internally 

supported. 

!! Two steps removed from MPI:  not a fixed number of processes 
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Quasi Mainstream 
Programming Models 

•! C, Fortran, C++ and MPI 

•! OpenMP, pthreads 

•! (CUDA, RapidMind, Cn) " OpenCL 

•! PGAS (UPC, CAF, Titanium) 

•! HPCS Languages (Chapel, Fortress, X10) 

•! HPC Research Languages and Runtime 

•! HLL (Parallel Matlab, Grid Mathematica, etc.) 
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Hybrid Programming Models 

!! Some shared-memory API’s that can be used with MPI 

–! POSIX threads -- explicit thread creation, locks, condition vars 

–! OpenMP 

•!Sequential programming model with annotations, parallel 

execution model 

–! Yet to be invented… 

!! The current situation:  OpenMP + MPI 

–! Works because of well-thought-out explicit contracts between the 

models. 

•!MPI standard defines levels of thread safety 

•!OpenMP defines types of code regions 

•!These work together in ways defined by the respective 

standards 

–! Hard to get performance with OpenMP because of lack of locality 

management, excessive synchronization. 
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Hybrid On-Node 

!! Non-homogeneous multi-core 

!! APIs:  CUDA (Nvidia), OpenCL 

!! Data must be moved from main memory to GPU memory (bandwidth 

issue) 

!! Define data-parallel functions on data in GPU memory 

!! Collection of results back to main memory 

20 
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One Possible Near Future:  PGAS+MPI 

!! Locality management within an address space via local, remote 

memory 

!! An address space could be bigger than one node 

–! Might need more hierarchy in PGAS definitions 

!! Just starting to work with PGAS folks on UPC+MPI and CAF+MPI 

–! Center for Programming Models base program project with ANL, 

LBNL, Rice, Houston, PNNL, OSU 

!! Until recently PGAS has focused either on competing with MPI or 

with OpenMP on single node 

–! Need to make interoperability with MPI a priority to attract current 

HPC applications 
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A More Distant Future 

!! HPCS-type languages have many interesting ideas for exploiting 

less obvious parallelism 

!! Need coordination and freedom from vendor ownership 

!! A convergence plan 

–! (DARPA briefly funded a convergence project, which was 

promising until cancelled) 

!! A migration plan for current applications 

–! Interaction with MPI 

–! Use in libraries 

!! Both Chapel and X10 highly visible in HPC Challenge at SC ’09 

–! Benchmarks, not full applications 
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Libraries 

!! Libraries are an easier way to implement programming models than 

languages 

–! need old linker, not new compiler 

!! Libraries can hide complexity of MPI (or other programming model 

instantiation 

!! Libraries can provide special-purpose programming models 

–! still with applicability across applications 

!! Library implementation would be the next step in applying new 

programming approaches like PGAS or HPCS languages 

–! will need to work with existing programming environment, other 

compilers and languages 

–! This would provide a migration path for applications 

!!My current work is on the ADLB (Asynchronous, Dynamic Load-

Balancing) library 

–! scalable implementation of the master/slave programming model 

23 
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Master/Slave Algorithms and Load 
Balancing 

!! Advantages 

–! Automatic load balancing 

!! Disadvantages 

–! Scalability - master can become bottleneck 

!!Wrinkles 

–! Slaves may create new work 

–! Multiple work types and priorities that impose work flow 

24 

Master 

Slave Slave Slave Slave Slave 

Shared 

Work queue 
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The ADLB Idea 

!! No explicit master for load balancing;  slaves make calls to ADLB 

library; those subroutines access local and remote data structures 

(remote ones via MPI). 

!! Simple Put/Get interface from application code to distributed work 

queue hides most MPI calls 

–! Advantage:  multiple applications may benefit 

–! Wrinkle:  variable-size work units, in Fortran, introduce some complexity 

in memory management 

!! Proactive load balancing in background 

–! Advantage:  application never delayed by search for work from other 

slaves 

–! Wrinkle:  scalable work-stealing algorithms not obvious 

25 
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The ADLB Model (no master) 

!! Doesn’t really change algorithms in slaves 

!! Not a new idea (e.g. Linda) 

!! But need scalable, portable, distributed implementation of shared 

work queue 

–! MPI complexity hidden here. 

26 
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API for a Simple Programming Model 

#! Basic calls 

–! ADLB_Init( num_servers, am_server, app_comm) 

–! ADLB_Server() 

–! ADLB_Put( type, priority, len, buf, answer_dest ) 

–! ADLB_Reserve( req_types, handle, len, type, prio, answer_dest) 

–! ADLB_Ireserve( … ) 

–! ADLB_Get_Reserved( handle, buffer ) 

–! ADLB_Set_Done() 

–! ADLB_Finalize() 

#! A few others, for tuning and debugging 

–! ADLB_{Begin,End}_Batch_Put() 

–! Getting performance statistics with ADLB_Get_info(key) 

27 
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How It Works 

!! Real numbers:  1000 servers out of 32,000 processors on BG/P 

–! And recently introduced other communication paths 
28 

Application Processes 

ADLB Servers 

put/get 
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Progress with GFMC 
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29 
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Multiple Levels of Load Balancing 

!!Original:  balancing of processing load 

!! Next: balancing of memory load 

!! Finally: balancing of message-traffic load 

!! Tools needed to understand ADLB and MPI library performance at 

extreme scale 

–! MPI-3 Forum addressing expanded tool interface 

30 
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The Transition is Starting 

#! In large-scale scientific computing today essentially all codes are 

message-passing based.  Additionally many are starting to use some 

form of multithreading on SMP or multicore nodes. 

#! Multicore is challenging programming models but there has not yet 

emerged a dominant model to augment message passing 

#! There is a need to identify new hierarchical programming models 

that will be stable over long term and can support the concurrency 

doubling pressure 

#! Current approaches to programming GPU’s are for library 

developers, not application developers 

#! Libraries may be critical in easing transition to extreme scale 
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Summary 

!!MPI is a successful current standard, but emerging architectures will 

force us to look at new approaches 

!!Most immediately needed: a shared-memory programming model 

that interacts well with MPI 

!! Needed next, an approach to programming heterogeneous multi-

core processors that is suitable for HPC computers and application 

scientists 

!! Programming models for exascale are still in experimental stages 

!! Hiding MPI calls in higher-level, even application-specific libraries 

can be a useful approach to programmer productivity 
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The End 


