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Density functional theory (DFT) as justification
for energy density functional (EDF) approach

Hohenberg-Kohn: There exists
an energy functional Evext [ρ] of
ρ(x) for external potential vext:

Evext [ρ] = FHK[ρ] +

∫
dx vext(x)ρ(x)

Minimize =⇒ Egs, ρgs

Useful if you can approximate
the energy functional; suggests
a hunting license for EDF’s

FHK is universal (same for any
external vext), so should be able
to add any vext we want!

Kohn-Sham (KS) DFT:
Introduce orbitals for ρ(x)



Unraveling the magic of DFT [Kutzelnigg (2008)]

Wavefunction-based: for anti-symmetric A-body |Ψ〉, find
Egs = min

Ψ
〈Ψ|Ĥ|Ψ〉 (CI, CC use a single-particle basis for |Ψ〉)

DFT: fermion densities as basic variables
Common but misleading statements:

“All information about a quantum mechanical ground state is contained
in its electron density ρ.”

“The energy is completely expressible in terms of the density alone.”
At odds with kinetic and interaction energies needing
(1,2, · · · )–particle density matrices!

Key: WF formulation deals with single, fixed Hamiltonian,
E stationary to density matrix (or Ψ) variations, not just ρ(x)

DFT: Consider a family of Hamiltonians Ĥ[v ]→ E [v ], then

FHK[ρ] = min
v
{E [v ]−

∫
dx v(x)ρ(x)} and

E [v ] = min
ρ
{F [ρ] +

∫
dx v(x)ρ(x)} ≡ min

ρ
{Ev [ρ]}

=⇒ DFT is based on Legendre transforms (see arXiv:0906.1463)



Unraveling the magic of DFT [Kutzelnigg (2008)]

Wavefunction-based: for anti-symmetric A-body |Ψ〉, find
Egs = min

Ψ
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Challenges for nuclear DFT (cf. Coulomb DFT)

Difficult conventional nuclear Hamiltonians
Sources of non-perturbative physics for NN interaction

1 Strong short-range repulsion (“hard core”)
2 Iterated tensor interactions (e.g., from pion exchange)
3 Near zero-energy bound states (e.g., deuteron)

Non-negligible many-body forces

Non-trivial implementation issues
Essential role of pairing (so like HFB rather than HF)
Important long-range correlations
Some observables we want are not KS-DFT observables
We don’t have a vext!
Symmetry breaking in finite, self-bound systems
(translation, rotation, number, . . . )

=⇒What about symmetry restoration?



Paths to a nuclear energy functional (EDF)
1 Improve empirical energy functional (Skyrme, Gogny or RMF)
2 Emulate Coulomb DFT: LDA based on precision calculation of

uniform system E [ρ] =
∫

dr E(ρ(r)) plus constrained gradient
corrections (∇ρ factors)

Fayans and collaborators
(e.g., nucl-th/0009034)
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Neutron drops in traps

SLDA+ (Bulgac et al.)
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3 Construct Kohn-Sham DFT with EFT-based, RG-softened V ’s

UNEDF plan: Try them all, mix and match, . . .
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SciDAC 2 Project: Building a Universal Nuclear
Energy Density Functional

Collaboration of physicists, applied mathematicians,
and computer scientists =⇒ prototype for FRIB theory

Funding in US but international collaborators also



Goals of SciDAC 2 Project: Building a Universal
Nuclear Energy Density Functional

Understand nuclear properties “for element formation, for
properties of stars, and for present and future energy and
defense applications”

Scope is all nuclei with particular interest in reliable calculations
of unstable nuclei and in reactions

=⇒ Density functional theory (DFT) is method of choice

Order of magnitude improvement over present capabilities
=⇒ precision calculations of masses, . . .

Maximum predictive power with well-quantified uncertainties

Connected to the best microscopic physics

[See unedf.org for background, references, and highlights.]









Highlights of research on unedf.org

One-slide summaries targeted for broad audience

Notes with details and references





Major UNEDF research areas

1 Ab initio structure — Nuclear wf’s from microscopic NN· · ·N
Methods: GFMC/AFMC, CI (NCSM/NCFC), CC
Interactions: AV18/ILx, chiral EFT −→ Vlow k ,VSRG

2 Ab initio energy functionals — DFT from microscopic NN· · ·N
Cold atoms — superfluid LDA+ =⇒ nuclear DFT
χEFT −→ Vlow k −→ MBPT −→ DME functional

3 DFT applications — Technology to calculate observables
Skyrme HFB+ for all nuclei (solvers)
Fitting functionals to data (e.g., correlation analysis)

4 DFT extensions — Long-range correlations, excited states, . . .
Alphabet soup: LACM, GCM, TDDFT, QRPA, CI, . . .

5 Reactions – coupled channels, optical potentials . . .
Ab initio reactions: NCSM+RGM



Universal Nuclear Energy Density Functional

Ab Initio

Configuration Interaction

Density Functional Theory

Nuclear Landscape
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Figure 1.   The theoretical methods and computational techniques used to solve the nuclear many-body problem. On this chart of the nuclides in the
(N,Z)-plane, the black squares represent stable nuclei and the yellow squares indicate unstable nuclei that have been produced and studied in the
laboratory. The many thousands of these unstable nuclei yet to be explored are indicated in green (terra incognita). Except for the lightest nuclei, where it
has been reached experimentally, the neutron drip line (the rightmost border of the nuclear landscape) has to be estimated on the basis of nuclear
models—hence it is very uncertain due to the dramatic extrapolations involved. The red vertical and horizontal lines show the magic numbers, reflecting
regions where nuclei are expected to be more tightly bound and have longer half-lives. The anticipated path of the astrophysical r-process responsible for
nucleosynthesis of heavy elements is also shown (purple line). The thick dotted lines indicate domains of major theoretical approaches to the nuclear
many-body problem. For the lightest nuclei, ab initio calculations (Green’s function Monte Carlo, no-core shell model, coupled cluster method), based on
the bare nucleon–nucleon interaction, are possible (red). Medium-mass nuclei can be treated by configuration interaction techniques (interacting shell
model, in green). For heavy nuclei, the density functional theory based on self-consistent/mean field theory (blue) is the tool of choice. By investigating
the intersections between these theoretical strategies, one aims at nothing less than developing a unified description of the nucleus.

nucleon interactions offers promise to achieve
corresponding qualitative improvements in the
accuracy and applicability for nuclear physics.
Recognizing that the nucleus is composed of
fermions, neutrons, and protons, DFT is the only
tractable theory that can be applied across the
entire table of nuclides. The new challenges faced
by the nuclear DFT are the presence of two kinds
of fermions, the essential role of pairing, and the
need for symmetry restoration in finite, self-
bound systems. 

Practical Applications
Applications of nuclear physics in today’s global
economy and national security are numerous.
They include the nuclear power industry and
nuclear medicine, as well as national defense. As
has been illustrated many times in all fields of sci-
ence, improved understanding of the microworld
benefits society. Fusion and fission are excellent
examples. The description of these fundamental
nuclear processes is still very schematic, yet nuclear
fission powers reactors that produce energy for the
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Density functional theory
is built on theorems
showing the existence of
universal energy
functionals for many-
body systems.



Large-scale mass table calculations [M. Stoitsov et al.]

One Skyrme functional (∼10–20
parameters) describes all nuclei
from few-body to superheavies

9,210 nuclei in less than one day
on ORNL Jaguar (Cray XT4)

Under development: optimization
and correlation analysis tools

Extending optimization dataset to
symmetry-unresticted nuclei to
constrain time-odd terms
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Issues with empirical EDF’s

Density dependencies might be too simplistic

Isovector components not well constrained

No (fully) systematic organization of terms in the EDF

Difficult to estimate theoretical uncertainties (extrapolation)

Where are the pions?

What’s the connection to many-body forces?

Pairing part of the EDF not treated on same footing

and so on . . .

=⇒ Extend conventional EDF form and analysis

=⇒ Turn to microscopic many-body theory for guidance
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Constraints from external potentials (preliminary)
Ab initio: neutrons in external potentials (“neutron drops”)

Here: GFMC, AFDMC (Carlson et al.); NCFC/MFDn (Maris et al.)
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Preliminary

Carlson, Pieper, Gandolfi, preliminary 

Implies significantly more repulsive 
isovector gradient terms

Compare vs. Skyrme EDF for two different oscillator ω’s
For larger ω, Skyrme energies too low and radius too small

=⇒ more repulsive isovector gradient terms needed?
Much more to come! (including CC, ab initio DFT)



Skyrme generalizations based on EFT principles
Ability to use local densities based on short range of nuclear
interactions compared to variations in local and non-local
density matrix =⇒ use separation of scales

Skyrme Finite-size instab. Spin instabilities Beyond RPA ?

Density functional

! Skyrme force
V (R,r) = t0

(
1+ x0P̂σ

)
δ(r)+

1
6
t3
(
1+ x3P̂σ

)
δ(r) [ρ0 (R)]α

+
1
2
t1
(
1+ x1P̂σ

) [
δ(r) k2 +k′2 δ(r)

]
+ t2

(
1+ x2P̂σ

)
k′ · δ(r) k

+ iW0 [σ1 +σ2]k′× δ(r) k,

! Density functional

E =

∫
d3r

[
h̄2

2m
τ0 + HSkyrme(ρ0,ρ1,τ0,τ1,s0,s1, . . .) + HCoul.(ρp)

]

! Densities
ρ=

∑
i
ϕ†i ϕi , τ =

∑
i,µ

(∇µϕ†i )(∇µϕi), j, J : currents
sν =

∑
i
ϕ†i σνϕi , Tν =

∑
i,µ

(∇µϕ†i )σν(∇µϕi), ρ0 = ρn +ρp, ρ1 = ρn−ρp, . . .

! Strong interaction energy density HSkyrme

H
even
0 = Cρ0 (ρ0)ρ20 +C∆ρ

0 ρ0∆ρ0 +Cτ0 ρ0τ0 +CJ
0 J2

0 +C∇J
0 ρ0∇ ·J0,

H
even
1 = Cρ1 (ρ0)ρ21 +C∆ρ

1 ρ1∆ρ1 +Cτ1 ρ1τ1 +CJ
1 J2

1 +C∇J
1 ρ1∇ ·J1,

H
odd
0 = Cs

0(ρ0)s
2
0 +C∆s

0 s0 ·∆s0 +CsT
0 s0 ·T0 +Cj

0j
2
0 +C∇j

0 s0 · (∇× j0),

H
odd
1 = Cs

1(ρ0)s
2
1 +C∆s

1 s1 ·∆s1 +CsT
1 s1 ·T1 +Cj

1j
2
1 +C∇j

1 s1 · (∇× j1).

Instabilities in Nuclear Energy Density Functionals T. LesinskiExpand in densities and gradients
Includes time-odd fields =⇒ new domain to explore
Gogny EDF can be accurately cast in same form [arXiv:1002.3646]
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Power Counting in Skyrme and RMF Functionals
Can we control the explosion of terms in generalized functionals?

Old chiral NDA analysis:
[Friar et al., rjf et al.]

c
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f 2
πΛ2

=⇒
ρ←→ ψ†ψ
τ ←→ ∇ψ† · ∇ψ
J←→ ψ†∇ψ

Density expansion?
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Naturalness revisited (M. Kortelainen et al.)

Apply natural units scaling to 48 Skyrme functionals
Look for optimal Λ by deviations from unity:
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Signatures of incomplete optimization (massexplorer.org)
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Quantified constraints from new observables
( P.G. Reinhard, W. Nazarewicz, arXiv:1002.4140)

Do new observables bring new information to an EDF?

Example: What is the information content of the neutron skin?
Pearson product-moment correlation coefficient

cAB =
∆A ∆B√
∆A2 ∆B2

=

{
1 full alignment/correlation
0 not aligned/statistically independent

where A and B are two observables.

Fit EDF couplings p = {p1, . . . ,pF} with a χ2(p) function

Find uncertainties and correlation from curvature about
minimum,Mij = ∂pi∂pjχ

2|p0 with χ2(p0) = χ2
min:

∆A2 =
∑

ij

∂pi A(M̂−1)ij∂pj A|p0 and ∆A ∆B =
∑

ij

∂pi A(M̂−1)ij∂pj B|p0



Correlation example

Filled areas are regions of parameter reasonable domain p
(where χ2 = χ2

min + 1)

left: dipole polarizability and neutron skin in 208Pb

right: m∗/m in nuclear matter and neutron skin in 208Pb



Correlation with observables
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left: neutron form factor Fn(q = 0.45 fm−1) in 208Pb
right: binding energy of heavy neutron-rich nucleus 148Sn



Impact of precise measurement of neutron skin

EOS
extrapolation
errors

Original EDF is SV-min from P. Klüpfel et al.

New EDF SV-min-Rn by adding neutron radius in 208Pb with
adopted error 0.02 fm to fit observables

Uncertainties for isovector indicators shrink by factor of 2



Effects of Time-odd Fields of EDF 
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Effects of Time-odd Fields of EDF 
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Every point in the histograms: one of 

12 000 fully self-consistent symmetry- 

breaking DFT calculation (Jaguar XT5) 

N. Schunck et al., Phys. Rev. C 81, 024316 (2010)  



Odd-proton States in Mass A~150 
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Odd-proton States in Mass A~150 
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Every point in the figure: one of 12 000 

fully self-consistent symmetry-breaking 

DFT calculation (Jaguar XT5) 
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Novel optimization algorithms (ANL + ORNL)

Computational cost of optimization is high because some nuclei
can take hours to compute (so restrict to spherical)

New model-based optimization: minimize local approximation
to exact function

POUNDerS algorithm greatly outperforms conventional method

Opens the door to EDF optimization with non-spherical nuclei



Novel optimization algorithms: Test case
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left: Deviation between theoretical and experimental nuclear
masses for the SLy4 Skyrme EDF using HFBTHO solver

right: Same for UNEDFpre EDF parametrization

Close to conventional Skyrme accuracy limit



Theoretical error bars from statistical analysis
EDF analyzed using surrogate (model-based) approach
Method is highly scalable (e.g., > 5000 cores on Franklin)

left: Sensitivity of each parameter to global changes in data
right: Global sensitivity to specific data changes by 0.1σ
Standard parametrization is highly correlated =⇒ ideal is N
independent parameters unambiguously constrained by data



Nuclear constrained calculations: GCM



Nuclear constrained calculations:
Deformation energy surface



Augmented Lagrangian Method M.V. Stoitsov et al.
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Quadratic constraint procedure often fails to deliver requested
average value of constrained operator with acceptable accuracy.
Augmented Lagrangian Method (ALM) has a linear constraint
and a quadratic penalty function =⇒ proper convergence



Augmented Lagrangian Method M.V. Stoitsov et al.
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Request solutions at grid points of deformation lattice
Standard quadratic constraint method fails; ALM succeeds!
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Historically: Microscopic EDF from G-Matrix

G-matrix softens highly non-perturbative NN potentials

Negele/Vautherin density matrix expansion (DME)
=⇒ Skyrme-like EDF from G-matrix for Hartree-Fock

Semi-quantitatively successful
Empirical fits far superior =⇒ little further development

Ab-initio DFT is possible from many-body perturbation theory
(MBPT) if convergent and can tune single-particle potential U

H = (T + U)︸ ︷︷ ︸
Kohn−Sham

+(V − U)

Need to be able to adjust U so density unchanged
Recent successes for Coulomb DFT

But MBPT with G-matrix doesn’t work (hole-line expansion)
New development: low-momentum potentials (Vlow k ,VSRG)

revisit hole-line expansion



Compare Potential and G Matrix: AV18 vs. VSRG

AV18 VSRG

↖
G Matrices

↗



Hole-Line Expansion Revisited (Bethe, Day, . . . )

Consider ratio of fourth-order diagrams to third-order:
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“Conventional” G matrix still couples low-k and high-k
no new hole line =⇒ ratio ≈ −χ(r = 0) ≈ −1 =⇒ sum all orders
add a hole line =⇒ ratio ≈∑n≤kF

〈bn|(1/e)G|bn〉 ≈ κ ≈ 0.15

Low-momentum potentials decouple low-k and high-k

add a hole line =⇒ still suppressed
no new hole line =⇒ also suppressed (limited phase space)
freedom to choose single-particle U =⇒ use for Kohn-Sham

=⇒ Ab initio MBPT and DFT can work!

(How do we get a Kohn-Sham VKS(x) from even HF diagrams?)



What is needed for ab initio Kohn-Sham DFT?
1 Need MBPT to work with tuned U [H = (T + U) + (V − U)]
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(see new results from K. Hebeler et al.)
If convergence insensitive to U =⇒ choose so KS density exact

2 Need to calculate VKS(x) from δE [ρ]/δρ(x), etc. but diagrams
depend non-locally on KS orbitals

Density matrix expansion (DME) =⇒ explicit densities
Use chain rule =⇒ “optimized effective potential” (OEP)



Density matrix expansion revisited [Negele/Vautherin]

Dominant MBPT contributions can be put into form

〈V 〉 ∼
∫

dR dr12 dr34 ρ(r1, r3)K (r12, r34)ρ(r2, r4)

r1
r2

ρ(r1,r3)
ρ(r2,r4)

r3 r4

K(r1-r2, r3-r4)

finite range and non-local resummed vertices K (+ NNN)

DME: Expand KS ρ in local operators w/factorized non-locality

ρ(r1, r2) =
∑

εα≤εF

ψ†α(r1)ψα(r2) =
∑

n

Πn(r)〈On(R)〉 r1
r2

R-r/2 +r/2

with 〈On(R)〉 = {ρ(R),∇2ρ(R), τ(R), · · · } maps 〈V 〉 to Skyrme-like EDF!
Adds density dependences, isovector, . . . missing in Skyrme
Original DME expands about nuclear matter (k -space + NNN)

ρ(R+r/2,R−r/2) ≈ 3j1(skF)

skF
ρ(R)+

35j3(skF)

2sk3
F

(1
4
∇2ρ(R)−τ(R)+

3
5

k2
Fρ(R)+· · ·

)
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Adaptation to Skyrme HFB Implementations

ESkyrme =
τ

2M
+

3
8

t0ρ2 +
1

16
t3ρ2+α +

1
16

(3t1 + 5t2)ρτ+
1

64
(9t1 − 5t2)|∇ρ|2 + · · ·

=⇒ EDME =
τ

2M
+ A[ρ] + B[ρ]τ + C[ρ]|∇ρ|2 + · · ·

Orbitals and Occupation #’s

Kohn−Sham Potentials

t , t0 1 , ..., t2

Skyrme
energy

functional
HFB

solver

VKS(r) =
δEint[ρ]

δρ(r)
⇐⇒ [−∇2

2m
+VKS(x)]ψα = εαψα =⇒ ρ(x) =

∑
α

nα|ψα(x)|2
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Improved DME for pion exchange [Gebremariam et al.]

Phase-space averaging for finite nuclei (symmetries, sum rules)

Focus on long-range interactions =⇒ pion exchange in NN and
NNN from chiral effective field theory (χEFT)

Tests are very promising [arXiv:0910.4979 ]:
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See Scott Bogner’s talk!



Long-range chiral EFT
=⇒ enhanced Skyrme

Add long-range (π-exchange)
contributions in the density
matrix expansion (DME)

NN/NNN through N2LO
[Gebremariam et al.]

Refit Skyrme parameters for
short-range parts

Test for sensitivities and
improved observables (e.g.,
isotope chains) [ORNL]

Spin-orbit couplings from 2π
3NF particularly interesting

Can we “see” the pion in
medium to heavy nuclei?



Non-empirical pairing gaps from Vlow k [Duguet et al.]

Use Skyrme for particle-hole functional and Vlow k for pairing

Leading order and doesn’t include NNN, but very promising!

See Scott Bogner’s talk!



Orbital Dependent DFT (OEP, OPM, . . . ) [J. Drut, L. Platter, rjf]

Construct MBPT for Eint[ρ, τ, J, . . .]; densities are sums over
orbitals solving from Kohn-Sham S-eqn with VKS(r), . . .

Self-consistency =⇒ VKS(r) = δEint[ρ, . . .]/δρ(r), . . .
i.e., Kohn-Sham potential is functional derivative of interacting
energy functional (or Exc) wrt (all) densities
How do we calculate this functional derivative?

Approximations with explicit ρ(r) dependence: LDA, DME, . . .

Orbital-dependent DFT =⇒ full derivative via chain rule:

VKS(r) =
δEint[φα, εα]

δρ(r)
=

∫
dr′

δVKS(r′)
δρ(r)

∑
α

{∫
dr′′
[
δφ†α(r′′)
δVKS(r′)

δEint

δφ†α(r′′)
+ c.c.

]
+

δεα

δVKS(r′)
∂Eint

∂εα

}
Solve the OPM equation for VKS using χs(r, r′) = δρ(r)/δVKS(r′)∫

d3r ′ χs(r, r′) VKS(r′) = Λxc(r)

Λxc(r) is functional of the orbitals φα, eigenvalues εα, and G0
KS
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Multi-pronged effort to improve nuclear EDF’s

Worldwide collaborative effort: UNEDF + FIDIPRO + . . .
SciDAC model is effective

Strategies
Extend existing functionals following EFT principles and using
sophisticated correlation analyses
Constrain with new data and accurate microscopic calculations
(e.g., trapped neutron drops using GFMC/AFMC and NCFC)
Develop ab initio functionals using low-momentum interactions

Many-body perturbative expansions possible
Long-distance chiral physics (EFT expansion)
Density matrix expansion (DME) or full orbital-based OEP

Expect many developments in the coming years!



(Some) issues for nuclear DFT to be addressed

DFT for self-bound systems
Does DFT even exist? (HK theorem for intrinsic states?)
Effective actions: symmetry breaking and zero modes
Game plans proposed:

T. Duguet et al.: “multi-reference” projection methods
B. Giraud et al.: use harmonic oscillator trap
J. Engel, J. Messud et al.: find intrinsic functional
J. Braun et al.: deal with zero modes using Fadeev-Popov

or BRST methods

What about single-particle spectra?
R. Bartlett: good reproduction for Coulomb systems
Connect to Green’s function formulation?

How to best deal with long-range correlations?

What about alternative functionals? (e.g., T. Papenbrock)



UNEDF DFT Extensions: Interconnections

!



Jacob’s Ladder: Coulomb DFT [J. Perdew et al.]

“And he [Jacob] dreamed, and behold a ladder set up on the earth, and the top of
it reached to heaven . . . ” [Genesis 28:12]

~wwwwwwwwwwwwwwwwwwww

HEAVEN =⇒ Chemical Accuracy

5. Full orbital-based DFT from MBPT+.
[E.g., RPA with Kohn-Sham orbitals.]

4. Hyper-GGA includes exact exchange energy
density calculated with (occupied) orbitals.

3. Meta-GGA adds (some subset of) ∇2ρ↑(r),
∇2ρ↓(r), τ↑(r), and τ↓(r).
[Note: τ [ρ] is nonlocal; τ [φKS

i ] is semi-local.]

2. Generalized gradient approximation (GGA)
adds ∇ρ↑(r) and ∇ρ↓(r).

1. Local spin density approximation (LSDA) with
ρ↑(r) and ρ↓(r) as ingredients.



Jacob’s Ladder: Nuclear DFT [arXiv:0906.1463]
“And he [Jacob] dreamed, and behold a ladder set up on the earth, and the top of
it reached to heaven . . . ” [Genesis 28:12]

~wwwwwwwwwwwwwwww

HEAVEN =⇒ UNEDF from NN· · ·N (QCD)

5. Full orbital-based DFT based on
[lattice QCD =⇒ ] chiral EFT =⇒ Vlow k .

4. Complete semi-local functional (e.g., DME)
from chiral EFT =⇒ Vlow k .

3. Long-range chiral NN and NNN =⇒ Π–DME
=⇒ merged with Skyrme and refit.

2. Generalized Skyrme with ∇nρ(r), ρα(r), . . .
with constraints (e.g., neutron drops)

1. Conventional Skyrme EDF’s [e.g. SLY4].

Developing 2.–5. in parallel!



Spontaneous fission: Energy surfaces from DFT

A. Staszczak et al.,
PRC 80, 014309 (2009)

A promising starting point for an extreme scale challenge!



Microscopic description of nuclear fission  
Advanced theoretical methods and high-performance computers may finally unlock the 

secrets of nuclear fission, a fundamental nuclear decay that is of great relevance to society 

• The nuclear many-body problem is difficult 
• Much of the progress in fission theory has  
   been based on phenomenological models 
•  This limits our predictive capability 
• … and makes it difficult to estimate the 

uncertainties 

• There are fundamental problems in fission that cry to  
   be solved.  Success will impact: 

• Basic science (nuclear structure and astrophysics) 
• Societal applications (energy, defense, environment) 

• Fission is a perfect problem for extreme scale computing 
• We are developing a microscopic model for fission that will 
   be predictive and extendable.  The figures show progress: 

• Calculating pathways and half-lives 
• Greatly improving calculation speed  
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