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A Nuclear Hamiltonian:

Pion Exchange
Shorter-range interactions

spin-orbit,  etc. 

Also need a three-body force

Deuteron      mpi=(mpi0+2.*mpic)/3.
      mu0=mpi0/hc
      muc=mpic/hc
      mu=mpi/hc
      fsq=.075
      cpi=2.1
      rws=.5
      aiws=5.
      x=mu*r
      x0=mu0*r
      xc=muc*r
      if (r.le.small) then
        tpi=3*cpi**2*r/mu**3
        ypi0=(mpi0/mpic)**2*(mpi0/3)*cpi*r/mu0
        tpi0=3*cpi*ypi0/mu0**2
        ypic=(mpic/3)*cpi*r/muc
        tpic=3*cpi*ypic/muc**2
      else
        rcut=1-exp(-cpi*r*r)
        ypi=exp(-x)*rcut/x
        tpi=(1+(3+3/x)/x)*ypi*rcut
        ypi0=(mpi0/mpic)**2*(mpi0/3)*exp(-x0)*rcut/x0
        tpi0=(1+(3+3/x0)/x0)*ypi0*rcut
        ypic=(mpic/3)*exp(-xc)*rcut/xc
        tpic=(1+(3+3/xc)/xc)*ypic*rcut
      end if
      ypi0=fsq*ypi0
      ypic=fsq*ypic
      tpi0=fsq*tpi0
      tpic=fsq*tpic
      tpi2=tpi*tpi
      ws=1/(1+exp((r-rws)*aiws))
      ws0=1/(1+exp(-rws*aiws))
      wsp=ws*(1+aiws*exp(-rws*aiws)*ws0*r)
      wsx=ws*x
      wsx2=wsx*x
      dypi00=(mpi0/mpic)**2*(mpi0/3)*cpi/mu0
      dypic0=(mpic/3)*cpi/muc
      ypi0p=ypi0-fsq*dypi00*ws*r/ws0
      ypicp=ypic-fsq*dypic0*ws*r/ws0
      ypi=(ypi0+2*ypic)/3
      tpi=(tpi0+2*tpic)/3
      p11pp=  -7.62701*tpi2+1815.4920*wsp+1847.8059*wsx2+ypi0p
      p11np=  -7.62701*tpi2+1813.5315*wsp+1847.8059*wsx2-ypi0p+2*ypicp
      p11nn=  -7.62701*tpi2+1811.5710*wsp+1847.8059*wsx2+ypi0p
      pt1pp=   1.07985*tpi2 -190.0949*wsx -811.2040*wsx2+tpi0
      pt1np=   1.07985*tpi2 -190.0949*wsx -811.2040*wsx2-tpi0+2*tpic
      pt1nn=   1.07985*tpi2 -190.0949*wsx -811.2040*wsx2+tpi0
      pls1=    -.62697*tpi2 -570.5571*wsp +819.1222*wsx2
      pl211=    .06709*tpi2 +342.0669*wsp -615.2339*wsx2
      pls21=    .74129*tpi2   +9.3418*wsp -376.4384*wsx2
      p10=    -8.62770*tpi2+2605.2682*wsp +441.9733*wsx2-ypi0p-2*ypicp
      pt0=    1.485601*tpi2-1126.8359*wsx +370.1324*wsx2-tpi0-2*tpic
      pls0=     .10180*tpi2  +86.0658*wsp -356.5175*wsx2
      pl210=   -.13201*tpi2 +253.4350*wsp   -1.0076*wsx2
      pls20=    .07357*tpi2 -217.5791*wsp  +18.3935*wsx2
      p01pp= -11.27028*tpi2+3346.6874*wsp-3*ypi0p
      p01np= -10.66788*tpi2+3126.5542*wsp-3*(-ypi0p+2*ypicp)
      p01nn= -11.27028*tpi2+3342.7664*wsp-3*ypi0p
      pl201=    .12472*tpi2  +16.7780*wsp
      p00=    -2.09971*tpi2+1204.4301*wsp-3*(-ypi0p-2*ypicp)
      pl200=   -.31452*tpi2 +217.4559*wsp
      p11=(p11pp+p11nn+p11np)/3
      p11cd=(.5*(p11pp+p11nn)-p11np)/6
      p11cs=(p11pp-p11nn)/4
      pt1=(pt1pp+pt1nn+pt1np)/3
      pt1cd=(.5*(pt1pp+pt1nn)-pt1np)/6
      pt1cs=(pt1pp-pt1nn)/4
      p01=(p01pp+p01nn+p01np)/3
      p01cd=(.5*(p01pp+p01nn)-p01np)/6
      p01cs=(p01pp-p01nn)/4



Ψ = exp[−Hτ ] Ψ0

Monte Carlo Methods

Initial Guess or `Source’
Shell Model plus Correlations

Two-Body solutions plus 3-nucleon interaction

     Monte Carlo for spatial integrals
     Explicit Sums for spin/isospin
     In general approximate solutions

Alpha Particle,... Trivial
12C uses 100K cores (or more) for 

Ground/Hoyle states



Light Nuclear Spectra



state with a node at the surface) decreases as R0 increases,
so we choose R0 ! 9 fm.

Second, the GFMC energy also depends somewhat on
the input !T . We find it important to adjust pair correla-
tions between particles in different clusters (between the n
and constituents of the ! in this case) so that the factoriza-
tion in Eq. (1) is enforced at large cluster separation [14].
We also adjust a parameter in !T that corresponds to k
until it matches the final GFMC energy; this typically takes
one or two iterations of the VMC and GFMC calculations
to obtain a self-consistent result.

Finally, in all of our A > 4 GFMC calculations, we use a
path constraint [1] on the GFMC walk to mitigate the
Fermion sign problem; we compute energy samples only
after releasing the constraint for some number of steps to
avoid biasing the results. We find that stable results in our
scattering calculations require the use of 80 unconstrained
steps rather than the usual 20 to 40. However, the "" step
size is unchanged.

In Fig. 1 we present phase shifts for all channels, com-
puted with three different interaction models. In each case
the AV18 potential is used as the two-nucleon interaction;
in the second (third) case the UIX (IL2) three-nucleon
potential is added. We also show partial-wave total cross
sections for the AV18" IL2 case in Fig. 2. Each point in
these figures is equivalent in computer time to a single
bound-state calculation of comparable statistical error.
Because of the narrow resonance in the 3=2# channel, #

varies rapidly with E so that the highest-energy state we
can reach—the first with a node at R0—lies lower than in
the other two channels. Future calculations extending to
energies beyond this maximum-energy state should be
analogous to previous calculations of multiple bound states
with the same quantum numbers [15].

In the figures, we compare our results with those from a
multichannel R-matrix analysis of the 5He system [16] that
characterizes the measured scattering data very well
($2=d:o:f: is 1.6). Some of the resonance parameters
from that analysis are given in Refs. [17,18]. Because there
are more than 2600 data points in the analysis, the uncer-
tainties in the R-matrix phase shifts are likely to be much
smaller than the errors in the GFMC calculations.

We have made rational polynomial fits to tan%JL=k2L"1,
converted them to rational polynomials for the S-matrix,
and used these to find the poles of S. These fits are shown
as dashed curves in the figures. For each of the two p-wave
states, we find just one pole that is stable as the degrees of
the polynomials are changed; we identify these as the
resonance poles. For 3=2# the poles are at 1:19–0:77i,
1:39–0:75i, and 0:83–0:35i MeV for AV18 alone, AV18"
UIX, and AV18" IL2, respectively, compared with
0:798–0:324i MeV from analysis of the data [18]. The
corresponding 1=2# values are 1:7–2:2i, 2:4–2:5i, and
2:3–2:6i MeV, compared with 2:07–2:79i MeV. The
1=2" fits yield no stable pole, in agreement with the lack
of a resonance in this channel and with the R-matrix
analysis. All pole locations have an error of not more
than 3 in the last decimal place.

It is well known that realistic two-nucleon interactions
alone provide insufficient spin-orbit splitting in light nuclei
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FIG. 1 (color online). Phase shifts for n-! scattering. Filled
symbols (with statistical errors smaller than the symbols) are
GFMC results; dashed curves are fits described in the text; and
solid curves are from an R-matrix fit to data [16].
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FIG. 2 (color online). Partial-wave cross sections from the
AV18" IL2 Hamiltonian compared to R-matrix analysis.
Stars show the pole energies in 3=2# scattering for the
R-matrix fit and for AV18" IL2, with the bars indicating the
imaginary part.
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Higher Momentum States in the Nucleus
Back-to-Back np vs. pp momentum distribution

nucleon [9] and Urbana-IX three-nucleon [10] interactions
(AV18=UIX). The high accuracy of the VMC wave func-
tions is well documented (see Refs. [11,12] and references
therein), as is the quality of the AV18=UIX Hamiltonian in
quantitatively accounting for a wide variety of light nu-
clei properties, such as elastic and inelastic electromag-
netic form factors [13], and low-energy capture re-
actions [14]. However, it is important to stress that the
large effect of tensor correlations on two-nucleon mo-
mentum distributions and the resulting isospin depen-
dence of the latter remain valid, even if one uses a semi-

realistic Hamiltonian model. This will be shown explicitly
below.

The double Fourier transform in Eq. (1) is computed by
Monte Carlo (MC) integration. A standard Metropolis
walk, guided by j JMJ

!r1; r2; r3; . . . ; rA"j2, is used to sam-
ple configurations [12]. For each configuration a two-
dimensional grid of Gauss-Legendre points, xi and Xj, is
used to compute the Fourier transform. Instead of just
moving the  0 position (r012 and R0

12) away from a fixed
 position (r12 and R12), both positions are moved sym-
metrically away from r12 and R12, so Eq. (1) becomes

 !TMT
!q;Q" # A!A$ 1"

2!2J% 1"
X
MJ

Z
dr1dr2dr3 & & & drAdxdX y

JMJ
!r12 % x=2;R12

%X=2; r3; . . . ; rA"e$iq&xe$iQ&XPTMT
!12" JMJ

!r12 $ x=2;R12 $X=2; r3; . . . ; rA": (3)

Here the polar angles of the x and X grids are also sampled
by MC integration, with one sample per pair. This proce-
dure is similar to that adopted most recently in studies of
the 3He!e; e0p"d and 4He! ~e; e0 ~p"3H reactions [15] and has
the advantage of very substantially reducing the statistical
errors originating from the rapidly oscillating nature of the
integrand for large values of q and Q. Indeed, earlier
calculations of nucleon and cluster momentum distribu-
tions in few-nucleon systems, which were carried out by
direct MC integration over all coordinates, were very noisy
for momenta beyond 2 fm$1, even when the random walk
consisted of a very large number of configurations [2].

The present method is, however, computationally inten-
sive, because complete Gaussian integrations have to be
performed for each of the configurations sampled in the
random walk. The large range of values of x and X required
to obtain converged results, especially for 3He, require
fairly large numbers of points; we used grids of up to 96
and 80 points for x and X, respectively. We also sum over
all pairs instead of just pair 12.

The np and pp momentum distributions in 3He, 4He,
6Li, and 8Be nuclei are shown in Fig. 1 as functions of the
relative momentum q at fixed total pair momentum Q # 0,
corresponding to nucleons moving back to back. The sta-
tistical errors due to the Monte Carlo integration are dis-
played only for the pp pairs; they are negligibly small for
the np pairs. The striking features seen in all cases are
(i) the momentum distribution of np pairs is much larger
than that of pp pairs for relative momenta in the range
1:5–3:0 fm$1, and (ii) for the helium and lithium isotopes
the node in the pp momentum distribution is absent in the
np one, which instead exhibits a change of slope at a
characteristic value of p ’ 1:5 fm$1. The nodal structure
is much less prominent in 8Be. At small values of q the
ratios of np to pp momentum distributions are closer to
those of np to pp pair numbers, which in 3He, 4He, 6Li,
and 8Be are, respectively, 2, 4, 3, and 8=3. Note that the np
momentum distribution is given by the linear combination

!TMT#10 % !TMT#00, while the pp momentum distribution
corresponds to !TMT#11. The wave functions utilized in the
present study are eigenstates of total isospin (1=2 for 3He,
and 0 for 4He, 6Li, and 8Be), so the small effects of isospin-
symmetry-breaking interactions are ignored. As a result, in
4He, 6Li, and 8Be the !TMT

is independent of the isospin
projection and, in particular, the pp and T # 1 np mo-
mentum distributions are the same.

The excess strength in the np momentum distribution is
due to the strong correlations induced by tensor compo-
nents in the underlying NN potential. For Q # 0, the pair
and residual (A$ 2) system are in a relative Swave. In 3He
and 4He with uncorrelated wave functions, 3=4 of the np
pairs are in deuteronlike T; S # 0; 1 states, while the pp,
nn, and remaining 1=4 of np pairs are in T; S # 1; 0
(quasibound) states. When multibody tensor correlations
are taken into account, 10%–15% of the T; S # 1; 0 pairs
are spin flipped to T; S # 1; 1 pairs, but the number of
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FIG. 1 (color online). The np (lines) and pp (symbols) mo-
mentum distributions in various nuclei as functions of the
relative momentum q at vanishing total pair momentum Q.
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nN,N ′(k, P = 0) = 〈0| a
†
N (k)a†

N ′(−k) aN (k)aN ′(−k) |0〉



Neutron Rich Matter: Helium Charge Radii

Mueller, et al,  PRL 2007
Norterhauser, et al, PRL 2009



Neutron/Neutron-Star Matter

Low Density:  Exterior of Nuclei
                       Neutron Star Crust

Simple well-understood interaction
Intriguing physics: strongly paired fermions

Many experimental tests

High Density:  Bulk of Neutron Star

Interaction Poorly Known
Required to understand cold, dense matter

Observational Tests



One Parameter:  V0 

Unitary Regime and
Low-Density Neutron Matter



Cold Atom Experiments:

Diagram from Innsbruck

Fermions: 6Li, 40K
Density ~ 1/ μm3

Temperature ~ 200 nK ~ 0.1 Ef

First Fermi 
Condensates 2004



 (nearly) Free Fermions
 (nearly) Free Bosons
 ‘Universality’ and the BCS-BEC transition
 Polarons
 Efimov States
 Superfluid Fermions (s-, p-, d-wave,... pairing)
 Exotic Polarized Superfluids (FFLO, breached pair,...)
 PseudoGap States
 Itinerant Ferromagnetism
 `Perfect’ Fluids
 Reduced Dimensionality
 More than pairing (3-,4-body condensates, ...)
 Bose, Fermi Hubbard Models,

Experimental Results in Cold Atoms



Unitarity 

Interaction 
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Unitarity = limit of 0 pair binding
                 a        = ∞

All quantities multiples of Fermi Gas at same ρ
At zero polarization, expect strong pairing

Values of  ξ, δ, t are independent of ρ 
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Unitarity: #      =   #  

E = ξ EFG = ξ
3
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JC,  Chang, Pandharipande, Schmidt, PRL 2003

Ψ0 =



Calculations at Unitarity: #      =   #

ξ = 0.40(01)

QMC

E/EF vs. potential range

Transient Estimation
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N = 38

Unitarity Limit

E vs. lattice size

AFMC

Carlson and Reddy, PRL 2005, 2007



Experiments at Unitarity: #      =   #
Cloud Size and Sound Velocity  

Cloud Size
vs E (B)

c0

vf
=

ξ1/4

√
(5)

ξ = 0.435(15)

Joseph, et al., PRL 2007
Sound Propagation

scaling verified as ρ 
varied by 30!

ξ = 0.39(02)

Energy vs. 
Entropy

ξ = 0.41(02)

Luo and Thomas, JLTP,   2009



Relation to Neutron Matter: Equation of State
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Neutrons vs. Cold Atoms adding p-wave interactions 



Pairing Gap at Unitarity - Cold Atom Calculations

Add one       to fully-paired system
Energy cost for an unpaired particle:  μ + Δ 

∆ = δ
!2k2
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2m

Computational Cost Large:
   E(N+1) - 1/2( E(N)+E(N+2)
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Pairing Gap at Unitarity - Experiment

Spin up, down densities
                in a trap

Interaction 
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Pairing Gap at Unitarity - Experiment
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FIG. 3: Polarization versus radius, theory and experiment, for
different values of δ and tc at T ′ = 0.03 and T ′ = 0.05. The
dashed curves show the local finite temperature gap. The
results indicate that the data provide both an upper and a
lower bound on the gap: 0.5 ≥ δ ≥ 0.4.

order transition somewhere in between. In contrast, the
comparison between theory and data at T ′ = 0.05 sug-
gests that the superfluid extends further out. Polariza-
tion in the superfluid state (dotted curve) extrapolated
to p ! 0.4 provides a better description of the data than
the normal state. A clear signature of a first-order tran-
sition is also absent. In both cases there appears to be
evidence for a mild decrease in the gap with increasing
T/EF and polarization.

For a fixed central density and R↑, our analysis pre-
dicts that the phase-boundary Rc moves outward in the
trap with increasing temperature. This behavior is sen-
sitive to the thermal properties of both phases at low
temperature. At small temperature and polarization, the
thermal response of the superfluid phase in the vicinity of
the transition is stronger than that of the normal phase
– driven entirely by the fact that spin-up quasiparticles
are easy to excite and have a large density of states.

The comparison in Fig. 3 provides compelling lower
and upper bounds for the superfluid gap. Even if the
temperature was extracted incorrectly from the exper-
iment, the extracted gap cannot be too small. A gap
smaller than ≈ 0.4EF would produce a shell of polarized
superfluid before the transition even at zero temperature.
Furthermore, the radial dependence of this polarization
would be quite different than observed experimentally,
rising abruptly from the point where ∆ = δµ and being
concave rather than convex. A gap larger than ≈ 0.5EF

would be unable to produce the observed polarization in
the superfluid phase. We have also examined the depen-
dence of our results on the universal parameters ξ and
χ. Both of these are expected to be uncertain by 0.02.
These uncertainties, as well as the uncertainties in the

superfluid quasiparticle dispersion relation do not signif-
icantly alter the extracted bounds on the superfluid gap.

In summary, we have extracted the pairing gap from
measurements of spin up and spin down densities in po-
larized Fermi gases in the unitary regime. These systems
have an extremely large gap of almost one-half the Fermi
energy – the value extracted in this work is clearly the
largest gap measured in any Fermi system. Future more
precise experiments extending over the BCS-BEC transi-
tion region would allow an experimental determination of
the evolution of the pairing gap from the weak-coupling
regime of traditional superfluids and superconductors to
the strongly-interacting regime. This could resolve long-
standing issues regarding, for example, the pairing gap
in neutron matter and the cooling of neutron stars.

We would like to thank M. Alford, A. Gezerlis and Y.
Shin for useful comments on the manuscript. The work of
S.R. and J.C. is supported by the Nuclear Physics Office
of the U.S. Department of Energy and by the LDRD
program at Los Alamos National Laboratory.
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Pairing Gap at Unitarity - Experiment
RF response

Credit: Greg Kuebler, JILA

Shin, Ketterle, ... 2008
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Pairing Gap:  Cold Atoms and Neutron Matter
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∆/∆BCS = 1/(4e)(1/3)
≈ 0.45



Neutron Matter EOS  strongly 
constrained at low-moderate densities
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Neutron Drops in an External Well (HO)

Preliminary

Carlson, Pieper, Gandolfi, preliminary 

Implies significantly more repulsive 
isovector gradient terms

Beyond Bulk Matter



Neutron Drop Densities

NEUTRON DROPS – SINGLE-NEUTRON DENSITY DISTRIBUTIONS

Oscillator well + AV18 + UIX

!ω = 5&10 MeV
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Neutron Matter at Intermediate Densities
Equation of State

Schwenk, 2010



Chiral 3-N forces

2 Pion Exchange similar to Urbana, Illinois models
Others typically fit to A=3,4......

Low-Momentum 2 Nucleon Forces

2N interaction yields identical results in truncated space 



Chiral 3-N forces

Only 2-Pion Exchange contributes 
 in neutron matter



Neutron Matter at Intermediate Densities

Hebeler and Schwenk, 2010
GFMC- AV8’: JC, Morales, Pandharipande
AFDMC-AV8’: Gandolfi, et al, PRC 2009
AFDMC-AV8’+UIX: Gandolfi, et al



Also introduced density-dependent TNI

Gives reasonable symmetry energy: S0=31.3 MeV; L ~ 70
Compare with Tsang, et al (PRL 2009) and references therein: 30-34

Gandolfi, Illarionov, Fantoni,
Miller, Pederivak, Schmidt : arxiv 0909.3487

S = S0 +
L

3

(
ρ− ρ0

ρ0

)
+ ...



Apparent surface area during cooling phase of burst:
A =

R2

D2f4
c

(
1− 2GM

Rc2

)−1

Eddington Luminosity FEdd =
GMc

kesD2
(1− 2GM

Rc2
)1/2

Astrophysical Constraints on Neutron Star Matter

Ozel, Baym, Guyver arXiv:1002.3153



Really Need:

3-neutron interactions
Hyperon-Nucleon interactions
Hyperon-Hyperon interactions

from Lattice QCD?

Mass/Radius for range of neutron stars 

Could know neutron star matter EOS 
better than nuclear matter



Observations:
Ozel, Baym, Guyver

Microscopic Constraints from Observations

NN

NN+NNN

Calculations
Gandolfi, Illarionov, Fantoni,

Miller, Pederivak, Schmidt : arxiv 0909.3487



Future Challenges in Theory/Computation
Neutron Matter:

Few Protons (Neutron Star Matter)
Data from Expt (PREX, FRIB,...)
Generalized Static Response
Drops in Various External Fields
Matter in the Crust

Nuclei / Nuclear Matter:
           Low-Energy Reactions w/ GFMC

AFDMC with `realistic’ interactions
Pairing in Finite Nuclei
Larger Nuclei, Matter, ...
Neutrino Response
Finite Temperature


