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Exploit freedom to change resolution via RG
to simplify many-body calculations

Λ >> mπ, kF in typical interactions

# of sp states for A-body ~ Λ3A

Strong correlations, non-perturbative



H =
(
T + U

)
+

(
V − U

)

= HKS + H1
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Why large Λ’s are complicated: ab initio DFT

Large Λ VNN strongly couples low/high k

Ab initio DFT (OEP/effective action) corresponds to MBPT with 
 

Want freedom to chose U such that 
corrections to density beyond HKS vanish 

coupling persists even with G matrix 
resummation ==> non-perturbative in G and 
convergence of hole-line expansion strongly 
depends on U
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2 Types of Renormalization Group Transformations

“Vlow k”
integrate-out high k states
preserves observables for k < Λ

“Similarity RG”
 eliminate far off-diagonal coupling
 preserves “all” observables 

Very similar consequences despite differences in appearance
(low and high momentum decoupled)
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RG-Improved Convergence in ab-initio calculations

103 states for Nmax = 2 
        versus
107 states for Nmax = 10

Li-6 diagonalization
in HO basis

Helium Halo Nuclei

Ab-initio calculations
of heavier nuclei
accessible...

SKB, Furnstahl, Maris, Schwenk, Vary (2008)

Bacca et al. (2009)
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Towards including 3N interactions in medium mass nuclei

Hagen et al., 2007

coupled-cluster
calculations of
closed-shell nuclei



Perturbative Nuclear Matter with chiral EFT + RG?
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SKB, Furnstahl, Schwenk and Nogga, 0903.3366

HF bound and saturates, converged at ≈ 2nd order MBPT 
3N drives saturation, theoretical error bands

Empirical saturation lies in theoretical error bands w/out fine-tuning 
Is a solution to a 50 year old problem in reach?
Promising for a microscopic nuclear Density Functional Theory (DFT)?
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The Similarity Renormalization Group
Wegner, Glazek and Wilson

Hλ = U(λ)HU†(λ) ≡ T + Vλ

dHλ

dλ
= [η(λ), Hλ] with η(λ) ≡ dU(λ)

dλ
U†(λ)

Gλ = T ⇒ Hλ driven towards diagonal in k− space

Gλ = PHλP + QHλQ ⇒ Hλ driven to block−diagonal

η(λ) = [Gλ, Hλ]

Unitary transformation on an initial H = T + V

λ = continuous flow parameter

Differentiating with respect to λ:

 Engineer η to do different things as λ => 0 

...
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∑
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Normal Ordered Hamiltonians

 0-, 1-, 2-body terms contain some 3NF effects thru
density dependence => Efficient truncation scheme 
for evolution of 3N? 

Normal-order w.r.t. some reference state Φ (e.g., HF) :



lim
s→∞

Γod(s) = 0

〈12|Γod|34〉 = 0 if f12 = f34

dH(s)
ds

= [η(s), H(s)]

Evac(∞) → Egs

fk(∞) → εk (fully dressed s.p.e.)
Γd(∞) → f(k′, k) (Landau q.p. interaction)

H(∞) = Evac(∞) +
∑

fi(∞)N(a†iai) +
1
4

∑
[Γd(∞)]ijklN(a†ia

†
jalak)

η = [f̂ , Γ̂]
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In-medium SRG for Infinite NM and closed-shell nuclei
• Normal order H w.r.t. fermi sea

• Choose SRG generator to eliminate “energy off-diagonal” pieces 

• Truncate flow equations to 2-body normal-ordered operators
- dominant parts of induced many-body forces included implicitly

Microscopic realization of SM ideas: dominant MF + weak A-dependent NNeff

λ ≡ s−1/4
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Some observations

1)               for monotonic fk      correlations weakened, HF picks

                                                                up more binding with increasing s.

2) pp channel + 2 ph channels treated on equal footing  

3) Intrinsically non-perturbative 

4) no unlinked diagrams (size extensive, etc.)

5) “3rd-order exact” a-la CCSD

6) Extension to effective operators/Shell model possible



In-medium SRG for nuclei Tsukiyama, SKB, Schwenk, in prep
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Comparable to CCSD(T) in closed
shell nuclei

Promising method to calculate
shell model valence Heff/Oeff 
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 s = 1/λ4

INM 4He

Correlations “adiabatically” summed into H(λ)

Useful for ab initio DFT? Shell model?
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Accomplishments of Phenomenological Energy Functionals

2N separation energies, Quadrupole and
BE2 values, Fission energy surfaces, 
mass tables in a day, plus many other 
impressive feats

BUT...
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Limitations of Existing Energy Functionals (Predictability)

• Uncontrolled extrapolations away from known data
•  Theoretical error-bars?
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What’s missing in phenomenological EDFs ?

• Density dependencies too simplistic 

• Isovector components not well constrained

• No way to estimate theoretical uncertainties

• What’s the connection to many-body forces?

Turn to microscopic many body theory for guidance,
aided by the simplifications enabled by RG-evolved
interactions

www.unedf.org
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Local Skyrme-like Functionals from RG-evolved Interactions 

density matrices and s.p. propagators
finite range interaction vertex K

Dominant MBPT contributions to bulk properties take the form

K is either free-space interaction (HF) 
or resummed in-medium vertex (BHF) 

Written in terms on non-local quantities

Connection to E = E[ρ] is not obvious! 



〈V2〉 ∼
∑

n,m

∫
dROn(R)Om(R)

∫
drΠn(kF r)Πm(kF r)V2(r)
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∑

t
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Cρρ

t ρ2
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t Jt∇ρt · · ·
}
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2
r
)
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1
2
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∑

n

Πn(kF r)〈On(R)〉
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Density Matrix Expansion Revisited (Negele and Vautherin)

Expand of DM in local operators w/factorized non-locality

Dependence on local densities/currents now manifest

Skyrme-like EDF with density-dependent couplings
dominated by long-range pion-physics
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Prescriptions for Πn-functions
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Phase space averaging (PSA-DME) (Gebremariam et al. arXiv:0910.4979)

Average the non-locality operator over local momentum
distribution g(R,k) and expand exponentiated gradients

Easy to build in physics associated with surface effects in
finite fermi systems 

Crucial to accurately describe spin-vector part of OBDM



Prescriptions for Πn-functions
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Negele and Vautherin (NV-DME)
Truncated Bessel expansion of non-locality operator 
Sufficient for spin-unsaturated nuclei only 

Why it fails:  no phase space averaging done for spin-vector part 



Improved Vector PSA-DME  
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anisotropy of 
g(R,k) in the 
spatial surface
(Bulgac et al.)
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• Inclusion of finite fermi phase space effects crucial for quantitative agreement
• completely parameter-free 

Can now apply modified DME with confidence
to spin-unsaturated systems



VEFT = Vct(Λ) + V1π + V2π + · · ·

Cρτ
t ⇒ Cρτ

t (Λ; Vct) + Cρτ
t [kF (R);Vπ]
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Each EDF coupling function splits into 2 terms

1) Λ-dependent Skyrme-like coupling constants (short-distance)
2) Λ-independent  coupling functions from “universal” pion physics

Including Long Range Chiral EFT in Skyrme-like EDFs 

Etc…

From contact terms in
EFT/RG V’s

From pion exchanges

Suggests a microscopically-improved Skyrme phenomenology

Add pion-exchange couplings to existing Skyrmes and refit 
constants using guidance from EFT (naturalness, etc.)
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Gameplan - Include pion physics in Skyrme EDFs and refit

• Include DME coupling functions 
  from finite-range NN and NNN 
  chiral EFT thru N2LO

• Refit the Skyrme coupling 
  constants (EFT constraints => 
  naturalness)

• Look for improved observables
  and for sensitivities 

• Can we “see” the pion as 
  in NN phase shift analyses 

Expect interesting spin-orbit
consequences (NN vs NNN)

in progress w/ORNL group (Stoitsov et al.)
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New development: DME for chiral NNN force (N2LO)

• Expect interesting spin-orbit/tensor couplings from TPE 

Empirical EDFs (Skyrme, Gogny,...) spin-orbit coupling is density
independent => appropriate for NN spin-orbit forces (short range)

This is a mismatch since microscopic NNN interactions are long-range
(DME ==>  strong density dependent J⋅∇ρ couplings)

Complexity explodes ==> Automated symbolic tools developed (Gebremariam et al)
                                         will be available at www.unedf.org



Cijk[u]ξiξjξk , u ≡ kF (R)
mπ

Cijk[u] = Cijk
1 [u] + Cijk

2 [u] ln(1 + 4u2) + Cijk
3 [u] arctan(2u),
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Looks ugly (or beautiful, depending on your view), but a regular structure
emerges:

+ 4 other classes of similar terms

(note: u is NOT small)
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Comparison of EDF w/pions to 
Skyrme couplings w/tensor force

red “error bands” from
EFT naturalness 

density dependence 
controlled by longest
range component
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Moral: Simple many-body theory + current understanding of
            underlying NN + NNN interactions tells us Skyrme
            is way too simple.

SNM PNM

First exploratory calculations in progress w/M.Stoitsov et al. 
using the extended EDF (implemented in HFBRAD and HFBTHO)

Mathematica nb’s with 2N/3N DME couplings available at 
www.unedf.org 



Other efforts developing non-empirical EDFs
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Non-empirical pairing functional (Duguet, Lesinski, Hebeler, Schwenk)  

(RG-evolved)

Low-rank separable expansion good at low Λ

Almost as cheap as local pairing EDF calculations
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With Vlow k + Vcoulomb + approximate NNN

Next: Beyond 1st order (Gorkov 2nd-order, In-medium SRG), local approx’s



Other efforts developing non-empirical EDFs
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DME functional vs. ab initio (SKB, Furnstahl, Platter)  

This was pre- PSADME improvements and implementation of exact 
Hartree. Worth revisiting!

Start from the same H and compare with no adjustments
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Other efforts developing non-empirical EDFs
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DME beyond ∇2( Carlsson, Dobaczewski, arXiv:1003.2543)  

New “Damped Taylor” DME gives dramatic improvements
with higher order gradients

Solves the problem of exploding # of parameters with higher ∇



Summary
• RG methods simplify nuclear many-body calculations 

– faster convergence, more perturbative, low k “universality”
– empirical NM saturation within theoretical errors

• In-medium SRG
– Normal-ordering => simple way to evolve many-body operators 
– analogous to CC; diagonalize many-body problems
– non-perturbative path for shell model and possible ab-initio DFT

• Microscopic connections to DFT now possible
– explicit inclusion of long-distance chiral EFT physics via the 

density matrix expansion (microscopic guidance for density 
dependence, isovector and spin-orbit properties, etc.)
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