Adrian Dumitru
Baruch College, CUNY

Constantin Loizides

Bjoern Schenke
Brookhaven National Laboratory

Soeren Schlichting
Bielefeld University

Diversity Coordinator:

Soeren Schlichting
Bielefeld University

Program Coordinator:

Kimberlee Choe
(206) 685-3509

Seminar schedule
Talks Online

Exit Survey

Visitor Information

Friends of the INT

Obtain an INT preprint number

INT homepage

INT Program INT-19-1b

Origins of Correlations in High Energy Collisions

April 29 - May 24, 2019

Overview and Physics Questions

This four week program focuses on the physical mechanisms that generate multi-particle correlations in high energy collisions, from heavy ion collisions to smaller systems such as p+A (or d+A, ^3He+A), to electron-proton and electron-ion deeply inelastic scattering (DIS).

One particular focus will be the understanding of azimuthal momentum anisotropies within multi-particle correlation measures in small collision systems and the expectations for similar observables in e+A (and e+p) collisions. The aim is to discuss and compare different formalisms that lead to azimuthal anisotropies and to understand their physical interpretation. Initial state momentum anisotropies are of particular interest because of their potential relevance for e+p and e+A collisions, but effects of final state interactions, described by non-equilibrium kinetic theory or via hydrodynamics are also a central part of the program.

This program will help establish the connection between the physics of heavy ion collisions and the physics relevant for a future electron ion collider.

Program structure

A three day workshop is planned for the first week of the program to review the status in the field and to establish a solid baseline for the discussions in the forthcoming weeks. A workshop registration fee of $25 will apply. The registration fee includes participation in the workshop, lectures, and coffee breaks.

The rest of week 1 and week 2 will focus on the understanding of multi-particle correlations in small collision systems within the color glass condensate and other initial momentum correlation frameworks.

Week 3 will focus on relations to the physics relevant to an electron ion collider, including e.g. anisotropies in dijet production in e+p and e+A collisions.

Week 4 will focus on the contribution from final state effects, described in a variety of ways, including kinetic theory and hydrodynamics, and their relative importance depending on system size and multiplicity.