INT Program INT-18-3
Probing Nucleons and Nuclei in High Energy Collisions
October 1 - November 16, 2018
Overview
This 7-week INT program is dedicated to the physics of the Electron Ion Collider (EIC),
the world's first polarized electron-nucleon (ep) and electron-nucleus (eA) collider to be
constructed in the United States. The 2015 NSAC Long Range Plan recommended EIC
as the "highest priority for new facility construction following the completion of FRIB".
The primary goal of the EIC is to establish precise multi-dimensional imaging of quarks
and gluons inside nucleons and nuclei. This includes (i) understanding the spatial and
momentum space structure of the nucleon through the studies of TMDs (transverse momentum
dependent parton distributions), GPD (generalized parton distributions) and the
Wigner distribution; (ii) determining the partonic origin of the nucleon spin; (iii) exploring
the new quantum chromodynamics (QCD) frontier of ultra-strong gluon fields, with
the potential to seal the discovery of a new form of dense gluon matter predicted to exist
in all nuclei and nucleons at small Bjorken x - the parton saturation.
The program will bring together both theorists and experimentalists from Jefferson
Lab (JLab), Brookhaven National Laboratory (BNL) along with the national and international
nuclear physics communities to assess and advance the EIC physics. It will
summarize the progress in the field since the last INT workshop on EIC in 2010, outline
important new directions for theoretical research in the coming years, and propose
new experimental measurements to be performed at the EIC.
Physics Questions
The key physics questions to be addressed by the program are as follows:
- How are the sea quarks and gluons, and their spins, distributed in space and
momentum inside the nucleon?
GPDs, TMDs and the Wigner distribution allow us to reveal the multi-dimensional nucleon structure in impact parameter and momentum space. The transverse spin polarization of the nucleon can be used as a crucial tool helping us understand nontrivial spin-orbital partonic correlations in the proton. Longitudinal spin structure of the nucleon will be definitely explored and the EIC will allow to constrain the gluon spin contribution to the spin of the nucleon.
- Where does the saturation of gluon densities set in?
The large number of partons in a nucleus may result in strong gluon fields leading to the phenomenon of gluon saturation, known as the Color Glass Condensate. This universal regime of high-energy QCD is described by non-linear evolution equations. The program would address the theoretical and phenomenological progress in our understanding of gluon saturation in ep, eA, along with the proton-proton (pp), proton-nucleus (pA) and nucleus-nucleus (AA) collisions.
- How does the nuclear environment affect the distribution of quarks and gluons
and their interactions in nuclei?
Nuclear PDFs, TMDs, and GPDs are interesting and important beyond small-x: the large-x structure of nuclei reflects important non-perturbative QCD dynamics in a cold nuclear matter environment, possibly providing essential information for our understanding of confinement. Cold nuclear matter can serve as a testing ground for the energy loss calculations describing propagation of energetic quarks and gluons in quark-gluon plasma (QGP) created in heavy ion collisions.
Program Structure
Except for week 2 and the symposium week, each day of the program will usually consist of about
two seminars in the morning with free discussions and informal seminars in the afternoon.
The participants are encouraged to stay for several weeks in order to facilitate
cross-disciplinary discussions and research. The topics organized week-by-week are as
follows:
Week 1 (October 1-5) : Generalized parton distributions
Conveners: Tanja Horn, Andreas Metz, Christian Weiss
The first week will focus on various aspects of GPDs: theory, phenomenology, lattice QCD
computations, models. The recent progress and efforts towards the EIC will be discussed.
Week 2 (October 8-12) : Workshop on Transverse spin and TMDs
Conveners: Harut Avakian, Alessandro Bacchetta, Daniel Boer, Zhongbo Kang
The focus will be shifted to the physics of TMDs such as TMD factorization and evolution,
phenomenological implementations, relation to jet physics, and lattice results. A $40 workshop registration fee will apply.
The registration fee includes participation in the workshop, lectures, and coffee breaks.
Week 3 (October 15-19) : Longitudinal spin
Conveners: Elke Aschenauer, Keh-Fei Liu, Cedric Lorce, Marco Stratmann
A week devoted to the longitudinal spin structure of the proton including the unpolarized/
polarized PDFs, spin sum rules, the orbital angular momentum of the proton
(OAM) and lattice results.
Week 4 (October 22-26) : Symposium week
A five-day symposium will be held during the central week, covering all the major topics
related to the EIC. A $40 workshop registration fee will apply. The registration fee includes
participation in the workshop, lectures, and coffee breaks.
Weeks 5 & 6 (October 29-November 9) : eA collisions
Conveners: Giovanni Chirilli, Charles Hyde, Anna Stasto, Thomas Ullrich, Bowen
Xiao
These two weeks will focus on the physics of electron-ion collisions. Topics such as nuclear
PDF/TMD/GPD, non-linear small-x evolution equations, diffraction, particle production
and correlations will be discussed.
Week 7 (November 12-16) : pA and AA collisions
Conveners: Adrian Dimitru, Francois Gelis, Tuomas Lappi, Yacine Mehtar-Tani
The final week will be devoted to studying implications of what we would learn in eA
collisions at EIC for our understanding of pA and heavy ion collisions at RHIC and LHC
(and vice versa).