Organizers:
Ian Cloët
Argonne National Laboratory
icloet@anl.gov
Kawtar Hafidi
Argonne National Laboratory
kawtar@anl.gov
Zein-Eddine Meziani
Temple University
meziani@temple.edu
Barbara Pasquini
University of Pavia
barbara.pasquini@unipv.it
Program Coordinator:
Kimberlee Choe
jy24@uw.edu
+1 206 685 3509
Seminar schedules
The application deadline has passed.
Talks Online
Exit Survey
Friends of the INT
Obtain an INT preprint number
INT homepage
|
|
INT Program INT–17–3
Spatial and Momentum Tomography of Hadrons and Nuclei
August 28 – September 29, 2017
1/6
Overview
The last decade has taken hadron physics into a new era, with the emergence of
a comprehensive approach to the description of hadron and nuclear structure.
This framework encodes our knowledge of hadrons and nuclei in the Wigner distributions
of the fundamental constituents. From the Wigner distributions, a natural
interpretation of measured observables is provided via construction of
quantities known as generalized parton distributions (GPDs) and transverse
momentum-dependent partons distributions (TMDs): GPDs are key to a
spatial tomography of hadrons; and TMDs allow for their
momentum tomography. A new generation of experiments – for example at
Jefferson Lab with the recently completed 12 GeV upgrade – will soon provide a tremendous
amount of new empirical information on nucleon and nuclear GPDs and TMDs.
This INT program will bring together experts on GPDs and TMDs, as well as key
people in related fields, for extensive discussion and collaboration aimed at insuring
the success of this ambitious new direction in hadron physics. The GPD and TMD
program at Jefferson Lab, which represents over 50% of allocated running time for
planned 12 GeV experiments, will be the primary focus of this program. However, related
efforts at COMPASS, Fermilab, RHIC and e+e- colliders
such as BES will also feature.
These new experimental resources have been complemented by significant recent
advances in theory. Contemporary theory topics related to the spatial and momentum
tomography of hadrons and nuclei will be explored in this program, such as the
QCD evolution and factorization of TMDs, hadronization, the physical interpretation
of the various distribution functions, the phenomenological extraction of GPDs, TMDs and
fragmentation functions from data, together with their calculation within lattice
and continuum QCD approaches. Emphasis will be placed on supporting the experimental
program and guiding it to domains of maximum discovery potential.
This program aims to identify the key pathways that will lead to a deeper understanding
of the strong interaction and articulate the critical theoretical and experimental steps that are necessary.
This program will also serve as a focal point to discuss and consider aspects of the 2015
NSAC Long Range Plan, where the full operation of Jefferson Lab at 12 GeV is
listed as a top priority and an Electron Ion Collider (EIC) is identified of the number
one priority for new construction after FRIB.
Key Goals
This program will provide the opportunity to consider the current understanding of the multi-dimensional
structure of hadrons and nuclei, to discuss the planned experimental programs at Jefferson Lab and elsewhere,
identify avenues for improvement in these programs, and to pinpoint the key questions and measurements for the future.
Key goals and outcomes include:
-
Refine the existing framework for the extraction of
TMDs and fragmentation functions from data;
-
Formulate a clear program to measure the gluon TMDs from high to low x;
-
Develop a program in theory and experiment so that an accurate
flavor decomposition of the nucleon GPDs and TMDs is realized;
-
Make progress in developing clear physical interpretations of the properties of TMDs, e.g., are TMDs
related to orbital angular momentum;
-
Identify the GPDs and TMDs that can most readily highlight differences between the quark and gluon
structure of the nucleon and nuclei;
-
Develop a comprehensive program to determine the nucleon and nuclear sea-quark GPDs and TMDs,
utilizing all available facilities;
-
Identify the strengths, weaknesses, and avenues to improve the current theory predictions for GPDs, TMDs
and fragmentation functions,
and point the way to educated parametrizations for these functions that can be used to fit data.
Outline
The program will run for 5 weeks and consist of 2 workshops, one in the
first week and the other in the final week of the program. The intervening weeks
will have one or two seminars per-day, thereby providing time for discussion and collaboration.
The outline of the program, with the general focus of each week is:
-
Week 1 (28 August – 1 September):
The opening week of the program will host a workshop titled Tomography of
Hadrons and Nuclei at Jefferson Lab. This workshop will address contemporary advances
in theory and experiment in keeping with its title, but with a focus on GPDs and the related physics
questions that can and will be addressed by the Jefferson Lab 12 GeV program.
There will be a $35 registration fee to attend the opening workshop. The registration fee includes participation in the workshop, lectures, and coffee breaks.
-
Week 2 (4–8 September):
The experimental program at Jefferson Lab related to spatial tomography is the focus of
this week, with overviews of detectors and their capabilities, such as CLAS12
and Super High Momentum Spectrometer. The GPD programs at COMPASS and the
proposed SoLID detector at Jefferson Lab will also feature.
-
Week 3 (11–15 September):
This week will transition to a focus on the momentum tomography of hadrons and nuclei.
The related Jefferson Lab 12 GeV program will feature prominently.
The RHIC SPIN program and the program proposed for SoLID will also be discussed.
-
Week 4 (18–22 September):
This week will focus on contemporary issues in the theory of TMDs and fragmentation functions,
and provide an in-depth discussion on their extraction from experiment.
-
Week 5 (25–29 September):
The final week of the program will consist of a workshop titled Hadron imaging at
Jefferson Lab and at a future EIC. This workshop will highlight key aspects of the program thus far
and place the Jefferson Lab tomography program in a broader context, in particular, with respect
to the existing and planned activities at RHIC and COMPASS. The workshop will review the
state-of-the-art in related theory and identify areas were progress is needed. The need
for and characteristics of the next generation hadron physics facility, likely an
electron ion collider, will be discussed in detail.
A $30 workshop registration fee will apply. The registration fee includes participation in the workshop, lectures, and coffee breaks.
|