James M. Slater, M.D., Proton Therapy and Research Center Department of Radiation Medicine Loma Linda University Medical Center

Baldev Patyal, PhD, DABR, FAAPM Chief Medical Physicist

LLU Health Campus (Troesh Medical Campus)

Loma Linda University Medical Center

Before we begin – Important Information!

• You are in a hospital environment.

- Facilities you will tour are used to treat cancer patients.
- In health care, patient privacy and confidentiality is not only important; it is the law.
- It is part of HIPAA Health Insurance Portability and Accountability Act (1996)

... with that declaration, let us now begin

A medical physicist is a bridge or interface between physics and medicine

Medical Physics Disciplines

Therapeutic Radiological Physics
 Diagnostic Imaging Physics
 Medical Nuclear Physics

Medical Health Physics

Career Path to Clinical Medical Physics

➤MS and or PhD in Medical Physics

≻2-year Residency in Clinical Medical Physics

- Board Certification by the American Board of Radiology (ABR)
- A Qualified Medical Physicist

LOMA LINDA UNIVERSITY

A medical physicist is a member of American Board of Medical Specialties

Primary professional Organization: American Association of Physicists in Medicine (AAPM) <u>www.aapm.org</u>

HEALI

Treatment Options for Cancer (Oncology)

Surgery

- Chemotherapy
- Radiation Oncology
- A combination of these

No Action (Watchful Waiting)

Radiation Oncology - Treating Cancer with Radiation

Radiation Therapy: Basic Facts (i) Radiation kills tumor cells (ii) Radiation also kills normal cells

Radiation Therapy: Basic Goals (i) Maximize dose to tumor (ii) Minimize dose to normal structures

All progress in radiation treatment delivery is driven by these goals

LOMA LINDA UNIVERSITY

Radiation Therapy

Treating cancer with high energy radiation Gamma rays (photons) X-rays (photons) Electrons (particles) Protons and heavy ions (charged particles)

Two modes of radiation delivery External beam therapy Brachytherapy

Proton Therapy - This is where it all began...

Radiological Use of Fast Protons

ROBERT R. WILSON Research Laboratory of Physics, Harvard University Cambridge, Massachusetts

Radiology, 47: 487-491 (1946)

Above: Curve I Range, Curve II: Ions/cm Right: Hyperbolic Obelisk by Robert R Wilson

From Theoretical Physics to the Well-being of Humanity...

Loma Linda honors Dr. Wilson for his 1946 paper which set the stage for treating cancer with protons...

E.O. Lawrence won Nobel Prize in Physics for invention of Cyclotron in 1939.

His prototype cyclotron cost? \$25.00!

Why Protons?

Rooted in the basic interactions of high energy protons with matter are the properties, ideally suited for radiation therapy:

- Well defined range
 A proton beam stops
- Initial rate of energy loss is low
 Low entrance & proximal dose
- Most of the beam energy is deposited near the end of the range over a very small volume (Bragg Peak)
 Maximal dose to tumor
- No energy deposited beyond the Bragg Peak

⇒ No dose to normal tissues distal to the tumor

Penetration depth vs initial energy relationship of protons

Why Protons?...

"Just using the intrinsic properties of high energy protons, we can, in principle, deliver maximal dose to a tumor in the body, at the same time spare tissues proximal (upstream) to the tumor, and deliver no dose to structures distal (downstream) to the tumor."

This, in nut-shell, is the dosimetric superiority of high energy proton beams. It is rooted in basic physics. It is not a medical opinion.

Proton Therapy: Concept

Depth in Water [mm]

Protons Vs. X-rays: Depth Dose Profiles

James M. Slater, MD, Proton Therapy & Research Center, LLUH

World's first hospital-based proton treatment facility (1990)

- Protons accelerator: a synchrotron
- **Treatment Machines**
 - three isocentric gantries
 - one fixed horizontal beam line
 - one fixed eye beam line
 - one research room (3 fixed beams)
- Clinical Energies (MeV): 250, 225, 200, 186, 155, 126, 100

140-160 patients can be treated with protons everyday

Milestones and Major Upgrades (Seamless Integration)

2000:

1988: Ground-breaking for world's first hospital-based proton therapy system 1990: First Patient Treated with LLUMC Eye Beam Line	 1995: Completed Calibration / Research Room 1996: World's First Large Format Digital Imaging 1997: NASA Research Room 	PBTS Control System Requirements & Design 2000: Began Beam Scanning Studies in Research Room 2001: Beam Energy/Intensity Performance Upgrade 2002: Treated 150 Patients per Day	 2005: Beam Transport & Treatment Room Control System Upgraded for Variable Energy 2005: 10,000th patient treated 2005: Treated 170 Patients in a Day
1991:	Upgrade	2002:	
First Patient Treated with LLUMC Horizontal Beam Line	1997: 3,000th patient treated	Accelerator Control System Replacement	DICOM treatment planning integrated into PBTS
1991 [.]	1007.	2003.	
First Patients Treated in LLUMC Gantry 1 1994:	Beam Transport Upgrade 1998: Treated 100 Patients per Day	Accelerator Control System Upgraded to Electronic Variable Energy	2008-2009: Robotic Precision Patient Alignment System (PPAS) installed at LLUMC
First Patients Treated in LLUMC Gantry 2 and 3	1999: Accelerator Ion Source Upgrade	Demonstrated Active Beam Scanning Capability in Research Room	April 2010: 14,500th patient treated

LOMA LINDA UNIVERSITY HEALTH

All upgrades done by Optivus Proton Therapy , San Bernardino, CA

A Proton Treatment System

1 Accelerator

Beam position monitoring Beam energy monitoring Beam current monitoring Beam steering

2 Beam Transport System Beam routing to tx rooms Beam profile and centering

3 Nozzle

Beam shaping/steering Beam monitoring Dose monitoring 4 Gantry Beam rotation/aiming Imaging

5 Patient Positioner

LOMA LINDA UNIVERSITY HEALTH

PTCOG-2011_Patyal

A few fun facts about Loma Linda Synchrotron!

- 1. 100 billion protons at 2 MeV injected into the ring in half a second
- 2. It takes another half a second to accelerate these protons to 250 MeV
- 3. During that half a second protons go around the ring 2.5 million times! (traveling about 15000 miles!)
- 4. Over next half a second about 34 billion protons extracted at the right energy and delivered to the tumor
- 5. Steps 1 to 3 repeated every 2.2 second till right dose is delivered to the patient.
- 6. To deliver 1.8 Gy to a typical target, it may take between1.5 to 2.0 trillion protons, delivered in less than 2 minutes!

Loma Linda Proton Treatment Facility Layout

A Typical Proton Treatment

Proton Treatment Gantry Structure

35 feet diameter (3-story tall!) Weighs 90 tons

Isocentric, SAD=250-285 cm Isocentric Accuracy = 1 mm

Beam Delivery

Beam Delivery...

So, Why Protons? (Medulloblastoma:PNET)

Treatment with X-rays

40 GY

LOMA LINDA UNIVERSITY HEALTH

Treatment with Protons

Proton Patch Fields : Simple and Elegant

Proton Center Outside Users Program

- Facilities available to outside researchers
- Currently our primary outside user is NASA
- > About 14 other companies use our facilities

It takes a village...

LOMA LINDA UNIVERSITY HEALTH Medical Physics Team 2022

A Few Fun Facts about Loma Linda...

First Infant Heart Transplant

First Hospital-Based Proton Accelerator for Treatment of Cancer

Within 50 miles of Loma Linda....

And finally, your prescription from today's hospital visit....

Have some real fun everyday...

Don't postpone joy!

