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Nuclear astrophysics e

Element formation

Neutron stars

Exotic matter
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Stars et

buoyancy aka upthrust aka pressure-gradient 4



Origin of the pressure UREY

* Normal stars: thermal pressure (via nuclear energy
generation) counteracts gravity

 Compact stars: mostly degeneracy pressure (since
nuclear fuel basically spent) counteracts gravity (if at all)



Traditional astrophysics P
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Stars A

What is the “main sequence™?

Let’s turn to the Hertzsprung-Russell diagram, via a
short digression on visualization in science



Hertzsprung-Russell diagram

In practice, the Hertzsprung—Russell diagram of a cluster is a thick curve, not
strictly one-dimensional. This is because the cluster stars did not all begin at
precisely the same time with precisely the same chemical composition. There
are also observational problems: a star’s color and spectrum do not give a precise
value for the effective temperature, and it is often difficult to distinguish binary
stars from single stars. Even so, one can clearly see in the data that there is
a one-dimensional curve of luminosity versus effective temperature, not just
points everywhere in the plot.

The Hertzsprung—Russell diagram for a cluster commonly contains a main
sequence, consisting of stars like the Sun that are still burning hydrogen at
their cores. On the main sequence L increases smoothly with T¢, with the most
massive stars the hottest and most luminous. (In Section 1.6 we will show how to
estimate the shape of the main sequence curve by applying dimensional analysis
to Egs. (1.3.1)—(1.3.4).) As the cluster evolves, the Hertzsprung—Russell
diagram develops a red giant branch, consisting of stars that have converted
most of the hydrogen at their cores to helium, and are burning hydrogen only in
a shell around the inert helium core. On this branch, the effective temperature
decreases (and radius increases) with increasing luminosity, accounting for the
red color of very luminous red giant stars such as Betelgeuse and Antares.
The heavier stars on the main sequence have larger L and therefore evolve more
quickly, so as time passes more and more of the upper part of the main sequence
bends over into the red giant branch. Observations of this main sequence

Weinberg, Astro, p. 19
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Hertzsprung-Russell diagram i
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FIGURE 8.13 An observer’s H-R diagram. The data are from the Hipparcos catalog. More than
3700 stars are included here with parallax measurements determined to better than 20%. (Data courtesy
of the European Space Agency.)

Carroll-Ostlie, p. 223



Hertzsprung-Russell diagram
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Traditional astrophysics P

How does a star stay there?

Reminder: thermal pressure (via nuclear energy
generation) counteracts gravity

11



Hydrostatic equilibrium VR

Distinguish between the mass within r:
m(r) = [, Arr'? p(r')dr!

and that of the thin shell: 4712 p(7)dr

Shell experiences gravitation:

2
Fgra.vitational — _G47TT p(:)zdrm(r) = _47TGP(T)m(T)dT

and buoyancy:

Fouoyant = dmr? [P(r) — P(r + dr)] = —4nr? P’ (r)dr 12



Hydrostatic equilibrium B

At equilibrium the sum of the two
forces vanishes, so:

dP(r) _ Gm(r)p(r)

dr r2

To be solved together with:

m(r) = [, Arr'? p(r!)dr!

or, equivalently:

dm(r)
dr

= 47r?p(7r)

13



Hydrostatic equilibrium
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dP(r) Gm(r)p(r)

| dr 72
Our two equations: p ( )
mi(r
— 47p?
- mrep(r)

seem to involve three quantities P(r), m(r), and p(r).

To make further progress, use equation-of-state (EOS):
P=P(p, T)

14



Traditional astrophysics P

How does a star stay there?

Reminder: thermal pressure (via nuclear energy
generation) counteracts gravity
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Coulomb barrier UNVERSTY
V(r) |
} Using the WKB

approximation, you can
.J show that the reaction
Ve |- IS suppressed by a factor

2L
— 2
B(E) = exp |:—Jr21223 \/;]

Classical
turning point

Square-well

- C. Iliadis, p. 107 16



Coulomb barrier UNVERSTY

Using the WKB approximation, you can show that the
reaction is suppressed by a factor:

2u
= 2
B(E) = exp |:—37:Z122€ th:|

Rate of nuclear reactions per mass:
€(p.T) = | dE J(E.p.T)exp(~E/knT)B(E)

Dominated by peak of the exponential:
Y C wZ1Zye* /1 e
S— — T — —
BT“”“’( ke T m)‘exp( 3( h/2kT ) )

Reminder: thermal pressure (via nuclear energy generation) 7




Proton-proton chain G

I: 'H+'H->?H+eT +v. +1.18 MeV
I: 'H+?H-— *He+v +5.49 MeV
III: 2He+’He — “He+ 'H+ 'H4+12.85 MeV

r' :  3He+“He — "Be +v

followed by either

IV: "Be+e — 'Li+ve

V: ’Li+'H— “He + “He
or else

IV': "Be+'H—®B+y

V: *B—>®Betem +v.

VI': 3Be — “He + “He.

Weinberg, Astro, p. 35
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Proton-proton chain e

I: 'H+'H->?H+eT +v. +1.18 MeV
I: 'H+?H-— *He+v +5.49 MeV
III: 2He+’He — “He+ 'H+ 'H4+12.85 MeV

The idea now is to plug in the appropriate proton numbers and
reduced masses, thereby finding the corresponding Coulomb
barrier suppression.

(Of course, one must also include, e.g., weak suppression.)

Since two *He nuclei are destroyed in lll, the rates per volume
should obey the relation:

=T {) = CJD) = 2r ),

19

assuming time-independence, i.e., stable abundances



CNO cycle VOERT

11 :
111 :

v :

Vi ;

'H+ 2C > BN+ v +1.95MeV
BN - BCc+et + ve + 1.50 MeV
'H+ 3C > UN+v+7.54 MeV
'H+ N > PO +v+7.35MeV
50 5 BN 4et + Ve + 1.73 MeV
'H + PN — 2C + *He + 4.96 MeV

You can play the same game of establishing relations
between the rates per volume:

')=T')=T'm)=I'v) =I'v)=I'(vi) =T

This multiplied by the sum of the energies listed above
can give the total rate of energy production per volume

20



Liquid-drop formula USERT

Binding-energy systematics

Eg as . Z(Z-1) (N-2)* ap
N+z VT Ntz CWNrzer "IN+ 2)2 (Nt 2)3
volume  surface Coulomb  symmetry

+1, odd N-odd Z
pairing A= 0, odd N-even Z, or even N-odd Z
—1, even N-even Z

21



Liquid-drop formula e

For nuclei lighter than this peak,  Of course, the energy released
fusion releases energy (just like  via a given reaction also
In the proton-proton chain depends on the abundances of
and the CNO cycle) a given nuclide in nature

® data
& model
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Abundances

Log,,(Abundance)
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Sites of nucleosynthesis e

w
q

The evolving composition of the Universe

@ Big Bang fusion
@ Cosmic ray fission
@ Exploding massive stars
Exploding white dwarfs
@ Merging neutron star
Dying low-mas stars
@ Very radioactive isotopes; nothing left from stars
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J. A. Johnson, Science 363, 474 (2019)
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Nuclear astrophysics e

Element formation
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Exotic matter
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Stars VEUHAT

MASS

* Normal stars: thermal pressure (via nuclear energy
generation) to counteract gravity

 Compact stars: mostly degeneracy pressure (since
nuclear fuel basically spent) counteracts gravity (if at all)

* White dwarfs: electron degeneracy pressure
* Neutron stars: neutron degeneracy pressure (and repulsion)
* Black holes: the struggle is real

\4
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Neutron stars: key properties et
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mass measurements

Mass distribution of neutron stars in binary pulsar systems
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Neutron stars: key properties — |getid

AMNMEUTBONMN STAR: SURFACE and INTERIOR
A S L e Ultra-dense: 1.2-2 solar

M} > o o gl masses within a radius of 10 km

» Magnetic fields of 10*to 10" T

ENVELOPE * Terrestrial-like (outer layers)
CRUST

OUTER CORE down to exotic (core) behavior

INMER CORE

* Observationally probed, i.e.,
not accessible in the lab
(see, however, LIGO)

» We'll talk about describing the
exotic matter later. For now,
assuming an equation of state,
how does one arrive at the
composition?

Image credit: Dany Page >



Neutron-star composition ULyE

Transition density Degeneracy
(kg m™) Composition pressure

iron nuclei,

nonrelativistic free electrons electron
~1x10° electrons become relativistic

iron nuclei,

relativistic free electrons electron
~ 1 x 10" neutronization

neutron-rich nuclei,

relativistic free electrons electron
~ 4 x 101 neutron drip

neutron-rich nuclei,

free neutrons,

relativistic free electrons electron
~ 4 x 105 neutron degeneracy pressure dominates

neutron-rich nuclei,

superfluid free neutrons,

relativistic free electrons neutron
~ 2 x 10" nuclei dissolve

superfluid free neutrons,

superconducting free protons,

relativistic free electrons neutron
~ 4 x 107 pion production

superfluid free neutrons,

superconducting free protons,

relativistic free electrons,

other elementary particles (pions, ...?7) neutron

Carroll-Ostlie, p. 582
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Relativistic hydrostatic equilibrium  [getiil

Static, spherically

. . Einstein field equations
symmetric metric

1 InG

R;u/ — §gm/R — C—4Ty,1/

0
| oo 2 0 0
Iw =1 0 0 r2sin26 0
0 0 0 —B(r)

Ricci tensor Energy-momentum tensor

Inside the source (for isotropic fluid without shear forces):
Tolman-Oppenheimer-Volkoff (TOV) equation(s)

dP(r) _ _ Gm(r)p(r) [1 L P0) ] [1+ 47rr3P(fr)] [ . 2Gm(fr)]_1

dr 12 p(r)c? m(r)c? c3r

32



Relativistic hydrostatic equilibrium  |geis

Thus, our task is a messier version of what we had before:

db(r) _ Gm(r)p(r) [1 . P ] [ - 47rr3P(r)] { QGm(r)]‘l

dr 2 p(r)c? m(r)c? c2r
dm(r
dv(“ ) = 47r? p(r)

(Incidentally, you can take the Newtonian limit via ¢* — 00 .)

Again, this seems to involve three quantities P(r), m(r), and p(r).

To make further progress, use equation-of-state (EOS), P = P(p)

together with 4P _ (dP(p)) (dp)
dr dp )\dr

33



Relativistic hydrostatic equilibrium  |geis

dm/(r)
dP(r) _ Gm(r)p(r) {1 +dTP(r) ] [1+ 47rfr3P(7“)] {1_ ZGm(fr)]_l

dr r? p(r)c? m(r)c? c2r

Putting it all together: = 47r? p(r)

Pressure vs density Mass vs radius

P A M A

=V
~ ¥

34



Neutron astrophysics DR
phy

How does a neutron star stay there?

Reminder: thermal pressure not an option. Instead, we
need degeneracy pressure.

35
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