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Lecture 2:

How to Make the 

Heaviest Elements
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Periodic Table
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Chart of the Nuclides: 2019

Spontaneous Fission

Alpha

Electron Capture or b+

b-

Decay Mode
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Question: How are 

new elements made?

Periodic Table
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Three techniques for making elements

Sequential neutron capture and beta decay

• Oldest (and natural) methods for 

production of new elements

• Used beginning 1940

Compound Nucleus Reactions

• Add two nuclei together! 

Multi-nucleon Transfer Reactions
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Decay Mode

          a

          b-

          b+

How to make heavy elements – Nuclear Reactors

235U 236U 237U 239U 240U

236Np 237Np 238Np 239Np 240Np 241Np

N

P
237Pu 238Pu 239Pu 240Pu 241Pu 242Pu

238Am 239Am 240Am 241Am 242Am 243Am 244Am

242Np

243Pu
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Making Transactinides: Problems Arise

N

Z

253Cf 255Cf 256Cf255Cf

253Es 254Es 255Es 256Es 257Es

254Fm 255Fm 256Fm 257Fm
100 d

258Fm
0.4 ms

259Fm
1.5 s

255Md
27 m

256Md
77 m

257Md
5.5 h

259Md
95 m

260Md
32 d

256No 257No 258No 259No 260No 262No

n, g n, g

n, g

251Cf

252Es

253Fm

254Md
28 m

255No

258Md
51 d

252Cf

n, g

n, g

n, g

Fermium gap

• Consists of short-lived, 

SF/alpha decaying Fm isotopes

• Impedes formation of nuclei 

with Z>100 in nuclear reactors

• Nuclear and supernova 

explosions have higher neutron 

fluences ➔ gap may be 

bypassed in nature Decay Mode

          a

          b-

          b+

         SF
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Pushing Beyond Mendelevium: Compound Nucleus Reactions

115
291𝑀𝑐20

48𝐶𝑎 95
243𝐴𝑚

Fuse two lighter nuclei to make heavier ones

• What are compound nucleus reactions

• How to experimentally make/study

• Types of compound nucleus reactions
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Compound Nucleus Reactions: Theory

Process of SHE formation modeled by three-step process

𝜎𝐸𝑉𝑅 𝐸𝑐.𝑚. = 

𝐽

𝜎𝑐𝑎𝑝 𝐸𝑐.𝑚, 𝐽 𝑃𝐶𝑁 𝐸𝑐.𝑚, 𝐽 𝑊𝑠𝑢𝑟 𝐸𝑐.𝑚, 𝐽

Fusion = (sticking) x ( diffusion) x (survival)

Production 

cross 

section
Capture 

cross 

section

Fusion 

Probability

Survival
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Compound Nucleus Reactions: Theory

Process of SHE formation modeled by three-step process

𝜎𝐸𝑉𝑅 𝐸𝑐.𝑚. = 

𝐽

𝜎𝑐𝑎𝑝 𝐸𝑐.𝑚, 𝐽 𝑃𝐶𝑁 𝐸𝑐.𝑚, 𝐽 𝑊𝑠𝑢𝑟 𝐸𝑐.𝑚, 𝐽

Capture

A1 A1

A1 A1

P T

Step 1: Capture

• Probability of colliding nuclei to overcome 

the Coulomb barrier and come in close 

contact with overlapped nuclear surfaces

• Competes with elastic and quasi-elastic 

scattering, few nucleon transfers

• Strongly depends on collision energy and 

impact parameter

Bau, XJ: Front. Phys., 28 (2020): https://doi.org/10.3389/fphy.2020.00014
Zagrebaev, VI: Nucl. Phys. A, 944 (2015), 257: https://doi.org/10.1016/j.nuclphysa.2015.02.010
Cap, T: Euro. Phys. J. A, 58 (2022) 231: https://doi.org/10.1140/epja/s10050-022-00891-8

https://doi.org/10.3389/fphy.2020.00014
https://doi.org/10.1016/j.nuclphysa.2015.02.010
https://doi.org/10.1140/epja/s10050-022-00891-8
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Compound Nucleus Reactions: Theory

Process of SHE formation modeled by three-step process

𝜎𝐸𝑉𝑅 𝐸𝑐.𝑚. = 

𝐽

𝜎𝑐𝑎𝑝 𝐸𝑐.𝑚, 𝐽 𝑃𝐶𝑁 𝐸𝑐.𝑚, 𝐽 𝑊𝑠𝑢𝑟 𝐸𝑐.𝑚, 𝐽

Fusion

Bau, XJ: Front. Phys., 28 (2020): https://doi.org/10.3389/fphy.2020.00014
Zagrebaev, VI: Nucl. Phys. A, 944 (2015), 257: https://doi.org/10.1016/j.nuclphysa.2015.02.010
Cap, T: Euro. Phys. J. A, 58 (2022) 231: https://doi.org/10.1140/epja/s10050-022-00891-8

Step 2: Compound Nucleus Formation

• Accounts for probability of two (nearly) 

touching spheres to fuse

https://doi.org/10.3389/fphy.2020.00014
https://doi.org/10.1016/j.nuclphysa.2015.02.010
https://doi.org/10.1140/epja/s10050-022-00891-8
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Compound Nucleus Reactions: Theory

Process of SHE formation modeled by three-step process

𝜎𝐸𝑉𝑅 𝐸𝑐.𝑚. = 

𝐽

𝜎𝑐𝑎𝑝 𝐸𝑐.𝑚, 𝐽 𝑃𝐶𝑁 𝐸𝑐.𝑚, 𝐽 𝑊𝑠𝑢𝑟 𝐸𝑐.𝑚, 𝐽

P T

Step 2: Compound Nucleus Formation

• two touching nuclei is transformed into 

more or less spherical configuration of 

compound nucleus (CN)

• Competes with quasifission

• CN formed in excited state ➔ has 

excitation energy and angular momentum

Fusion

qf1 qf2

CN*

Bau, XJ: Front. Phys., 28 (2020): https://doi.org/10.3389/fphy.2020.00014
Zagrebaev, VI: Nucl. Phys. A, 944 (2015), 257: https://doi.org/10.1016/j.nuclphysa.2015.02.010
Cap, T: Euro. Phys. J. A, 58 (2022) 231: https://doi.org/10.1140/epja/s10050-022-00891-8

https://doi.org/10.3389/fphy.2020.00014
https://doi.org/10.1016/j.nuclphysa.2015.02.010
https://doi.org/10.1140/epja/s10050-022-00891-8
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Compound Nucleus Reactions: Theory

Process of SHE formation modeled by three-step process

𝜎𝐸𝑉𝑅 𝐸𝑐.𝑚. = 

𝐽

𝜎𝑐𝑎𝑝 𝐸𝑐.𝑚, 𝐽 𝑃𝐶𝑁 𝐸𝑐.𝑚, 𝐽 𝑊𝑠𝑢𝑟 𝐸𝑐.𝑚, 𝐽

Fusion

Bau, XJ: Front. Phys., 28 (2020): https://doi.org/10.3389/fphy.2020.00014
Zagrebaev, VI: Nucl. Phys. A, 944 (2015), 257: https://doi.org/10.1016/j.nuclphysa.2015.02.010
Cap, T: Euro. Phys. J. A, 58 (2022) 231: https://doi.org/10.1140/epja/s10050-022-00891-8

Step 2: Compound Nucleus Formation

• Accounts for probability of two (nearly) 

touching spheres to fuse

• Or deformed nuclei

https://doi.org/10.3389/fphy.2020.00014
https://doi.org/10.1016/j.nuclphysa.2015.02.010
https://doi.org/10.1140/epja/s10050-022-00891-8
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Compound Nucleus Reactions: Theory

Process of SHE formation modeled by three-step process

𝜎𝐸𝑉𝑅 𝐸𝑐.𝑚. = 

𝐽

𝜎𝑐𝑎𝑝 𝐸𝑐.𝑚, 𝐽 𝑃𝐶𝑁 𝐸𝑐.𝑚, 𝐽 𝑊𝑠𝑢𝑟 𝐸𝑐.𝑚, 𝐽

Step 3: Survival

• CN formed in excited state ➔ has 

excitation energy and angular momentum

• Deexcitation via neutron and gamma 

emission competes with fission

Survival

CN*

CN

ff1 ff2

Bau, XJ: Front. Phys., 28 (2020): https://doi.org/10.3389/fphy.2020.00014
Zagrebaev, VI: Nucl. Phys. A, 944 (2015), 257: https://doi.org/10.1016/j.nuclphysa.2015.02.010
Cap, T: Euro. Phys. J. A, 58 (2022) 231: https://doi.org/10.1140/epja/s10050-022-00891-8

https://doi.org/10.3389/fphy.2020.00014
https://doi.org/10.1016/j.nuclphysa.2015.02.010
https://doi.org/10.1140/epja/s10050-022-00891-8
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Compound Nucleus Reactions: Theory

Process of SHE formation modeled by three-step process

𝜎𝐸𝑉𝑅 𝐸𝑐.𝑚. = 

𝐽

𝜎𝑐𝑎𝑝 𝐸𝑐.𝑚, 𝐽 𝑃𝐶𝑁 𝐸𝑐.𝑚, 𝐽 𝑊𝑠𝑢𝑟 𝐸𝑐.𝑚, 𝐽

Step 3: Survival

• Survival probability decreases with each 

additional neutron emission

Survival

Bau, XJ: Front. Phys., 28 (2020): https://doi.org/10.3389/fphy.2020.00014
Zagrebaev, VI: Nucl. Phys. A, 944 (2015), 257: https://doi.org/10.1016/j.nuclphysa.2015.02.010
Cap, T: Euro. Phys. J. A, 58 (2022) 231: https://doi.org/10.1140/epja/s10050-022-00891-8

https://doi.org/10.3389/fphy.2020.00014
https://doi.org/10.1016/j.nuclphysa.2015.02.010
https://doi.org/10.1140/epja/s10050-022-00891-8
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Compound Nucleus Reactions: Theory

A1 A1

A1A1

P T

qf1 qf2

CN*

CN

ff1 ff2

𝜎𝐸𝑉𝑅 𝐸𝑐.𝑚. = 

𝐽

𝜎𝑐𝑎𝑝 𝐸𝑐.𝑚, 𝐽 𝑃𝐶𝑁 𝐸𝑐.𝑚, 𝐽 𝑊𝑠𝑢𝑟 𝐸𝑐.𝑚, 𝐽

capture fusion

survival
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How can we test 

portions of this theory?
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Position-sensitive MWPCs can measure 

position, angle, mass and total kinetic 

energy (TKE) of reaction products

How to Measure 

BeamTarget
q

d

MWPC

Banerjee, K., Phys. Rev. Lett 122 (2019) 232503: https://doi.org/10.1103/PhysRevLett.122.232503

du Rietz, R., Phys. Rev. C 88 (2013) 054618: https://doi.org/10.1103/PhysRevC.88.054618

https://doi.org/10.1103/PhysRevLett.122.232503
https://doi.org/10.1103/PhysRevC.88.054618
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Mass-energy distributions for reaction 

fragments

Measuring 

Kozulin, E.M., Phys. Rev. C 90 (2014) 054608: https://doi.org/10.1103/PhysRevC.90.054608

BeamTarget
q

d

MWPC

https://doi.org/10.1103/PhysRevC.90.054608
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Experiment vs Theory: Capture Cross Sections

Nishio, K: Phys. Rev. C, 86 (2012): https://doi.org/10.1103/PhysRevC.86.034608

Comparison with Experiment

• Limited experimental calculations 

of capture cross sections in SHE 

production

• Triangles, circles, squares = 

experimental data

• Solid line = model w/ deformation

• Dash line = model w/o 

deformation

https://doi.org/10.1103/PhysRevC.86.034608
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Experiment vs Theory: Fusion Probability

Cap, T: Euro. Phys. J. A, 58 (2022) 231: https://doi.org/10.1140/epja/s10050-022-00891-8

Comparison with Experiment

• Limited experimental calculations 

of fusion probability in SHE 

production

• Triangles, circles, squares = 

experimental data

• Solid line = model with error bars

https://doi.org/10.1140/epja/s10050-022-00891-8
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Experiment vs Theory: Survival

Zagrebaev, VI: Nucl. Phys. A, 944 (2015), 257: https://doi.org/10.1016/j.nuclphysa.2015.02.010

Comparison with Experiment

• Probed indirectly by comparing 

production cross sections

• Predictions seem to converge on 

correct solution after experiments

https://doi.org/10.1016/j.nuclphysa.2015.02.010
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1

10

100

1000

 
 /

 f
b

 E
Lab

 / MeV

3n exit channel

4n exit channelZ=120

Predictions for 50Ti + 249Cf ➔ E120 Excitation Function

1) Experimenters more worried

by ELab uncertainties than EVR

ones! → Error bars (in x!) are

needed!

2) No need for YAM (yet another

model). Need ways to test them!

3) Measure(!) the fusion barrier

height

Slide from Ch. E. Duellmann
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Theory is difficult

Lets try experiment
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How to make new elements

Step 1: Chose beam/target combination
Step 2: Create and accelerate ions
Step 3: Bombard target
Step 4: Be lucky
Step 5: Separation
Step 6: Detection and Science!

115
291𝑀𝑐20

48𝐶𝑎 95
243𝐴𝑚

Fuse two lighter nuclei to make heavier ones
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How New Elements are Discovered

Fuse two lighter nuclei to make heavier ones

Challenges

1. Finding two nuclei: 

Nuclei are small compared to atoms ➔ ~10-15 m vs 10-10 m

Atoms are mostly empty space

1. Fusing them together

Nuclei are positively charged ➔ repel each other

115
291𝑀𝑐20

48𝐶𝑎 95
243𝐴𝑚
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Places capable of producing the heaviest elements

1
2

3 4

5
6

78

1. Berkeley, CA, USA

2. Lemont, IL, USA

3. Caen, France

4. Darmstadt, Germany

5. Jyväskylä, Finland

6. Dubna, Russia

7. Tokyo, Japan

8. Lanzhou, China
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Steps 1: Accelerate

How do you accelerate atoms to 10% the 

speed of light?
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Steps 1: Accelerate – Turn Atoms into Ions

Solenoid Coils

Hexapole

Microwaves

Magnetic

Field

𝐹 = 𝑞𝑣 𝑥 𝐵

e-

q+
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Steps 1: Accelerate – Turn Atoms into Ions

VENUS Ion source

𝐹 = 𝑞𝑣 𝑥 𝐵
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Steps 1: Accelerate – Use electric fields to accelerate ions

+ - + -

Charged particle acceleration in gap

+𝐸𝑘𝑖𝑛 +𝐸𝑘𝑖𝑛 +𝐸𝑘𝑖𝑛

𝐸𝑘𝑖𝑛 = 𝑞𝑉

Steps 1: Accelerate – Use electric fields to accelerate ions

V(x)
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-

Step 1: Accelerate Ions

- - +

Charged particle acceleration in gap

Linear accelerators use this principle to 

accelerate things to >10% the speed of 

light

GSI UNILAC (universal linear 

accelerator) 

Step 1: Accelerate Ions

+𝐸𝑘𝑖𝑛 +𝐸𝑘𝑖𝑛 +𝐸𝑘𝑖𝑛

𝐸𝑘𝑖𝑛 = 𝑞𝑉

V(x)
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+

Step 1: Accelerate Ions

- - +

Charged particle acceleration in gap

What if you want to reach high 

velocities, but don’t have a lot of space?

+𝐸𝑘𝑖𝑛 +𝐸𝑘𝑖𝑛 +𝐸𝑘𝑖𝑛

𝐸𝑘𝑖𝑛 = 𝑞𝑉

V(x)

Step 1: Accelerate Ions
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+

Steps 1: Accelerate Ions

- - +

Charged particle acceleration in gap

+𝐸𝑘𝑖𝑛 +𝐸𝑘𝑖𝑛 +𝐸𝑘𝑖𝑛

𝐸𝑘𝑖𝑛 = 𝑞𝑉

What if you want to reach high 

velocities, but don’t have a lot of space?

Add a magnetic field!

Centripetal Force: 𝐹𝑐 = 𝑚𝑣2/𝑟
Magnetic Force: 𝐹 = 𝑞𝑣𝐵
Radius of curvature: 𝑟 = 𝑚𝑣/𝑞𝐵

𝑚=mass 𝑣=velocity 𝑟=radius 

𝑞=charge state 𝐵=magnetic field

Step 1: Accelerate Ions
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+

Steps 1: Accelerate Ions

- - +

Charged particle acceleration in gap

88-Inch Cyclotron

+𝐸𝑘𝑖𝑛 +𝐸𝑘𝑖𝑛 +𝐸𝑘𝑖𝑛

𝐸𝑘𝑖𝑛 = 𝑞𝑉

𝑟 = 𝑚𝑣/𝑞𝐵

Step 1: Accelerate Ions
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How to Make New Elements

Beam Target Product

How to Make New Elements
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Steps 2: Targets

How Thick Should Our Targets Be?
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Things to consider:

• Energy loss ➔ width of excitation 

function, heating of the target

Step 2: Targets

Energy 

(MeV)

dE/dx 

(MeV/mg/cm2)

Range 

(um)

200 7.485 14.46

210 7.396 15.16

220 7.307 15.87

230 7.220 16.60

240 7.134 17.33

250 7.048 18.06

260 6.965 18.81

Energy loss of 48Ca in 238U
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Things to consider:

• Energy loss ➔ width of excitation 

function, heating of the target

• How to detect a SHE after it has been 

made

Step 2: Targets

258Db

4 s

276Mt

0.54 s

254No

55 s

288Mc

171 ms
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Steps 2: Bombard Targets

Thin targets ➔ 0.25 – 0.8 mg/cm2

0.2 – 0.7 um
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Zoomed in target

Step 3: Be Lucky
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258Db

4 s

276Mt

0.54 s

257Rf

4.7 s

255Lr

22 s

254No

55 s

288Mc

171 ms

1/s 10/min 1/min 1/hr 1/wk 1/day

Step 4: Separation

102  103 104 105 109 115

Step 4: Separation
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Step 4: Separation

Two Types of Separators with 

Complementary Capabilities
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SHIP

Step 4: Separation: Vacuum Separators

Quadrupole

Doublet

Electric 

Dipole

Electric 

Dipole
Quadrupole

Doublet

Dipole Magnet

FMA

Standard Configuration:

• Quadrupole doublet (or triplet)

• Electric Dipole

• Magnetic Dipole

• Electric Dipole

• Quadrupole doublet (or triplet)

Examples: FMA, SHIP, SHELLS
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Step 4: Separation: Gas-filled Separators

Beam

Target

Transfermium Elements

Beam + Everything ElseQV

DH
D

Detector

Station

BGS

Detector

Station

D

Q
Q

48Ca ions

Recoils

Rotating Target

TASCA

Standard Configuration:

• Dipole

• Quadrupole doublet

Examples: DGFRS, GARIS(I-III), RITU, 

SASSY, TASCA

Other Configuration:

• Quadrupole

• Focusing dipole

• Dipole

Examples: BGS
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Step 4: SeparationStep 4: Separation
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Step 4: Separation

Why two different types?
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Step 4: Separation

AngleEnergy Charge State

Evaporation Residues leaving the target have a distributions in:

• Energy

• Charge State

• Angle
Example Distributions from: 

208Pb(48Ca,2n)254No
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x x x x x x x x

x x x x x x x x

x x x x x x x x

x x x x x x x x

Charged Particles in Electric/Magnetic Fields

Different charges, velocities and masses 

will take different trajectories

Distributions in charge and energy limit 

transmission efficiency of vacuum 

separators

x x x x x x x x

x x x x x x x x

x x x x x x x x

x x x x x x x x

v
1.1v1.2v

1.3v0.9v0.8v
+
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SHIP

Acceptance: ±3° = 

~45%

Limited by gap in 

electric deflector and 

acceptance in 

quadrupoles

Angular

Vacuum Mode Separators

48Ca+208Pb

Hot Fusion

Charge State

SHIP: ±10%

Acceptance ~65%

Energy

SHIP: ±10%

Acceptance ~90%

Efficiency for 208Pb(48Ca,2n)254No 

reaction:

SHIP: 30%
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Recoils passing through He take on a well-

defined average charge state. 

(100% charge acceptance)

The average charge state is nearly 

proportional to velocity.

(large velocity/energy acceptance)

Efficiency of gas-filled separator can be 

double that of vacuum separator

Gas-filled Separators

Magnetic field region

(gas filled)

Heavy ion

detector

foil

q

q

mv
B =
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Step 4: Separation

Why would you choose a vacuum 

separator?
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Two types of compound nucleus separators have 

complementary capabilities

Vacuum 

Separators

Gas-filled Separators

Examples FMA, SHIP, VASSILISSA, etc BGS, DGFRS, GARIS, RITU, TASCA, etc

Angular acceptance Moderate (up to 16 msr) Large (up to 45 msr)

Velocity acceptance Moderate (up to ±25%) Large (up to 100%)

Charge acceptance Moderate (up to ±7%) Large (up to 100%)

Efficiency: 48Ca+208Pb Up to 30% Up to 70%

Mass resolution Good (M/DM>200) Poor (M/DM <30)
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Step 5: Detection

Spontaneous Fission

Alpha

Electron Capture or b+

b-

Decay Mode

Decay of SHE:
• Known SHE north of the line of stability

• Most SHE have been observed to decay via 

alpha decay or spontaneous fission

• Some evidence for electron capture

• Leave target with ~0.05-0.2 MeV/A
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Decay of SHE:
• Known SHE north of the line of stability

• Most SHE have been observed to decay 

via alpha decay or spontaneous fission

• Some evidence for electron capture

• Leave target with ~ 0.05 – 0.2 MeV/A

Detectable with silicon detectors

Step 5: Detection
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Step 5: Detection – BGS Focal Plane Detector
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• Separators are great, but not perfect!

• Detectors behind separators operate at 

1-2 kHz

• Compton scattered photons

• Elastically scattered He, H fill gas

• Protons from beamstop

• Deuterons

• Scattered beam

• Primary beam

• Transfer reaction products

• Decays (alpha, beta) from transfer 

reactions

What hits the detector?
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Question: How do you 

detect SHE implantation 

over background?

Periodic Table
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Silicon detectors are segment!

• EVR implants in specific location ➔ 

know location w/in 1-2 mm (depending 

on detector)

• Decay happens in same location

Step 5: Segmented Detectors
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Step 5: Detection – Genetic Correlations

Spontaneous Fission

Alpha

Electron Capture or b+

b-

Decay Mode

Detection of SHE:
• Lifetimes and alpha decay energies largely 

unique to given isotope

• Detect implantation followed multiple alpha 

decays in same position in detector in short 

time period
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Question: How do 

you pick beam/target 

combinations?

Periodic Table
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Hot Fusion

• Fusion of light ion beams (18O, 22Ne, 
40Ar, 48Ca) with actinide targets

Types of Fusion Reactions

Cold Fusion

• Fusion of transition metals (48Ca, 50Ti, 
54Cr, etc) with Pb or Bi targets

𝐸∗ = 𝐸𝑐𝑚 − 𝑚𝑏𝑒𝑎𝑚 + 𝑚𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑚𝑝𝑟𝑜𝑑𝑢𝑐𝑡

Excitation energy for a reaction:
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Hot Fusion

• Fusion of light ion beams (18O, 22Ne, 
40Ar, 48Ca) with actinide targets

Bass barrier ≈ 125 MeV Ecm

E* ≈ 40 MeV

Types of Fusion Reactions

Cold Fusion

• Fusion of transition metals (48Ca, 50Ti, 
54Cr, etc) with Pb or Bi targets

Bass barrier ≈ 225 MeV Ecm

E* ≈ 10 MeV
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Z
 →

N →
Shell effects from Sobiczewski et al: Phys. Rev. C 63 (2001) 034306

Spontaneous Fission

Alpha

Electron Capture or b+

b-

Decay Mode

Chart of the Nuclides: 2000

Hot Fusion Region 

Cold Fusion Region 
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Discovery of Elements: Pre 2000

Two main types of reactions used for 

heavy element synthesis:

• Cold Fusion: transition metals (Ti-

Zn) on Lead and Bismuth targets

• Hot Fusion: light ions (O-Ar) on 

actinide targets

One atom per week
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Two main types of reactions used for 

heavy element synthesis:

• Cold Fusion: transition metals (Ti-

Zn) on Lead and Bismuth targets

• Hot Fusion: light ions (O-Ar) on 

actinide targets

Discovery of Elements: Pre 2000

One atom per week
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Extension of Chart of Nuclides

New reaction type (re)discovered: 48Ca+Actinide targets

Superheavy Elements from 
48Ca+Actinide targets:

• Cross sections increase with 

E114>E112>E110

• Cross sections peaked Z~114-115
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Z
 →

N →
Shell effects from Sobiczewski et al: Phys. Rev. C 63 (2001) 034306

Spontaneous Fission

Alpha

Electron Capture or b+

b-

Decay Mode

Chart of the Nuclides: 2019

244Pu, 2000

248Cm, 2001

249Cf, 2006
249Bk, 2010

243Am, 2004
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6 new elements discovered in the last 2 decades

Latest Elements Discovered

R
ik

e
n

 2
0
0
4

F
L

N
R

 2
0
0
3

F
L

N
R

 2
0
1
0

F
L
N

R
 2

0
0

0

F
L
N

R
 2

0
0
0

F
L
N

R
 2

0
0
2



71July 11, 2023UNIVERSITY OF 

CALIFORNIA 

Office of

Science

48Ca+Actinides

We’ve reached the end of the road with 48Ca+Actinide reactions

Heaviest target available = 248Cf (Z=98)

48Ca (Z=20) 248Cf (Z=98) 296Og* (Z=118)
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Summary and Conclusions

How to make new elements:

• Actinides: neutron absorption → beta decay ➔ high-flux nuclear reactors

• Z>100: Add 2 lighter nuclei together

Two reaction types:

• Hot fusion

• Cold fusion

Tomorrow:

• What do we know about SHE?

• How can we push towards even heavier elements?
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