Center for Frontiers in Nuclear Science

EIC : Why a collider? Why polarized?

Abhay Deshpande

Lecture 2 of 3

NNPSS 2023 at UC Riverside

But first re-visit how to make measurements with polarized observables

Nucleon's Spin: Naïve Quark Parton Model (ignoring relativistic effects... now, illustration only, but historically taken seriously)

- Protons and Neutrons are spin 1/2 particles
- Quarks that constitute them are also spin 1/2 particles
- And there are three of them in the

How was the Quark Spin measured?

• Deep Inelastic polarized electron or muon scattering

$$A_{measured} = \frac{N^{\rightarrow \leftarrow} - N^{\rightarrow \rightarrow}}{N^{\rightarrow \leftarrow} + N^{\rightarrow \rightarrow}}$$

$$N^{\leftarrow} \rightarrow = N_b \cdot N_t \cdot \sigma^{\leftarrow} \rightarrow D_{acc} \cdot D_{eff}$$
$$N^{\rightarrow} \rightarrow = N_b \cdot N_t \cdot \sigma^{\rightarrow} \rightarrow D_{acc} \cdot D_{eff}$$

If all other things are equal, they cancel in the ratio

$$A_{measured}$$

A Typical Setup

• Experiment setup (EMC, SMC, COMPASS@CERN)

- Target polarization direction reversed every 6-8 hrs
- Typically experiments try to limit false asymmetries to be about 10 times smaller than the physics asymmetry of interest

Experimental Needs in DIS

Polarized target, polarized beam

- Polarized targets: hydrogen (p), deuteron (pn), helium (³He: 2p+n)
- Polarized beams: electron, muon used in DIS experiments

Determine the kinematics: measure with high accuracy:

- Energy of incoming lepton
- Energy, direction of **scattered lepton**: energy, direction
- Good identification of scattered lepton

Control of false asymmetries:

 Need excellent understanding and control of false asymmetries (time variation of the detector efficiency etc.)

First moment of $g_1^p(x)$: Ellis-Jaffe SR

$$\Gamma_1^{p,n} = \frac{1}{12} \left[\pm a_3 + \frac{1}{\sqrt{3}} a_8 \right] + \frac{1}{9} a_0$$

 $a_3 = \frac{g_A}{g_V} = F + D = 1.2601 \pm 0.0025$ $a_8 = 3F - D \Longrightarrow F/D = 0.575 \pm 0.016$

Assuming SU(3)_f & $\Delta s = 0$, Ellis & Jaffe:

 $\Gamma_1^p = 0.170 \pm 0.004$

Measurements were done at SLAC (E80, E130) Experiments: Low 8-20 GeV electron beam on fixed target Did not reach low enough $x \rightarrow x_{min} \sim 10^{-2}$ Found consistency of data and E-J sum rule above

First Moments of SPIN SFs

$$\Delta q = \int_{0}^{1} \Delta q(x) dx \qquad \qquad g_1(x) = \frac{1}{2} \Sigma_f e_f^2 \{ q_f^+(x) - q_f^-(x) \} = \frac{1}{2} \Sigma_f e_f^2 \Delta q_f(x)$$

Polarized Deep-Inelastic Scattering

"The sum of quark and anti-quark spins contribute little to the proton spin, and strange quarks are negatively polarized."

V.W. Hughes (1921-2003)

Proton Spin Crisis (1989)!

EMC experiment at CERN: high energy muon beam – reached lower x

 $\Delta\Sigma /2 = (0.12) +/- (0.17) (EMC, 1989)$ $\Delta\Sigma /2 = 0.58$ expected from E-J sum rule....

If the quarks did not carry the nucleon's spin, what did? \rightarrow Gluons?

Consequence:

- Quark (+anti-quark) contribution to nucleon spin is definitely small: Quark's contribution to nucleon spin $\rightarrow \frac{1}{2}\Delta\Sigma = 0.15 \pm 0.03$
 - Is this smallness due to some cancellation between quark & antiquark polarization?
- Or does glue make a very large contribution? $\Delta G = 1 \pm 1.5$
- Most NLO analyses by consistent with HIGH gluon contribution
 - Direct measurement of gluon spin with other probes warranted.
 - Seeded the RHIC Spin program

Can one do the same thing for spin structure function g_1 ?

Spin contribution of the gluon to the proton from scaling violation g_1 spin structure function?

Large amount of polarized data since 1998... but not in NEW kinematic region! Large uncertainty in gluon polarization (+/-1.5) results from lack of wide Q^2 arm

Large amount of polarized data since 1998... but not in NEW kinematic region! Large uncertainty in gluon polarization (+/-1.5) results from lack of wide Q^2 arm

Our Understanding of Nucleon Spin Puzzle

Spin discovered a problem.... What now? Need precision and investigations of gluons....

RHIC Spin program and the Transverse Spin puzzle

Pre-cursor to a polarized e-p collider

Complementary techniques

Photons colorless: forced to interact at NLO with gluonsCan't distinguish between quarks and anti-quarks either

Why not use polarized quarks and gluons abundantly available in protons as probes ?

Seeds for RHIC Spin program:

If one wants to study gluon's spin contribution to proton's spin, *why not directly explore the gluon spin with polarized proton p-p collisions?*

Curious and bothersome transverse spin asymmetries in p-p scattering persistent in every experiment performed.... US physicists heavily involved... decided to investigate further at high energy

Technical know-how of polarizing proton beams at high energy became available in the mid-late 1990's

RHIC as a Polarized Proton Collider

Without Siberian snakes: $v_{sp} = G\gamma = 1.79 \text{ E/m} \rightarrow \sim 1000 \text{ depolarizing resonances}$ With Siberian snakes (local 180[°] spin rotators): $v_{sp} = \frac{1}{2} \rightarrow \text{no first order resonances}$ Two partial Siberian snakes (11[°] and 27[°] spin rotators) in AGS

Siberian Snakes

- AGS Siberian Snakes: variable twist helical dipoles, 1.5 T (RT) and 3 T (SC), 2.6 m long
- RHIC Siberian Snakes: 4 SC helical dipoles, 4 T, each 2.4 m long and full 360° twist

July 10, 11, 12, 2023

93

Measuring A_{LL}

Longitudinal Spin Asymmetry using polarized proton bunches in the RHIC ring

$$\frac{RN_{+-}}{RN_{+-}}; \qquad R = \frac{L_{++}}{L_{+-}}$$

(N) Yield (R) Relative Luminosity (P) Polarization

Exquisite control over false asymmetries due to ultra fast rotations of the target and probe spin.

- ✓ Bunch spin configuration alternates every 106 ns
- ✓ Data for all bunch spin configurations are collected at the same time
- \Rightarrow Possibility for false asymmetries are greatly reduced

2009 RHIC data established non-zero ΔG

-- PHENIX 2005-9, PRD 90, 12007 (2014)

-- STAR 2009, PRL 115 (2015) 92002

-- DSSV PRL (113) 12001 (2014)

$$\int_{0.05}^{1.0} dx \Delta g \sim 0.2 \pm_{0.07}^{0.06} @ 10 \text{ GeV}^2$$

Reaction	Dom. partonic process	probes	LO Feynman diagram
$\vec{p}\vec{p} \rightarrow \pi + X$ [61, 62]	$ec{g}ec{g} ightarrow gg$ $ec{q}ec{g} ightarrow qg$	Δg	gg eee ge
$\vec{p}\vec{p} \rightarrow \text{jet}(s) + X$ [71,72]	$ec{g}ec{g} ightarrow gg$ $ec{q}ec{g} ightarrow qg$	Δg	(as above)

Recall a historical fact and plot....

In these discussions, while many focused on the low-x Extrapolations.

SMC PRD98 (112002) 1998

July 10, 11, 12, 2023

Transverse Spin effects in p-p observed but ignored for 40+ years

Recent developments and state of the art in Marco Radici's lecture

Transverse spin introduction

$$A_N = \frac{N_L - N_R}{N_L + N_R}$$

$$A_N = \frac{A_N \sim \frac{m_q}{p_T} \cdot \alpha_S \sim 0.001}{L+R} \quad \text{Kane, Pumplin and Repko}$$

$$PRL 41 \, 1689 \, (1978)$$

• Since people to cused at high p_T to $in\vec{S}_{\perp} \cdot (\vec{P} \times \vec{p}_{\perp}^{\pi})$ (CD frameworks, this (expected small effect) was "neglected structure"

• Pion production in single "ansverse spin collisions showed us something different....

$$\frac{m_q}{m_s} \alpha_s \ll 1$$

July 10, 11, 12, 2023

Pion asymmetries: at broad range in CM energies!

Suspect soft QCD effects at low scales, but they seem to remain relevant to perturbative regimes as well -> 0.001 expected 0.2-0.6 observed at all Center of Mass Energies

What could be the origin of such effect? Collins (Heppelmann) effect: Asymmetry in the fragmentation hadrons

Other possibility: What does "Sivers effect" probe?

Top view, Breit frame

Quarks orbital motion adds/ subtracts longitudinal momentum for negative/positive .

PRD66 (2002) 114005

Parton Distribution Functions rapidly fall in longitudinal momentum fraction x.

Final State Interaction between outgoing quark and target spectator.

NNPSS 2023 at UC Riverside

Lepton nucleus scattering for understanding the nuclear structure and dynamics:

Nuclear structure a known unknown....

From protons/neutrons to visible nuclei We know what happened but don't fully understand why

Nucleosynthesis

as the Universe cools, protons and neutrons can fuse to form heavier atomic nuclei

Dmitri Ivanovich Mendeleev

the periodic table of elements

PDFs in nuclei are different than in protons!

Since 1980's we know the ratio of F_2 's of nuclei to that of Deuteron (or proton) are different.

Nuclear medium modifies the PDF's.

Fair understanding of what goes on, in the x > 0.01.

However, what happens at low x?

Does this ratio saturate? Or keep on going? – Physics would be very different depending on what is observed.

Data needed at low-x

Lessons learned:

- Proton and neutrons spin not just alignment of quarks and gluons....
 - Proton's spin is complex: alignment of quarks, gluons and orbital motion
- To fully understand proton structure (including the partonic dynamics) one needs to explore over a **broader x-Q2 range (not in fixed target but in collider experiment)**
- Low-x behavior of gluons in proton: Precise measurements of gluons critical.
- Low x behavior of partons in Nuclei essential to complete our understanding of structure of matter...

We need a new high-luminosity polarized **e-p/A** collider....