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Nuclear radii and nuclear shapes

A fundamental property of the ground 
state is the shape and size of the 

nucleus – the nuclear radius provides 
insight into nuclear extent (matter and 

charge).

The nuclear shape can deviate from spherical, 
but most frequently maintains axial symmetry – 

e.g. quadrupole deformation.



Nuclear radii definitions 

Near stability we know: 
R = r0A1/3

Consider RMS radii 
(matter and 

neutron)

Nuclear quadrupole deformation



Matter radii: total interaction cross-sections

I. Tanihata, J. Phys. G 22, 157 (1996).



Matter radii: total interaction cross-sections

I. Tanihata, J. Phys. G 22, 157 (1996). M. Takechi et al., Phys. Rev. C 90, 061305 (2014).



Skins and halos

I. Tanihata, Phys. Rev. Lett. 55, 2676 (1985).



Laser spectroscopy for charge radii ➙ isotope shifts

R.F. Garcia Ruiz et al., Phys. Rev. C 91, 041304(R), 2015.
http://www.euroschoolonexoticbeams.be/site/files/nlp/LNP879_Chapter6.pdf

The finite size and mass of the atomic 
nucleus has a distinct influence on the 

optical spectrum, which can be probed with 
high precision using laser spectroscopy.



Quadrupole moment - Q

bar magnet
N

S

shape of nucleus

Prolate: Q > 0
football

Oblate: Q < 0
frisbee

Spherical: Q 
= 0

baseball

a

b

Ground state nuclear moments
Magnetic moment - 𝜇



Magnetic moments



Hyperfine structure

Hyperfine structure refers to the 
splitting of a single electronic level 

for nuclei with I > 0
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Level schemes – collective vs. single particle
Level Schemes Contain Structural Information

Single Particle AlignmentCollective Rotation



Nuclear excitations
Single particle excitations

• Within an independent particle model, 
a subset of nuclear excitations 
correspond to different configurations 
of protons and neutrons
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Nuclear excitations
Single particle excitations

• Within an independent particle model, 
a subset of nuclear excitations 
correspond to different configurations 
of protons and neutrons
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Nuclear excitations
Single particle excitations

• Within an independent particle model, 
a subset of nuclear excitations 
correspond to different configurations 
of protons and neutrons
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Nuclear excitations
Single particle excitations

• Within an independent particle model, 
a subset of nuclear excitations 
correspond to different configurations 
of protons and neutrons
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Nuclear excitations

Collective excitations
• Many nucleons outside a closed shell contribute 

coherently to excitations

• Vibrations and rotations (for non-spherical nuclei) have 
excitation energies comparable to single-particle energy 
excitations



Nuclear vibration

Treat nuclear 
vibrations as time-

dependent 
deformation 

Give rise to characteristic 
excitation spectra – vibration 
phonons couple as angular 
momenta

i.e. Quadrupole vibrations
0+

2+

0,2,4+

0,2,3,4,6+

n=1

n=2

n=3



Nuclear rotation

Deformed nuclei can also undergo 
collective rotational motion; nuclear 

rotation is parameterized in the 
same way as classical rotors

0+

2+

4+

6+

Erot(J) = ħ2/2I × J(J+1) 
I = Moment of inertia



Deformation and the Nilsson model

• Nuclear rotation is a collective excitation, 
but interfaces to single-particle structure

• Nilsson model is a shell-model 
description in a deformed basis, which 
provides a good description in well-
deformed nuclei

Oblate
“pancake”

Prolate
“football”Sphere



Moment of inertia in nuclei
• Rigid body estimate for 

the moment of inertia 
is consistently larger 

than experimental data

• Irrotational flow value 
(like a liquid drop…) is 

too small

• Data puts the nuclear 
moment of inertia 

between these two 
limits; moment of 
inertia dynamic 



Excitations in the real world
Nuclei are not limited to a single type of excitation – 
vibration, rotation and single-particle configurations all 
coexist at similar excitation energies.

States near in energy with the same spin                              
interact and interfere – nuclear wavefunctions                            
are complex superpositions of ‘pure’                        
configurations.



Simple patterns still tell us about structure



R4/2 – A powerful ratio



Question!

In 42Si, a gamma-ray from 2+ to 0+ is observed at 742 keV, and a gamma-
ray from the 4+ state to the 2+ state is observed at 2032 keV.  What can we 
say about the excitation?

(A) Nothing
(B) It’s pretty rotational – deformed
(C) It seems vibrational
(D) It’s unbound



Question!

In 42Si, a gamma-ray from 2+ to 0+ is observed at 742 keV, and a gamma-
ray from the 4+ state to the 2+ state is observed at 2032 keV.  What can we 
say about the excitation?

(A) Nothing
(B) It’s pretty rotational – deformed
(C) It seems vibrational
(D) It’s unbound

E(4+)/E(2+) = (1431 + 742)keV / 742 keV 
= 2.9
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How can we build level schemes?



Nuclear excited state decay
• Excited states in nuclei can decay in a number of ways:

–  β+, β-, electron capture (EC) -- 177Lum

– Particle emission  -- 53Com, 211Pom

– Fission 239Pum

– Internal conversion
– Gamma-ray emission



Dominant Excited State Decay

Nuclear properties from gamma-ray studies
▫ Coincidence relation --> Level schemes
▫ Angular distribution/correlation --> Multipolarity, spin
▫ Doppler shifts --> excited state lifetimes
▫ Linear polarization --> E/M, parity
▫ Intensity of transitions --> B(E2)

• Excited states in nuclei can decay in a number of ways:
–  β+, β-, electron capture (EC) -- 177Lum

– Particle emission  -- 53Com, 211Pom

– Fission 239Pum

– Internal conversion
– Gamma-ray emission



Selection Rules

Jiπ

Jfπ

Ei

Ef

Eγ (L)



Selection Rules

Jiπ

Jfπ

Ei

Ef

Eγ (L)

The transition probability for at state decaying by transition of multipole order L is:  



Selection Rules

Jiπ

Jfπ

Ei

Ef

Eγ (L)

The transition probability for at state decaying by transition of multipole order L is:  

Reduced matrix element – i.e. 

…

Weisskopf estimates



Lifetimes and Gamma Decay

• The bulk of electromagnetic (gamma) transitions have lifetimes of 10-15 – 10-13 s
– Explains why excited states primarily undergo gamma decay (compare to beta-

decay lifetimes » ms, or alpha decay » s) 
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• The bulk of electromagnetic (gamma) transitions have lifetimes of 10-15 – 10-13 s
– Explains why excited states primarily undergo gamma decay (compare to beta-

decay lifetimes » ms, or alpha decay » s) 

• Occasionally longer lifetimes are observed, i.e. ns or longer ➙ Isomerism
– Isomers arise for many reasons

Lifetimes and Gamma Decay



The lifetime of excited states in the range of 10-100s of ps can be measured by populating 
the state via Coulomb excitation or knock-out reactions, and observing the Doppler-shift of 
the decay gamma-ray.

Figure: Adapted from K. Starosta

Recoil-distance (plunger) method



Question!
What would you expect to be the dominant character of the gamma-ray transition 
linking the second 0+ excited state at 1.06 MeV in 32Mg with the ground state (0+)?

(A) E1
(B) M2
(C) No gamma transition
(D) M1
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Question!
What would you expect to be the dominant character of the gamma-ray transition 
linking the second 0+ excited state at 1.06 MeV in 32Mg with the ground state (0+)?

(A) E1
(B) M2
(C) No gamma transition
(D) M1

Gamma rays must carry at least one ~ of angular momentum – 
cannot link two 0+ states
When gamma transition is not possible, internal conversion is an 
alternative electromagnetic transition.



Properties of Gamma Decay
• Energies ➙ spacing between nuclear levels

• Lifetimes ➙ information about transition probabilities, 
links to nuclear matrix elements (structure!)

• Intensities ➙ experiment dependent – generally 
relates to transition probabilities (branching ratios)

J1π

J2π

E1

E2

Eγ1 Eγ2

E3J3π

BR1 BR2



Properties of Gamma Decay
• Energies ➙ spacing between nuclear levels
• Lifetimes ➙ information about transition probabilities, 

links to nuclear matrix elements (structure!)

• Intensities ➙ experiment dependent – generally relates 
to transition probabilities (branching ratios)

• Knowledge of Ji and Jf limit the multipolarity (L) of 
gamma-ray transitions

• To measure multipole order (L) we can measure angular 
distributions

• To determine E vs. M we need to measure polarization of 
the transition



Gamma-Ray Angular Distributions

• Angular distribution of a gamma-ray depends on the values of mi and mf
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Jf = 0
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Gamma-Ray Angular Distributions

• Angular distribution of a gamma-ray depends on the values of mi and mf

Ji = 1

Jf = 0

mi = 0mi = -1 mi = 1

0

1

2

0 100 200 300 400

W
(θ

)

θ (Degrees)

mi = ± 1
1 + cos2θ

mi = 0
sin2θ 



Gamma-Ray Angular Correlations
• Observation of a previous radiation selects an unequal mixture 

of populations p(mi)

Jm = 1

Ji = 0

Jf = 0

γ1

γ2

θ

• First gamma defines z-axis -- θ1 = 0
• p(mm) = 0 for mm = 0

• Distribution of γ2 relative to γ1 is m = ± 1 ➙ m = 0
• W(θ) ➙ 1 + cos2θ



Integrating the Subsystems of GRETA

• FPGA-based 
energy filters, 
event selection in 
response to 
physics triggers

E, t, x 40

• Continuous 
100MHz 
digitization of 40 
preamplifier 
signals per crystal

Gamma Ray Energy Tracking Array
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Integrating the Subsystems of GRETA

• FPGA-based 
energy filters, 
event selection in 
response to 
physics triggers

E, t, x 40

• Continuous 
100MHz 
digitization of 40 
preamplifier 
signals per crystal

Gamma Ray Energy Tracking Array

E, t, (x, y, z)crystal n



Integrating the Subsystems of GRETA

E, t, (x, y, z)crystal n

• Detectors located 
absolutely in space to +/- 
0.4 mm

Energy

Co
un

ts

θ1, E1

θ2, E2

θ3, E3

E4

Gamma Ray Energy Tracking Array
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Nuclear ground-state decay
Nuclei decay toward stability (and a lower energy state) via one of 
four basic decay modes:

• Alpha decay ( ➙ Z-2, N-2)

• Beta(-) decay (➙ Z+1, N-1)

• Beta(+) decay (➙ Z-1, N+1)

• Fission (➙ 2 fragments + n)

• 1p & 2p radioactivity



Decay observables

• Nuclear decay measurements allow access to a number of 
observables
o Half-life information for decaying state
o Energies for emitted particles (spectroscopic information in daughter 

nucleus)
o Gamma-rays de-exciting daughter states populated in decay

o Excited state spins and parities based on selection rules for primary decay and 
subsequent gamma decay



Decay half-lives
All radioactive decay modes obeys Poisson statistics and are described by 
straight-forward differential equations.

A = -dN/dt = λN

t1/2 = ln(2) / λ 



Even with the most limited 
statistics, half-lives can be 
extracted

The equations of exponential 
decay are well known and can 
be applied using statistical 
techniques such as maximum 
likelihood to obtain half-lives 
from tens of observed decays

D. Bazin et al., PRL 101, 252501 (2008).
F. Bosch et al., Int. J. Mass Spectr. 251, 212 (2006).

Decay half-lives



Decay observables

• Nuclear decay measurements allow access to a number of 
observables
o Half-life information for decaying state
o Energies for emitted particles (spectroscopic information in daughter 

nucleus)
o Gamma-rays de-exciting daughter states populated in decay

o Excited state spins and parities based on selection rules for primary decay and 
subsequent gamma decay

o Consider β-decay (and other decays) as a tool to                                   
populate excited states in daughter nuclei, with a                                  
unique selectivity



β-Delayed Gamma Spectroscopy

Isomeric Decay

• gamma rays following decay 
events provide information on 
low-level structure of daughter 
nuclei

• depending on the production mechanism, 
nuclei may be produced in long-lived excited 
states (isomeric states)
• a TAC for implantation-gamma provides the 
possibility for isomer lifetime determination, if 
you look for gammas following an 
implantation

Implantation β decay spectroscopy



Nucleus of Interest

Decay particle (β, α, p etc.)

The use of highly-segmented detectors allows temporal and spatial 
correlations between implanted nuclei, and their subsequent decays → detect 
the implant and the decay to obtain half-lives and information on levels in the 

daughter relative to the parent ground state

Implant-decay correlation technique



β-decay spectroscopy at FRIB

The FRIB Decay Station initiator (FDSi) is being 
led by ORNL and UTK, and includes (in addition to 
HPGe), fast timing scintillators, neutron-detection 
and possibilities for TAS measurements

New T1/2



Proton decay
• Even when the Q value for proton removal 

becomes positive, proton emission is 
hindered due to the Coulomb (and 
centrifugal) barriers ➙ radioactivity



Proton emission branches in 54mNi

• A recent experiment with the ACTAR TPC measured proton decay from isomeric states in 54Ni
• Data were reproduced reasonably well with shell-model calculations for the initial and final state 

wavefunctions and a barrier penetration model for the proton emission

J. Giovinazzo et al., Nature Communications 12, 4805 (2021).
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Direct Reactions



Beyond excitation energies and spins?
Can we probe the details of the wavefunction 
‘directly’?
Is there a way to tell where the particles are in terms of single-
particle states (even within a specific model)?

7/2-

3/2-

3/2+
1/2+

47Ca

20
14

 k
eV

 

2014

0

2578
2599

3562

3999

4403

4811

58
5 

ke
V 

25
78

/2
59

9 
ke

V 

437 keV 

56
4 

ke
V 

404 keV 

408 keV 

35
62

 k
eV

 
39

99
 k

eV

287586
2 

ke
V 

d5/2d5/2

s1/2
d3/2

s1/2
d3/2

f7/2

p3/2

Protons Neutrons

28

2020

8 8



Direct nucleon removal (or addition)

• Information regarding the ‘occupancy’ of single-particle states can be 
investigated within a model framework

• Two energy regimes --> low-energy transfer experiments and intermediate 
energy knockout
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Direct nucleon removal (or addition)

• Information regarding the ‘occupancy’ of single-particle states can be 
investigated within a model framework

• Two energy regimes --> low-energy transfer experiments and intermediate 
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Direct nucleon removal (or addition)

• Information regarding the ‘occupancy’ of single-particle states can be 
investigated within a model framework

• Two energy regimes --> low-energy transfer experiments and intermediate 
energy knockout
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Selectivity of the reaction mechanism

• Knockout / nucleon removal
• Fusion – evaporation
• Transfer
• Deep inelastic
• Scattering (elastic / inelastic)
• Capture



Fusion evaporation vs. direct transfer

• A + b = C -> D + X
• 12C(18O,3n)27Si*

• Compound system has NO 
memory of its formation

• Evaporated particle energies 
give excitation energies of final 
states

• Two-body A(b,c)D
• 16O(d,p)17O*

• Outgoing particle DO retain 
knowledge of transferred 
particles



Knockout reaction vs. direct transfer

• A + b = c – Xn - Xp
• 9Be(44S,-1p1n)42P*

• Momentum distribution of 
recoil reflects orbital 
momentum transfer

• Two-body A(b,c)D
• 16O(d,p)17O*

• Outgoing particle DO retain 
knowledge of transferred 
particles



Transfer reactions: measured quantities



Transfer reactions: extracted quantities



Transfer reaction: extracted quantities



Nucleon knockout reactions
Intermediate energy beams (> 50 MeV/nucleon)
• Sudden approximation + eikonal approach for reaction theory

Spectroscopic strengths --> exclusive cross-sections
• Populated states in A-1 residue provide detailed measure of beam 

structure

Theoretical cross-section



Neutron knockout – 9Be(34Ar, 33Ar)X

A. Gade et al., PRC 69, 034311 (2004).



Collectivity: B(E2) from excitation probability

Coulomb excitation: 

•    purely Coulomb interaction causes excitation of 
the nucleus of interest

•    well described interaction, and cross-section 
relates to transition matrix element, i.e. B(E2) for 
0+ --> 2+ in even-even nuclei.



Pear shaped nuclei and atomic EDM

224Ra 

L. P. Gaffney et al., Nature 497, 199 (2013).



Summary
• Nuclear excitation spectra (energies, spins and parities of excited 

states) are fundamental experimental observables

• Patterns of excitation provide insight into symmetries and collective 
properties of nucleus
o Vibrational spectra
o Rotational spectra
o Single-particle excitations

• Nuclear decay provides access to excitation spectra, as well as 
fundamental observable such as half-life
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Locating the driplines

The limits of existence are defined by the proton and neutron driplines
Sn (or Sp) become positive ➙ neutron/proton are not bound; 

emission does not require energy input
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Mapping the Neutron Dripline up to Ne

2019 2022

D. S. Ahn et al., PRL 123, 212501 (2019).
D. S. Ahn et al., PRL 129, 212502 (2022).
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Mapping the Neutron Dripline up to Ne
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A change in the trend 
of fragmentation 
cross-sections 
indicates a change in 
the binding – 
enhanced binding 
suggestive of a 
change in nuclear 
structure?

O. Tarasov et al., PRL 102, 142501 (2009)

Fragmentation cross-sections


