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Ground State Properties



Nuclear radii and nuclear shapes

A fundamental property of the ground

state is the shape and size of the “Li

nucleus — the nuclear radius provides

insight into nuclear extent (matter and
charge).

The nuclear shape can deviate from spherical,
but most frequently maintains axial symmetry —
e.g. quadrupole deformation.




Nuclear radii definitions
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Matter radii: total interaction cross-sections
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Matter radii: total interaction cross-sections
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Laser spectroscopy for charge radii — isotope shifts
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The finite size and mass of the atomic
nucleus has a distinct influence on the
optical spectrum, which can be probed with
high precision using laser spectroscopy.

R.F. Garcia Ruiz et al., Phys. Rev. C 91, 041304(R), 2015.
http://www.euroschoolonexoticbeams.be/site/files/nlp/LNP879 Chapter6.pdf



Ground state nuclear moments

Magnetic moment - u Quadrupole moment - Q
N

bar magnet shape of nucleus
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Magnetic moments

po= / U v (B) 2050

. gs — g
Ksp. =] lgzj: N1

:|f0r]=l:{:—




Hyperfine structure

Hyperfine structure refers to the AEmag

splitting of a single electronic level

for nuclei with 1 >0

Derived properties of nuclei:
- Spin (orbital+intrinsic angular momentum), parity (/%)
- Nuclear g-factor and magnetic dipole moment (g, and 1)
- Electric quadrupole moment (Q)
-Charge radius ( () )

Give information on:
- Configuration of neutrons and protons in nucleus
- Size and form of nucleus

5/2 A 5/2A+5/4B

J=1
1=3/2
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Excitation Spectra



Level schemes — collective vs. single particle

Level Schemes Contain Structural Information
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Nuclear excitations

1 4811

408 keV

Single particle excitations

*  Within an independent particle model,
a subset of nuclear excitations
correspond to different configurations
of protons and neutrons
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Nuclear excitations

1 4811

408 keV

Single particle excitations

*  Within an independent particle model,
a subset of nuclear excitations
correspond to different configurations
of protons and neutrons
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Nuclear excitations

1 4811
408 keV

Single particle excitations

*  Within an independent particle model,
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Nuclear excitations

1 4811
408 keV

Single particle excitations

*  Within an independent particle model,
a subset of nuclear excitations
correspond to different configurations
of protons and neutrons
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Nuclear excitations

Collective excitations

- Many nucleons outside a closed shell contribute
coherently to excitations

- Vibrations and rotations (for non-spherical nuclei) have
excitation energies comparable to single-particle energy
excitations



Nuclear vibration

Treat nuclear
vibrations as time-
dependent
deformation
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Give rise to characteristic
excitation spectra — vibration
phonons couple as angular
momenta

i.e. Quadrupole vibrations




Nuclear rotation

}
Deformed nuclei can also undergo

J . . .
g collective rotational motion; nuclear
rotation is parameterized in the
same way as classical rotors

o+

From A. Bohr and B. R. Mottelson.
Nuclear structure, volume 2 4+
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| = Moment of inertia
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Deformation and the Nilsson model

AL A - Nuclear rotation is a collective excitation,
' X but interfaces to single-particle structure

- Nilsson model is a shell-model
description in a deformed basis, which
provides a good description in well-
deformed nuclei
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Moment of inertia in nuclei
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Excitations in the real world

Nuclei are not limited to a single type of excitation —
vibration, rotation and single-particle configurations all 3
coexist at similar excitation energies. 2 - L

States near in energy with the same spin
interact and interfere — nuclear wavefunctions o SR
are complex superpositions of ‘pure’ 3
configurations.
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Simple patterns still tell us about structure

Evolution of nuclear structure
(as a function of nucleon number)
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R, — A powerful ratio
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Question!

In 42Si, a gamma-ray from 2* to 0* is observed at 742 keV, and a gamma-
ray from the 4* state to the 2* state is observed at 2032 keV. What can we
say about the excitation?

(A) Nothing
(B) It's pretty rotational — deformed
(C) It seems vibrational
(D)

D) It's unbound




Question!

In 42Si, a gamma-ray from 2* to 0* is observed at 742 keV, and a gamma-
ray from the 4* state to the 2* state is observed at 2032 keV. What can we
say about the excitation?

(A) Nothing
(B) It's pretty rotational — deformed
(C) It seems vibrational
(D)

D) It's unbound

E(4+)/E(2+) = (1431 + 742)keV | 742 keV
=29
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Gamma Rays!

How can we build level schemes?

28



Nuclear excited state decay

« Excited states in nuclei can decay in a number of ways:

B*, B, electron capture (EC) -- "77Lu™
Particle emission -- 53Co™, 211Pom
Fission 239pym

Internal conversion

Gamma-ray emission



Dominant Excited State Decay

« Excited states in nuclei can decay in a number of ways:

B*, B, electron capture (EC) -- "77Lu™
Particle emission -- 53Co™, 211Pom
Fission 239pym

Internal conversion

Gamma-ray emission

% Nuclear properties from gamma-ray studies
Coincidence relation --> Level schemes
= Angular distribution/correlation --> Multipolarity, spin
= Doppler shifts --> excited state lifetimes
= Linear polarization --> E/M, parity
= Intensity of transitions --> B(E2)



Selection Rules
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Selection Rules

Jin Ei E’Y = E,L — Ef
‘Ji—Jf‘ <L<J +Jy
E, (L) Am(EL) = (-1)*
Jo___ v g, An(ML)=(-1)""

The transition probability for at state decaying by transition of multipole order L is:
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Selection Rules

‘Ji—g]f‘ SLSJi—|—Jf
E, (L) Am(EL) = (-1)*
an v/ Ef AW(ML) = (—1)L+1

The transition probability for at state decaying by transition of multipole order L is:

87T(L + ) E 2L+1
- =T4;i(AL) = ( ”> B(\L : J; — Jy)
& Weisskopf estimates hL((QL £ 1)”) he
T(E1) =1.03 x 1024A2/3E3 Reduced matrix element —i.e.
T(E2) =7.28 x 10"A**E> B(E2: J; = J;) = (]| 2 ;)2

(M1) =3.15 x 10" E? 2J
T(M2) = 2.24 x 10" A*3E3



Lifetimes and Gamma Decay

«  The bulk of electromagnetic (Jamma) transitions have lifetimes of 101 - 1013 s

— Explains why excited states primarily undergo gamma decay (compare to beta-
decay lifetimes » ms, or alpha decay » s)



Lifetimes and Gamma Decay

«  The bulk of electromagnetic (Jamma) transitions have lifetimes of 101 - 1013 s

— Explains why excited states primarily undergo gamma decay (compare to beta-
decay lifetimes » ms, or alpha decay » s)

* Occasionally longer lifetimes are observed, i.e. ns or longer — Isomerism
— Isomers arise for many reasons



Lifetimes and Gamma Decay

«  The bulk of electromagnetic (Jamma) transitions have lifetimes of 101 - 1013 s
— Explains why excited states primarily undergo gamma decay (compare to beta-

decay lifetimes » ms, or alpha decay » s)
* Occasionally longer lifetimes are observed, i.e. ns or longer — Isomerism
— Isomers arise for many reasons
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Lifetimes and Gamma Decay

«  The bulk of electromagnetic (Jamma) transitions have lifetimes of 101 - 1013 s

— Explains why excited states primarily undergo gamma decay (compare to beta-
decay lifetimes » ms, or alpha decay » s)

* Occasionally longer lifetimes are observed, i.e. ns or longer — Isomerism
— Isomers arise for many reasons
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Lifetimes and Gamma Decay

«  The bulk of electromagnetic (Jamma) transitions have lifetimes of 101 - 1013 s

— Explains why excited states primarily undergo gamma decay (compare to beta-
decay lifetimes » ms, or alpha decay » s)

* Occasionally longer lifetimes are observed, i.e. ns or longer — Isomerism
— Isomers arise for many reasons

sr(L+1) (E,\***
T5iAL) = sr @D+ e (hc) CQL: T2 I




Recoil-distance (plunger) method

The lifetime of excited states in the range of 10-100s of ps can be measured by populating
the state via Coulomb excitation or knock-out reactions, and observing the Doppler-shift of

the decay gamma-ray.
¢=300 pm/ps B~0.3c 10 ps ~1mm
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Question!

What would you expect to be the dominant character of the gamma-ray transition
linking the second 0* excited state at 1.06 MeV in 32Mg with the ground state (0*)?

(A) E1

(B) M

(C) No gamma transition
(D) M
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Question!

What would you expect to be the dominant character of the gamma-ray transition
linking the second 0* excited state at 1.06 MeV in 32Mg with the ground state (0*)?
(A) E1
(B) M
(C) No gamma transition
(D) M

\ Gamma rays must carry at least one ~ of angular momentum —
cannot link two 0+ states
Conversion When gamma transition is not possible, internal conversion is an
Electron alternative electromagnetic transition.

X-ray (K,)
(*

N

J




Properties of Gamma Decay

Energies — spacing between nuclear levels

Lifetimes — information about transition probabilities,
links to nuclear matrix elements (structure!)

Intensities — experiment dependent — generally
relates to transition probabilities (branching ratios)

BR, BR,

Jq& E;

Evl Ev2




Properties of Gamma Decay

Energies — spacing between nuclear levels

Lifetimes — information about transition probabilities,
links to nuclear matrix elements (structure!)

Intensities — experiment dependent — generally relates
to transition probabilities (branching ratios)

Knowledge of J; and J; limit the multipolarity (L) of
gamma-ray transitions

To measure multipole order (L) we can measure angular
distributions

To determine E vs. M we need to measure polarization of
the transition



Gamma-Ray Angular Distributions

Angular distribution of a gamma-ray depends on the values of m; and m;

Ji=1
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Gamma-Ray Angular Distributions

Angular distribution of a gamma-ray depends on the values of m; and m

m=-1m=0m,=
m; 1Ji=1

2
m = 0 m; = +1
si;mze 1 + cos20
)
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O T T T 1
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Gamma-Ray Angular Correlations

Observation of a previous radiation selects an unequal mixture
of populations p(m;)

Y1

Y2

v Ji=0 « First gamma defines z-axis -- 0, =0
* p(my)=0form,=0
 Distribution of y, relativetoy;ism=+1—->m=0
- W(B) = 1 + cos?6



Gamma Ray Energy Tracking Array
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Gamma Ray Energy Tracking Array
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Gamma Ray Energy Tracking Array

* Continuous
100MHz
digitization of 40
preamplifier
signals per crystal
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event selection in
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Gamma Ray Energy Tracking Array

[E’ t= (X’ y1 Z)crysta]
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Decay Spectroscopy



Nuclear ground-state decay

Nuclei decay toward stability (and a lower energy state) via one of
four basic decay modes:

Alpha decay ( — Z-2, N-2)

Beta(-) decay (— Z+1, N-1)
Beta(+) decay (— Z-1, N+1)
Fission (— 2 fragments + n)

1p & 2p radioactivity




Decay observables

- Nuclear decay measurements allow access to a number of

observables
- Half-life information for decaying state
- Energies for emitted particles (spectroscopic information in daughter
nucleus)

- Gamma-rays de-exciting daughter states populated in decay
- Excited state spins and parities based on selection rules for primary decay and
subsequent gamma decay



Decay half-lives

All radioactive decay modes obeys Poisson statistics and are described by

straight-forward differential equations.

L — A= Aye -
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\ Time
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Decay half-lives

Even with the most limited
statistics, half-lives can be
extracted

The equations of exponential
decay are well known and can
be applied using statistical
techniques such as maximum
likelihood to obtain half-lives
from tens of observed decays

D. Bazin et al., PRL 101, 252501 (2008).
F. Bosch et al., Int. J. Mass Spectr. 251, 212 (2006).
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Decay observables

- Nuclear decay measurements allow access to a number of

observables
- Half-life information for decaying state

- Energies for emitted particles (spectroscopic information in daughter
nucleus)
- Gamma-rays de-exciting daughter states populated in decay
- Excited state spins and parities based on selection rules for primary decay and

subsequent gamma decay
Forbiddenness AJ An

- Consider B-decay (and other decays) as a tool to | superaliowed | 0* = 0* no
populate excited states in daughter nuclei, with a  Allowed 0,1 no

unique selectivity First forbidden | 0,1,2 | yes
Second forbidden | 1,2,3 | no

Third forbidden 2,3,4 |yes




Implantation B decay spectroscopy
B-Delayed Gamma Spectroscopy

X - gamma rays following decay
events provide information on
“ ” ” low-level structure of daughter
, nuclei
Yoy
A
Z+1YN-1

Isomeric Decay
- depending on the production mechanism,

nuclei may be produced in long-lived excited T,, W
states (isomeric states) T, A\
- a TAC for implantation-gamma provides the ), &

possibility for isomer lifetime determination, if
you look for gammas following an
implantation



Implant-decay correlation technique

Decay particle (8, a, p etc.)

/ -7 :> J/%

Nucleus of Interest

The use of highly-segmented detectors allows temporal and spatial
correlations between implanted nuclei, and their subsequent decays — detect
the implant and the decay to obtain half-lives and information on levels in the

daughter relative to the parent ground state
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The FRIB Decay Station initiator (FDSi) is being
led by ORNL and UTK, and includes (in addition to
HPGe), fast timing scintillators, neutron-detection
and possibilities for TAS measurements




Proton decay

Even when the Q value for proton removal
becomes positive, proton emission is
hindered due to the Coulomb (and

>20 Coulomb - i ioactivi

c oulom centrifugal) barriers — radioactivity

> (e e —— 4,0. e - j—
20 Radius (fm) :

Nuclear




Proton emission branches in >4mMNi
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*  Arecent experiment with the ACTAR TPC measured proton decay from isomeric states in %4Ni

* Data were reproduced reasonably well with shell-model calculations for the initial and final state
wavefunctions and a barrier penetration model for the proton emission

J. Giovinazzo et al., Nature Communications 12, 4805 (2021).



Probing Wavefunctions

Direct Reactions



Beyond excitation energies and spins?

Can we probe the details of the wavefunction

‘directly’?

|s there a way to tell where the particles are in terms of single-

particle states (even within a specific model)?

Protons
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Direct nucleon removal (or addition)

Information regarding the ‘occupancy’ of single-particle states can be
investigated within a model framework

Two energy regimes --> low-energy transfer experiments and intermediate
energy knockout
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Direct nucleon removal (or addition)

Information regarding the ‘occupancy’ of single-particle states can be
investigated within a model framework

Two energy regimes --> low-energy transfer experiments and intermediate
energy knockout
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Direct nucleon removal (or addition)

Information regarding the ‘occupancy’ of single-particle states can be
investigated within a model framework

Two energy regimes --> low-energy transfer experiments and intermediate
energy knockout

P32 — D3,
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Selectivity of the reaction mechanism

« Knockout / nucleon removal
» Fusion — evaporation

* Transfer

* Deep inelastic

« Scattering (elastic / inelastic)
» Capture



Fusion evaporation vs. direct transfer

e A+b=C->D+X
° 12C(180,3ﬂ)275i*

e Compound system has NO
‘ ‘ > —p memory of its formation
* Evaporated particle energies

Recoil

Beam o give excitation energies of final
Compound o ® states
nucleus
Evaporated
particles
Recoil

Target nucleus

e Two-body A(b,c)D
Light prOJectlle . 160(d,p)170*
* Qutgoing particle DO retain
knowledge of transferred
particles
G

Outgoing ion



Knockout reaction vs. direct transfer

Recoil
* A+b=c—Xn-Xp
- e 9Be(*S,-1pln)42P*
— —» e Momentum distribution of

_ recoil reflects orbital

‘ . momentum transfer

Beam
o

Target Knocked out

nucleons

Target nucleus Recoil

e Two-body A(b,c)D
. 160(d,p)17o*
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G
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knowledge of transferred
particles

Outgoing ion



Transfer reactions: measured quantities
[Q(g.S) = +2.92 MeV]
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Transfer reactions: extracted quantities

Sensitivity of the differential cross sections to orbital angular
momenta (/) of transferred nucleon(s)
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Transfer reaction: extracted quantities

do/d [arb. units]

Experimental spectroscopic factor

[Relative values are typically reliable (<25%)]

[absolute values can be tricky (>30%)!]

Calculated cross section
for “pure” single-particle

like state
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Nucleon knockout reactions

Intermediate energy beams (> 50 MeV/nucleon)
- Sudden approximation + eikonal approach for reaction theory

Spectroscopic strengths --> exclusive cross-sections

» Populated states in A-1 residue provide detailed measure of beam

structure
=2 |
Projectile Knockout residue /
\I\N\l\'\rg\;a'mma ray -
> Py
residue moment distribution
- {-value of knocked-out n

Theoretical cross-section
Reaction theory

-TT A W 20/ T - O - 7T
o(j") = (H) C?S(§™)o (4, SN + E.[§™])
Structure theory



Neutron knockout — °Be(3**Ar, 33Ar)X

33Ar 1358(6) keV projectile frame 6 ‘
00 v/c=0.363 Si2
20 _gnseetl O
d5/2

—

3

X

o 1795(7) keV S
%0 ground

E 2460(9) keV state of excited final
S SAr state of 33Ar
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Collectivity: B(E2) from excitation probability

Coulomb excitation:

Projectile
* purely Coulomb interaction causes excitation of Zp
the nucleus of interest v/c ‘
> v )
* well described interaction, and cross-section “Jy

relates to transition matrix element, i.e. B(E2) for
0+ --> 2+ in even-even nuclei.

A Zpoe*\* w 1/(A—1) fora >2
Omd ™ ( ) e2p2h—2 B(@4,0—2) [ 2In(by/bmin) fori =1

min



Pear shaped nuclei and atomic EDM
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Summary

- Nuclear excitation spectra (energies, spins and parities of excited
states) are fundamental experimental observables

- Patterns of excitation provide insight into symmetries and collective
properties of nucleus
- Vibrational spectra

- Rotational spectra
- Single-particle excitations

D

- Nuclear decay provides access to excitation spectra, as well as
fundamental observable such as half-life



Thank You



Locating the driplines

The limits of existence are defined by the proton and neutron driplines
S, (or S;) become positive — neutron/proton are not bound;
emission does not require energy input

Nuclear Structure — Lecture 1 | NNPSC 2022



Mapping the Neutron Dripline up to Ne
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Mapping the Neutron Dripline up to Ne

EQP 4UP 41 P 42P i,’rP

Stable nucleus
. Drip-line nucleus
. Newly discovered
D New lifetime measurement

?  Existence to be determined
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Fragmentation cross-sections

A change in the trend W
9 : *6&#*» I
of fragmentation - 6O el v ’J ]
cross-sections #® ﬁ @ Bk PR
24 .s**&&&$ﬁ~

indicates a change in
the binding —
enhanced binding
suggestive of a
change in nuclear
structure?

O. Tarasov et al., PRL 102, 142501 (2009)
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