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Why study nuclear structure and reactions?

“We are made of star stuff...”

 What are the limits of nuclear existence, and
what features arise near and beyond these
limits?

 What is the nature of the nuclear force that
binds protons and neutrons into stable nuclei
and rare isotopes, and how do the rich
phenomena of nuclear structure and reactions
emerge”?

« How do single-nucleon, cluster, and collective
degrees of freedom coexist and evolve with

increasing proton-neutron imbalance and
excitation energies?

* What is the nature of dense matter and neutron
stars?
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Why study nuclear structure?

Studying exotic nuclei extends the range over which theories can be tested.

Goal: Establish the physical properties of exotic nuclei and their interactions (reactions)
to constrain theory and improve predictive power
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Why study nuclear structure?

Studying exotic nuclei extends the range over which theories can be tested.

Goal: Establish the physical

properties of exotic nuclei and
their interactions (reactions) to ﬁ m
constrain theory and improve

predictive power

Physical properties

Mass, decay lifetime, production cross-section, electric and magnetic moments, excited
state properties (moments, energies, lifetimes), etc...

Note = the observables in an experiment may or may not require interpretation to relate
to physical properties
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Observables

Ultimately, we would like to understand the wavefunction of nuclear states. But
these are not observable quantities.

Observables:

Half-life, mass, decay modes, electric/magnetic moments, cross-sections,
momentum distributions, transition probabilities, ....
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Challenges for radioactive nuclei

The observables we’re interested in for stable nuclei are the same ones we’re interested
in for exotic systems.

Most techniques translate as well...but radioactive nuclei add some experimental
challenges.

Biggest challenges:

Half-life — how do you study an isotope that lives for a fraction of a second (ms
timescale for beta-unstable nuclei)

Production — how do you study nuclei you only see once a week, or less?
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Scales: Energy and size
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Scales: Energy and size
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Nuclear structure physics

rotational motion vibrational motion

Nuclear excitations:
Molecular excitations: Erot ~ Evio ~ Esingle particie
Erot << Evib << Eelectric (a" MeV)

(ueV <<meV << eV)
Collective and single-particle excitations are

Molecular excitations are separable — wavefunctions can all of a similar energy scale and interact

be treated as product of terms
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Nuclear landscape

»
»
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Nuclear landscape basics

A given nucleus is a bound system of
N neutrons and Z protons, with a
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Nuclear landscape basics

A given nucleus is a bound system of
N neutrons and Z protons, with a

total mass number A=N + Z T T [T (e e g
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Isotones: Same N, but different Z HEEE ,‘L

12C, 1B, '°Be, °Li, 8He, ... B ——

Isobars: Nuclei with the same mass number A
12N, 12C, 12B, 1°Be, ...
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Nuclear landscape limits

Nuclear Structure — Lecture 1 | NNPSS 2023

80

Number of Isotopes

= Estimated by theory j
= Produced at FRIB ‘Hﬂ,ﬂn‘

10 20 30 40 50 60 70 80 90
Atomic Number

254 stable isotopes have been observed;
more than 3000 isotopes have been made
in laboratories;

as many as 6000-8000 are expected to
possibly exist



“Exotic’” nuclei

Exotic Nucleus:

Normal Nucleus:

P

6 neutrons 16 neutrons

6 protons (carbon) 6 protons (carbon)

12 220

Stable, found in nature Radioactive, at the limit of

nuclear binding

“Exotic” nuclei are those which will undergo radioactive decay towards a lower-energy system
They are characterized by:

. excess of protons or neutrons

- short half-lives

- neutron/proton dominated surface

- low binding of nucleons

Nuclear Structure — Lecture 1 | NNPSS 2023



What binds the nuclear system?

Why / how do nuclei exist?



The Nuclear Force(s)

Properties of the Nuclear Strong Force

Consider a very simple and common nucleus - “He
« Two protons, and two neutrons

How is this held together?
«  Gravity:
— Let’s consider the gravitational attraction between 1 proton and the other three nucleons
— Mass of nucleon ~ 1.67x10-?7kg
— Radius of nucleus ~ 10-"°m F=0a
—  Force ~ 5.6 x 1034 N (attractive) T

mimey

,G = 6.67 x 107 "' Nm?kg 2
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The Nuclear Force(s)

Properties of the Nuclear Strong Force

Consider a very simple and common nucleus - “He
« Two protons, and two neutrons

How is this held together?
«  Gravity:
— Let’s consider the gravitational attraction between 1 proton and the other three nucleons
— Mass of nucleon ~ 1.67x10-?7kg
— Radius of nucleus ~ 10-"°m F=0a
—  Force ~ 5.6 x 1034 N (attractive) T

™2 G = 6.67 x 10" Nm2kg 2

«  Coulomb repulsion between the protons:
— Same radius, each has 1e (1.6x10-'°C) charge

— Force ~ 231 N (repulsive) q192

)
r2

F=k, k. = 8.988x10° Nm2C 2
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What binds the nuclear system?

Protons and neutrons are bound together by the strong force.

The strong (colour) force between quarks in one proton, and quarks in another proton is
sufficient to overcome the electromagnetic repulsion

300 _' T T T' L L B L B |
[ ’L; _ 197-331\:3”' fm i Consider the nuclear binding force as:
] Mc Mc . _ _
2007 ] - a residual strong interaction, or
T [ | . the exchange of mesons
% 100 frepulsive D i o
;3 : core (p, ®, G)
|
Bonn
Reid93 |
-100 _- AV18 r [fm] -
o Tos s T

From T. Hatsuda (Oslo 2008)
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The Nuclear Force(s)

Properties of the Nuclear Strong Force

1. Nuclei exist - they are not 2. The motion of the
blown apart by Coulomb planets, our interactions
repulsion which is much, with the Earth etc. are
much stronger explained by gravity.

gravitational attraction.
There is a strong attractive

force that binds nucleons
into nuclei.

GREAT-NS Lectures - Week 2 | BERKELEY LAB

There are 45 stable
isotopes with Z=20 or
less.
— 20 of these have an
even Z and and even
N
— 21 have anevenZ or
an even N
— 4 have an odd Z and
odd N



The Nuclear Force(s)

Properties of the Nuclear Strong Force

1. Nuclei exist - they are not 2. The motion of the 3. There are 45 stable
blown apart by Coulomb planets, our interactions isotopes with Z=20 or
repulsion which is much, with the Earth etc. are less.
much stronger explained by gravity. — 20 of these have an
gravitational attraction. even Z and and even

The strong force must act N
There is a strong attractive over a short range only. — 21 have aneven Z or
force that binds nucleons aneven N
. . — 4 have an odd Z and
into nuclei.
odd N

The strong force has a pairing
component, which favors
pairs of nucleons.
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Pion exchange model

Can interpret the nuclear strong force as an exchange p{ﬁ

force involving neutral pions, 110

Hideki Yukawa judged the range of the nuclear force to
be about 1 fm, and calculated the range of the exchange
particle to be of order 100 MeV/c? — led to discovery of

d

the pion

I .I — Proton

. ._Neutron
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— For a proton to interact with another proton, it must
exchange something with it, but quarks are confined, thus
exchange quark-antiquark pair (meson); lightest is pion,
defining the upper range for the nuclear strong force



Binding energy and mass

Mass M(N,Z) of neutral atom (of order GeV)
Mass excess:
A(N,Z) = M(N,Z) — uA (of order MeV)
Atomic mass unit u = M('2C)/12 = 931.5 MeV/c2
->A(2C)=0
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Binding energy and mass

Mass M(N,Z) of neutral atom (of order GeV)
Mass excess:
A(N,Z) = M(N,Z) — uA (of order MeV)
Atomic mass unit u = M('2C)/12 = 931.5 MeV/c2
->A(2C)=0

Binding energy:
B(N,Z) = ZMuc? + NM,,c2 — M(N,Z)c?
| BIN.2) = ZAyc? + NA? — AN, Z)c?|
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Binding of nuclei — Fission and fusion
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The liquid-drop model for nuclear binding

B(Z,A) = ayA + agA23 + acZ2/A1B + as(N-Z)2/A — ap/A12
A

/ T Asymmetry term T

Coulomb term a, =28.1 MeV Pairing term
Volume term ac =0.717 MeV ap = 12.0 MeV
ay =-15.68 MeV (+) even-even
Surface term (-) odd-odd
as = 18.56 MeV (0) even-odd

R = rOA1/3
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BE-LDM Fit (keV)

Semi-empirical (liquid drop) mass vs. reality
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Nucleon separation energies

Ground state masses directly are large; changes in trends are obscured

More useful are differences in masses, the energy required to remove nucleons
from a given system

S, = B(N,Z) — B(N-2,Z) = M(N-2,Z) + 2M,, — M(N,Z)
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Question!

Why would nuclear physicists usually consider plots of S, rather than S,,?

A) Removal of a single neutron is not allowed in any nuclear system

B) Mass differences between even-N and odd-N systems are large

C) Neutrons provide more information than protons for nuclear structure
)

D) S, is more difficult to calculate
/7l @

(
(
(
(
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Question!

Why would nuclear physicists usually consider plots of S,,, rather than S,,?

A) Removal of a single neutron is not allowed in any nuclear system

B) Mass differences between even-N and odd-N systems are large

C) Neutrons provide more information than protons for nuclear structure
)

D) S, is more difficult to calculate
3

(
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Sn (keV)

Nucleon separation energies
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Differences in nucleon separation energies
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lonization energies in atoms...
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Nuclear magic numbers
Similar indicators are found across the nuclear

o “re Natural abundance landscape, suggesting a nuclear shell/structure.
of the isotopes Tuun =i

8l shows peaks at P
g particularly stable
2 2| nclei.
£ i (%

100’ l

N=126
Heaviest-stable nucleus — 22Pb
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509N has 10 stable isotopes, 2
more than any other nucleus
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Firestone, R.B. Table of Isotopes. Wiley, New York, 1996.
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Nuclear shell structure

------------------ 2f
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Nuclear shell structure

.................. 2f
0@ e BE R | -
N Single-particle levels in nuclei
2d R 2d23 - Single-particle levels in the fermionic system are grouped
g {gg;g into shells, with stabilizing gaps between groups of states
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Nuclear shell structure signatures

To improve our understanding and m 2
descriptions of nuclei far from stability, g(2+) Transition
we need to identify the location of shell probability
gaps, and ideally the spacing between , B(E2)
single-particle states in the most exotic Even-oven 0
nuclei. nuclei

Structure of Even-Even Nuclei

The ground state of even-even nuclei is always 0+,
while the first excited state is usually a 2+ state.
The energy of this state, and the cross-section to
populate it are sensitive to details of the nuclear
structure.

1
2J; +1

B(E2;i — f) = (Ap ]| E2 ||Nii)?
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“Exotic” shell structure
A driving question in nuclear science:

1dg/a
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N e 1/ Is the shell-model static across the entire chart of nuclides?
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Masses and shells
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Mass observables

S,. = B(N,Z) — B(N-2,Z) = M(N-2,Z) + 2M. — M(N,Z)

S,, = B(N,Z) - B(N,Z-2) = M(N,Z-2) + 2M,; — M(N,Z)

\ 4

Measure nuclear masses for first insight
to exotic nuclei. But we need to
produce them.
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Making exotic nuclei
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To study the most exotic nuclei
we must first produce them.
Using stable beam facilities and
different combinations of targets
+ beams, a wide variety of
exotic nuclei can be produced
and studied.

-

However, there are a finite #
of combinations of stable
beams + targets — make

radioactive beams, and use

these

Figure: Borrowed from R.M. Clark, 2007 RIA Summer School



Isotope Separation On-Line (ISOL)

Examples of ISOL facilities:
TRIUMF (Canada)
SPIRAL/SPIRALZ2 (France)
HIE-ISOLDE (CERN)

Accelerator

Thick, Hot Target

Fragment
Separator

Post-Accelerator/ Experiment

Nuclear Structure — Lecture 1 | NNPSS 2023



ISOL Facilities - TRIUMF
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TRIUMF is home to the world’s largest
cyclotron — accelerates H™to 520 MeV,
extracts as proton beam

Proton beam is sent into target hall, and

interacts with thick targets (materials
such as UC)



ISOL Facilities - TRIUMF
ISAC-I and ISAC-II Facility

TIGRESS

RFQ

TRINAT

High Reéolution
LEBT Mass Separator

Target Stations 500 MeV

Protons
Nuclear Structure — Lecture 1 | NNPSS 2023 Cyclotron



ISOL - Considerations

* Nuclei produced within the crystal lattice of the target must migrate to the surface
— very chemically selective process

* Due to extraction time, limited isotopes with long lifetimes — 1> 1s

« Beamions lose a LOT of energy in the target — targets must withstand very high
temperatures, which limits materials available

* Products that diffuse to the surface must still be ionized before they can be used
in an experiment — again, chemically selective

« Chemically selectivity results in good Z purity of radionuclides, but you need mass
separator ionization to isolate according to A — with this though, can obtain
isotopically pure beams

» Reaccelerate rare-isotopes so beams are often very good quality, and for certain
elements, very high intensity (i.e. alkali earth)



What can we make? — ISOL

80 F
400 MeV/u
70 F
100 kW
60 F
50 F
N 40 b
30 F
= Stable isotopes
= Fragmentation
20 ¢ « ISOL
= |n-flight fission
10 T,,=1sec

120 140

0 20 40 60 80 100
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Fragmentation + In-flight separation

Thin Production Examples ofFfs:%mentation facilities:
(USA)

Target RIKEN (Japan)

GANIL (France)

GSI (Germany)

Accelerator

lon Source
Fragment

Separator

Rare Isotope
Beams
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Fragmentation facilities - FRIB

Experiments with fast, stopped,
and reaccelerated beams

" llig chr f«. v % .
e | el Rare isotope
. production area and

isotope harvesting
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Fragmentation + separation: Example

RT&R
- 5 K500
86Kr — 78Ni = RN
ch;%a MY final
’ o focus
<& \
S o
stripping g 4
foil et BEE~
- /
s o
Wedge
production 78N1

target

65% of the 78Ni is transmitted
Rate ~ 102 /s (max)
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Fragmentation - Considerations

» Production of nuclei is chemically independent — you make everything
lighter than your primary beam, and it's moving FAST

« NEED in-flight separation to obtain clean secondary beams, and will
still usually not obtain 100% beam purity

« Beams are high energy, momentum spread in reactions means they
can have large emittances, etc.

» Certain experimental techniques are either NOT possible, or need to
be significantly altered for fast beams™
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Fragmentation - Considerations

» Production of nuclei is chemically independent — you make everything
lighter than your primary beam, and it's moving FAST

« NEED in-flight separation to obtain clean secondary beams, and will
still usually not obtain 100% beam purity

« Beams are high energy, momentum spread in reactions means they
can have large emittances, etc.

» Certain experimental techniques are either NOT possible, or need to
be significantly altered for fast beams™

* Reaccelerated beams from at FRIB address this
challenge in part, but not completely
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What can we make? — Fragmentation

I I 1 I I 1 1
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Fission-fragment accelerator

Ci 292Cf source

CARIBU (Californium Rare lon Breeder

Upgrade)

@ Argonne National Laboratory
Turns a source of neutron-rich
isotopes, such as a spontaneous
fission source, into a low-energy
beam using a gas catcher and
charge breeder

CARIBU: www.phy.anl.gov/atlas/caribu.html
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Fission fragment yields

Production has inherent selectivity — cannot produce all nuclei
but will provide an intense source of certain species.

I T B I I |
Dy
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On the horizon: Photo-fission production

238 Target
E- Linac

lon Source

Fragment
Separator

Post-Accelerator/ Experiment
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Question!

If you wanted to run an experiment on 42Ar, where would you go to make the
measurement?

A) TRIUMF (ISOL facility)

B) NSCL (fragmentation facility)

C) CARIBU (fission fragments)

D) RIKEN RIBF (fragmentation facility)

(
(
(
(

1
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Question!

If you wanted to run an experiment on 42Ar, where would you go to make the
measurement?

A) TRIUMF (ISOL facility)
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Mass Measurements



Mass measurements

Direct vs. indirect

e Indirect measurements
- Q-value measurements — decay and kinematics from two-body reactions

 Direct measurements A(a, b)B
- Conventional mass spectrometry Q=M,+ |\}| — M, - Mg
a

o Time-of-flight measurements
- Spectrometer, multi-turn or multi-reflection
- Frequency measurements
- Penning traps, storage rings

Dispersion
D=Axm/Am
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TOF mass measurements

Obtain mass based on equations of motion for charged particles through a
magnetic system.

FLorentz = Fcentrifugal

2
— quBsin(0) = mTv

m = 7YMo

* Measure multiple masses
simultaneously

» Accuracy Am/m --> 10-6

» Lifetimes down to ms

Measurement requires precision knowledge of TOF and magnetic rigidity (Bp).
— |n practice, measure known masses to calibrate TOF measurements

Experimental equipment — long flight-path magnetic separator
— TOFI @ LANL, SPEG @ GANIL, ARIS+S800 @ FRIB...
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TOF mass measurements

Solid angle Q =20msr

Momentum acceptance dp/p =1 % (due to MCP)

Max Rigidity Bp =4Tm
Central flight Path L, =59m
Achieved Mass M/AM = 5500
Resolution

P - 10° T T T T3
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- 10* w =
B 63, _Mn 3
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Z. Meisel, PhD Thesis, 2015.
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MR-TOF - %4Ca at ISOLDE

Reference ion source

1
L,

RFQ cooler and buncher

e st e o e e v e e e e |

MR-TOF mass spectrometer

ISOLDE ion beam

TOF measurements require long
flight path lengths; a method
around this is to “reuse” the same
flight distance —
multi-reflection TOF

F Wienholtz et al. Nature 498, 346-349 (2013).
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Towards

Penning traps

TOF detector
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Penning trap mass measurements
B

Mass measurement comes from determination of the
cyclotron frequency for the characteristic motion of the
stored ions

magnetron (-) reduced cyclotron (+)

Motion is superposition of three fundamental motions:
. axial motion (f,)
. magnetron motion (f.)
. modified cyclotron motion (f,)
- fo=f, +f

electrode I
lon source
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Penning trap mass measurements

Strong homogenous B field provides radial
confinement; weak electric quadrupole field
provides axial confinement

Excite cyclotron motion with multipolar RF (to
excite cyclotron motion resonance)

U

Transform radial to axial energy and eject ions
toward particle detector

¥

Measure TOF to detector
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Constantly measure reference ions as
well to reduce systematic error in
measurements (varying B field, etc.)

G. Bollen et al., Phys. Rev. Lett. 96, 152501 (2006).



Phase Imaging lon Cyclotron Resonance

Penning trap position-sensitive detector Phase Imaging ICR Detection
" number of

|| ID' " i """""" “ """" detected ions
.‘ «— start 60

&

O]

radial ion motion in a Penning trap

projection with
magpnification G|,
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Describing masses

Algebraic descriptions:
» Garvey-Kelson (GK) relationships between sums and differences between

masses

Microscopic-macroscopic:
» Finite-range droplet model (FRDM) — 31 parameters fit to data
* Bulk part from liquid drop + shell and pairing corrections

Microscopic:
 Relativistic mean-field (RMF) and - B
Hartree-Fock Bogoliubov (HFB);
use effective nucleon-nucleon
interactions
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What can we predict?
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Away from available data, predictions still vary widely.
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Question!

What technique would be best suited for measuring the (most accurate) mass
of an exotic nucleus with a lifetime of about 10 ms?

A) Penning trap mass spectroscopy

B) TOF measurement at ISOL facility

C) TOF measurement at fragmentation facility
D) Decay Q-value measurement
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Question!

What technique would be best suited for measuring the (most accurate) mass
of an exotic nucleus with a lifetime of about 10 ms?

A
B

C
D

Penning trap mass spectroscopy

TOF measurement at ISOL facility

TOF measurement at fragmentation facility
Decay Q-value measurement
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Thank You



