

Lattice QCD (selected topics) Lecture 1

Martha Constantinou

Temple University

July 10, 2023

USQCD Nuclear Physics Program

★ Important Lattice QCD contributions that complement the experimental program in both Hot and Cold QCD

How can we achieve our goals?

How can we achieve our goals?

Why is it important?

- ★ Hadron spectroscopy Exotic states
- ★ Hadron structure
- ★ Nuclear Forces and Nuclei
- ★ Nuclear Astrophysics
- ★ Beyond the Standard Model Physics
- ★ Hot QCD (quark-gluon plasma, QCD phase diagram)

How can we achieve our goals?

Why is it important?

- ★ Hadron spectroscopy Exotic states
- ★ Hadron structure
- ★ Nuclear Forces and Nuclei
- ★ Nuclear Astrophysics
- ★ Beyond the Standard Model Physics
- ★ Hot QCD (quark-gluon plasma, QCD phase diagram)

How can we achieve our goals?

- **\star** Numerical simulations of QCD (lattice QCD):
 - billions of degrees of freedom
 - mathematical & computational challenges

Why is it important?

- ★ Hadron spectroscopy Exotic states
- ★ Hadron structure
- ★ Nuclear Forces and Nuclei
- ★ Nuclear Astrophysics
- ★ Beyond the Standard Model Physics
- ★ Hot QCD (quark-gluon plasma, QCD phase diagram)

How can we achieve our goals?

- \star Numerical simulations of QCD (lattice QCD):
 - billions of degrees of freedom
 - mathematical & computational challenges

Why is it important?

★ Comprehend and interpret the core of the visible matter

- ★ Hadron spectroscopy Exotic states
- ★ Hadron structure
- ★ Nuclear Forces and Nuclei
- ★ Nuclear Astrophysics
- ★ Beyond the Standard Model Physics
- ★ Hot QCD (quark-gluon plasma, QCD phase diagram)

How can we achieve our goals?

- \star Numerical simulations of QCD (lattice QCD):
 - billions of degrees of freedom
 - mathematical & computational challenges

Why is it important?

★ Comprehend and interpret the core of the visible matter

Numerical simulations of QCD address aspects of key questions

Numerical simulations of QCD address aspects of key questions

How do the properties of nucleons (p,n) emerge from the dynamics of their quark and gluon constituents?

Numerical simulations of QCD address aspects of key questions

How do the properties of nucleons (p,n) emerge from the dynamics of their quark and gluon constituents?

What is the 3-D tomographic mapping of nucleons (p,n)?

Numerical simulations of QCD address aspects of key questions

How do the properties of nucleons (p,n) emerge from the dynamics of their quark and gluon constituents?

What is the 3-D tomographic mapping of nucleons (p,n)?

To what extent do we understand matter and energy? Is there New Physics to be discovered?

OUTLINE OF LECTURES

★ Monday, July 10: Motivation and Formulation of Lattice QCD

Tuesday, July 11: Renormalization and Hadron Spectroscopy

★ Wednesday, July 12: Hadron Structure - EIC physics

OUTLINE OF LECTURES

★ Monday, July 10: Motivation and Formulation of Lattice QCD

Tuesday, July 11: Renormalization and Hadron Spectroscopy

★ Wednesday, July 12: Hadron Structure - EIC physics

OUTLINE OF LECTURE 1

★ Quantum Chromodynamics in a nutshell

- ★ Path Integral Formalism
- ★ Lattice QCD formulation
- ★ Fermion and Gluon fields on the lattice
- ★ Landscape of numerical simulations
- ★ Key points of Lecture 1

Useful Reading Material

★ Lattice Gauge Theories: An Introduction H. J. Rothe https://www.worldscientific.com/worldscibooks/10.1142/1268

 Quantum Chromodynamics on the Lattice An Introductory Presentation
 Gattringer and C. Lang https://www.springer.com/us/book/9783642018497

Lattice quantum chromodynamics: practical essentials <u>Knechtli, Günther & Peardon</u> <u>https://link.springer.com/book/10.1007/978-94-024-0999-4</u>

Useful Reading Material

1

Review article for the European Physical Journal C (EPJ C)

50 Years of Quantum Chromodynamics

Franz Gross^{a,1,2}, Eberhard Klempt^{b,3},

Stanley J. Brodsky^{c,4}, Andrzej J. Buras^{c,5}, Volker D. Burkert^{c,1}, Gudrun Heinrich^{c,6}, Karl Jakobs^{c,7}, Curtis A. Meyer^{c,8}, Kostas Orginos^{c,1,2}, Michael Strickland^{c,9}, Johanna Stachel^{c,10}, Giulia Zanderighi^{c,11,12},

Nora Brambilla^{5,12,13}, Peter Braun-Munzinger^{10,14}, Daniel Britzger¹¹, Simon Capstick¹⁵, Tom Cohen¹⁶, Volker Crede¹⁵, Martha Constantinou¹⁷, Christine Davies¹⁸, Luigi Del Debbio¹⁹, Achim Denig²⁰, Carleton DeTar²¹, Alexandre Deur¹, Yuri Dokshitzer^{22,23}, Hans Günter Dosch¹⁰ Jozef Dudek^{1,2}, Monica Dunford²⁴, Evgeny Epelbaum²⁵, Miguel A. Escobedo²⁶, Harald Fritzsch^{d,27}, Kenji Fukushima²⁸, Paolo Gambino^{11,29}, Dag Gillberg^{30,31}, Steven Gottlieb³², Per Grafstrom³³ Massimiliano Grazzini³⁴, Boris Grube¹, Alexey Guskov³⁵, Toru Iijima³⁶, Xiangdong Ji¹⁶, Frithjof Karsch³⁷, Stefan Kluth¹¹, John B. Kogut^{38,39}, Frank Krauss⁴⁰, Shunzo Kumano^{41,42}, Derek Leinweber⁴³, Heinrich Leutwyler⁴⁴, Hai-Bo Li⁴⁵, Yang Li⁴⁶, Bogdan Malaescu⁴⁷, Chiara Mariotti⁴⁸, Pieter Maris⁴⁹, Simone Marzani⁵⁰, Wally Melnitchouk¹, Johan Messchendorp⁵¹, Harvey Meyer²⁰, Ryan Edward Mitchell⁵², Chandan Mondal⁵³, Frank Nerling^{51,54,55}, Sebastian Neubert³, Marco Pappagallo⁵⁶, Saori Pastore⁵⁷, José R. Peláez⁵⁸, Andrew Puckett⁵⁹, Jianwei Qiu^{1,2}, Klaus Rabbertz⁶⁰, Alberto Ramos⁶¹, Patrizia Rossi^{1,62}, Anar Rustamov^{51,63}, Andreas Schäfer⁶⁴, Stefan Scherer⁶⁵, Matthias Schindler⁶⁶, Steven Schramm⁶⁷, Mikhail Shifman⁶⁸, Edward Shuryak⁶⁹, Torbjörn Sjöstrand⁷⁰, George Sterman⁷¹, Iain W. Stewart⁷², Joachim Stroth^{51,54,55}, Eric Swanson⁷³, Guy F. de Téramond⁷⁴, Ulrike Thoma³, Antonio Vairo⁷⁵, Danny van Dyk⁴⁰, James Vary⁴⁹, Javier Virto^{76,77}, Marcel Vos⁷⁸, Christian Weiss¹, Markus Wobisch⁷⁹ Sau Lan Wu⁸⁰, Christopher Young⁸¹, Feng Yuan⁸², Xingbo Zhao⁵³, Xiaorong Zhou⁴⁶

arXiv: 2212.11107 https://inspirehep.net/literature/2617065

Contents

\Pr	eface		5
1	Thee	oretical Foundations	5
	1.1	The strong interactions	6
	1.2	The origins of QCD	14
2	Expe	erimental Foundations	17
	2.1	Discovery of heavy mesons as bound states of	
		heavy quarks	18
	2.2	Experimental discovery of gluons	23
	2.3	Successes of perturbative QCD	28
3	Fund	lamental constants	39
	3.1	Lattice determination of α_s and quark masses $% \alpha_s = 1$.	39
	3.2	The strong-interaction coupling constant	47
4	Latt	ice QCD	51
	4.1	Lattice field theory	51
	4.2	Monte-Carlo methods	59
	4.3	Vacuum structure and confinement	67
	4.4	QCD at non-zero temperature and density \ldots	78
	4.5	Spectrum computations	87
	4.6	Hadron structure	94
	4.7	Weak matrix elements	101
5	App	roximate QCD	108
	5.1	Quark models	109
	5.2	Hidden Color	116
	5.3	DS/BS equations	118
	5.4	Light-front quantization	129
	5.5	AdS/QCD and light-front holography	139
	5.6	The nonperturbative strong coupling	150
	5.7	The 't Hooft model and large $N \text{ QCD } \ldots \ldots$	152
	5.8	OPE-based sum rules	160
	5.9	Factorization and spin asymmetries	169
	5.10	Exclusive processes in QCD	179
	5.11	Color confinement, chiral symmetry breaking, and	
		gauge topology	185

Useful Reading Material

1

Review article for the European Physical Journal C (EPJ C)

50 Years of Quantum Chromodynamics

Franz Gross^{a,1,2}, Eberhard Klempt^{b,3},

Stanley J. Brodsky^{c,4}, Andrzej J. Buras^{c,5}, Volker D. Burkert^{c,1}, Gudrun Heinrich^{c,6}, Karl Jakobs^{c,7}, Curtis A. Meyer^{c,8}, Kostas Orginos^{c,1,2}, Michael Strickland^{c,9}, Johanna Stachel^{c,10}, Giulia Zanderighi^{c,11,12},

Nora Brambilla^{5,12,13}, Peter Braun-Munzinger^{10,14}, Daniel Britzger¹¹, Simon Capstick¹⁵, Tom Cohen¹⁶, Volker Crede¹⁵, Martha Constantinou¹⁷, Christine Davies¹⁸, Luigi Del Debbio¹⁹, Achim Denig²⁰, Carleton DeTar²¹, Alexandre Deur¹, Yuri Dokshitzer^{22,23}, Hans Günter Dosch¹⁰ Jozef Dudek^{1,2}, Monica Dunford²⁴, Evgeny Epelbaum²⁵, Miguel A. Escobedo²⁶, Harald Fritzsch^{d,27}, Kenji Fukushima²⁸, Paolo Gambino^{11,29}, Dag Gillberg^{30,31}, Steven Gottlieb³², Per Grafstrom³³, Massimiliano Grazzini³⁴, Boris Grube¹, Alexey Guskov³⁵, Toru Iijima³⁶, Xiangdong Ji¹⁶, Frithjof Karsch³⁷, Stefan Kluth¹¹, John B. Kogut^{38,39}, Frank Krauss⁴⁰, Shunzo Kumano^{41,42}, Derek Leinweber⁴³, Heinrich Leutwyler⁴⁴, Hai-Bo Li⁴⁵, Yang Li⁴⁶, Bogdan Malaescu⁴⁷, Chiara Mariotti⁴⁸, Pieter Maris⁴⁹, Simone Marzani⁵⁰, Wally Melnitchouk¹, Johan Messchendorp⁵¹, Harvey Meyer²⁰, Ryan Edward Mitchell⁵², Chandan Mondal⁵³, Frank Nerling^{51,54,55}, Sebastian Neubert³, Marco Pappagallo⁵⁶, Saori Pastore⁵⁷, José R. Peláez⁵⁸, Andrew Puckett⁵⁹, Jianwei Qiu^{1,2}, Klaus Rabbertz⁶⁰, Alberto Ramos⁶¹, Patrizia Rossi^{1,62}, Anar Rustamov^{51,63}, Andreas Schäfer⁶⁴, Stefan Scherer⁶⁵, Matthias Schindler⁶⁶, Steven Schramm⁶⁷, Mikhail Shifman⁶⁸, Edward Shuryak⁶⁹, Torbjörn Sjöstrand⁷⁰, George Sterman⁷¹, Iain W. Stewart⁷², Joachim Stroth^{51,54,55}, Eric Swanson⁷³, Guy F. de Téramond⁷⁴, Ulrike Thoma³, Antonio Vairo⁷⁵, Danny van Dyk⁴⁰, James Vary⁴⁹, Javier Virto^{76,77}, Marcel Vos⁷⁸, Christian Weiss¹, Markus Wobisch⁷⁹ Sau Lan Wu⁸⁰, Christopher Young⁸¹, Feng Yuan⁸², Xingbo Zhao⁵³, Xiaorong Zhou⁴⁶

arXiv: 2212.11107 https://inspirehep.net/literature/2617065

Contents

Preface				
1	Theo	pretical Foundations	5	
	1.1	The strong interactions	6	
	1.2	The origins of QCD	14	
2	Expe	erimental Foundations	17	
	2.1	Discovery of heavy mesons as bound states of		
		heavy quarks	18	
	2.2	Experimental discovery of gluons	23	
	2.3	Successes of perturbative QCD	28	
3	Fund	lamental constants	39	
	3.1	Lattice determination of α_s and quark masses $% \alpha_s = 1$.	39	
	3.2	The strong-interaction coupling constant	47	
4	Latt	ice QCD	51	
	4.1	Lattice field theory	51	
	4.2	Monte-Carlo methods	59	
	4.3	Vacuum structure and confinement	67	
	4.4	QCD at non-zero temperature and density	78	
	4.5	Spectrum computations	87	
	4.6	Hadron structure	94	
	4.7	Weak matrix elements	101	
5	Appi	roximate QCD	108	
	5.1	Quark models	109	
	5.2	Hidden Color	116	
	5.3	DS/BS equations	118	
	5.4	Light-front quantization	129	
	5.5	AdS/QCD and light-front holography	139	
	5.6	The nonperturbative strong coupling	150	
	5.7	The 't Hooft model and large $N \text{ QCD}$	152	
	5.8	OPE-based sum rules	160	
	5.9	Factorization and spin asymmetries	169	
	5.10	Exclusive processes in QCD	179	
	5.11	Color confinement, chiral symmetry breaking, and	105	
		gauge topology	185	

Characteristics of QCD and role in nature

studied in experimental facilities wordwide e.g. CERN, JLab, Mainz,...

Primordial nucleosynthesis between 10s to 20 min

Quantum Chromodynamics (QCD)

- \star Theory of the strong interactions
- Fundamental constituents:
 6 quark and 8 gluons
- ★ Included in elementary particles

Quantum Chromodynamics (QCD)

- \star Theory of the strong interactions
- Fundamental constituents:
 6 quark and 8 gluons
- ★ Included in elementary particles

Theory of QCD

★ Quarks & gluons carry a color quantum number

- quarks: 3 colors (red, blue, green)
- gluons interact with gluons (force mediators)

★ Only a few parameters needed to describe QCD

- quark masses
- coupling constant

★ QCD successfully describes a wide range of complex processes

- fusion and fission processes that power the sun
- formation and explosion of stars
- the state of matter at the birth of the universe

QCD is a non-abelian gauge theory with symmetry group SU(3):

- 8 generators of SU(3) gauge group
- dimensionality of transformation space: 3

QCD Lagrangian density:

$$\mathscr{L}_{\text{QCD}} = \sum_{f} \bar{\psi}_{f} \left(i \gamma^{\mu} D_{\mu} - m_{f} \right) \psi_{f} - \frac{1}{4} F^{a}_{\mu\nu} F^{a \, \mu\nu}$$
$$\gamma^{\mu} D_{\mu} = \gamma^{\mu} \partial_{\mu} + i g G^{a}_{\mu} \gamma^{\mu} T^{a}$$
$$F^{a}_{\mu\nu} = \partial_{\mu} G^{a}_{\nu} - \partial_{\nu} G^{a}_{\mu} - g f_{abc} G^{b}_{\mu} G^{c}_{\nu}$$

 f_{abc} : structure constants of SU(3)

- T^{α} : SU(3) generators, α : 1,2,...,8
- $F^{\alpha}_{\mu\nu}$: field tensor operator
- G^{α}_{μ} : gluon field

 $\psi_f^{s,c}(x)$: quark field, 4 component spinors, 3 component color, 6 flavors

QCD is a non-abelian gauge theory with symmetry group SU(3):

- 8 generators of SU(3) gauge group
- dimensionality of transformation space: 3

 G^{α}_{μ} : gluon field

 $\psi_f^{s,c}(x)$: quark field, 4 component spinors, 3 component color, 6 flavors

QCD is a non-abelian gauge theory with symmetry group SU(3):

- 8 generators of SU(3) gauge group
- dimensionality of transformation space: 3

QCD is a non-abelian gauge theory with symmetry group SU(3):

- 8 generators of SU(3) gauge group
- dimensionality of transformation space: 3

Features of QCD: The running couplingConfinementAsymptotic freedom

- ⇒ low energies/large distances
- ⇒ strong coupling
- ⇒ non-perturbative tools
- ⇒ hadrons and glue balls

- ⇒ high-energies/short distances
- ⇒ weak coupling
- ⇒ perturbative tools
- ⇒ quark and gluons

Features of QCD: The running couplingConfinementAsymptotic freedom

- ⇒ low energies/large distances
- ⇒ strong coupling
- ⇒ non-perturbative tools
- ⇒ hadrons and glue balls

- ⇒ high-energies/short distances
- ⇒ weak coupling
- ⇒ perturbative tools

Features of QCD: The running couplingConfinementAsymptotic freedom

- ⇒ low energies/large distances
- ⇒ strong coupling
- ⇒ non-perturbative tools
- ⇒ hadrons and glue balls

- ⇒ high-energies/short distances
- ⇒ weak coupling
- ⇒ perturbative tools

Perturbative tools are successful

Features of QCD: The running coupling

QCD vs QED

 m_{p^+}

QED:

- **Description of interaction between light and matter** \star
- \star Two types of electric charge: positive & negative
- Force mediated by exchange of photons \star
- Photons: no electric charge and do not self-interact \star

Hydrogen Atom: $m_{hydr} = 0.51 MeV + 938.29 MeV - 13.6 eV$ Ebinding

 m_{ρ} -

QCD vs QED

QED:

- ★ Description of interaction between light and matter
- ★ Two types of electric charge: positive & negative
- ★ Force mediated by exchange of photons
- ★ Photons: no electric charge and do not self-interact

Hydrogen Atom:
$$m_{hydr} = \underbrace{0.51MeV}_{m_{e^-}} + \underbrace{938.29MeV}_{m_{p^+}} - \underbrace{13.6eV}_{E_{binding}}$$

QCD:

- ★ Description of strong interaction between quarks and gluons
- ★ Three types of color charge: (red, blue, green)
- ★ Force mediated by exchange of gluons
- ★ Gluons carry color charge and do interact with gluons

Proton:
$$m_p = \underbrace{4.4MeV}_{2 \times m_u} + \underbrace{4.7MeV}_{m_d} + \underbrace{929.2MeV}_{interaction}$$

99% of the mass is due to interactions

QCD vs QED

QED:

- ★ Description of interaction between light and matter
- ★ Two types of electric charge: positive & negative
- ★ Force mediated by exchange of photons
- ★ Photons: no electric charge and do not self-interact

Hydrogen Atom:
$$m_{hydr} = \underbrace{0.51MeV}_{m_{e^-}} + \underbrace{938.29MeV}_{m_{p^+}} - \underbrace{13.6eV}_{E_{binding}}$$

QCD:

- ★ Description of strong interaction between quarks and gluons
- ★ Three types of color charge: (red, blue, green)
- ★ Force mediated by exchange of gluons
- ★ Gluons carry color charge and do interact with gluons

Proton:
$$m_p = \underbrace{4.4MeV}_{2 \times m_u} + \underbrace{4.7MeV}_{m_d} + \underbrace{929.2MeV}_{interaction}$$

99% of the mass is due to interactions

Individual starlings

Individual starlings

Individual starlings

murmuration of starlings

High-energy collisions

Perturbative QCD / phenomenology

First principles (Simulations on supercomputers)

High-energy collisions

Perturbative QCD / phenomenology

First principles (Simulations on supercomputers)

Wealth of information from each approach Synergistic research activities critical!

High-energy collisions

Perturbative QCD / phenomenology

First principles (Simulations on supercomputers)

Wealth of information from each approach Synergistic research activities critical!

High-energy collisions

Perturbative QCD / phenomenology

First principles (Simulations on supercomputers)

Wealth of information from each approach Synergistic research activities critical!

Let's start from the basics

Alexander the Great while cutting the Gordian knot

QCD

and beyond

M. Constantinou, NPSS 2023

- **★** Equivalent to the Schrödinger formalism more intuitive in interpretation
- **Very practical for quantum mechanics (weighted sum over all paths)**
- Critical for quantum field theories (weighted sum over all field values)
 Successfully applied to QCD (Lattice QCD)

- **★** Equivalent to the Schrödinger formalism more intuitive in interpretation
- **Very practical for quantum mechanics (weighted sum over all paths)**
- Critical for quantum field theories (weighted sum over all field values)
 Successfully applied to QCD (Lattice QCD)

 \star Partition function

$$\mathscr{Z} = \int D[U]D[\bar{\psi}] D[\psi] e^{iS_{\text{QCD}}[U,\bar{\psi},\psi]} = \int D[U] det(D[U])^{N_f} e^{iS_{\text{QCD},G}[U]}$$

Fermion degrees of freedom integrated out (anticommuting Granssmann variables)

- **★** Equivalent to the Schrödinger formalism more intuitive in interpretation
- ★ Very practical for quantum mechanics (weighted sum over all paths)
- Critical for quantum field theories (weighted sum over all field values)
 Successfully applied to QCD (Lattice QCD)

\star Partition function

$$\mathscr{Z} = \int \mathcal{D}[U] D[\bar{\psi}] D[\psi] e^{i S_{\text{QCD}}[U, \bar{\psi}, \psi]} = \int D[U] det(D[U])^{N_f} e^{i S_{\text{QCD},G}[U]}$$

Fermion degrees of freedom integrated

Functional volume element for corresponding fields

Fermion degrees of freedom integrated out (anticommuting Granssmann variables)

- **★** Equivalent to the Schrödinger formalism more intuitive in interpretation
- ★ Very practical for quantum mechanics (weighted sum over all paths)
- Critical for quantum field theories (weighted sum over all field values)
 Successfully applied to QCD (Lattice QCD)

\star Partition function

$$\mathscr{Z} = \int \mathcal{D}[U] D[\bar{\psi}] D[\psi] e^{i S_{\text{QCD}}[U, \bar{\psi}, \psi]} = \int D[U] det(D[U])^{N_f} e^{i S_{\text{QCD},G}[U]}$$

Fermion degrees of freedom integrated

Functional volume element for corresponding fields Fermion degrees of freedom integrated out (anticommuting Granssmann variables)

Observables:
 (v.e.v of operator)

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int D[U] \mathcal{O}(D^{-1}, U) \det(D[U])^{N_f} e^{i S_{\text{QCD}}[U]}$$

- **★** Equivalent to the Schrödinger formalism more intuitive in interpretation
- ★ Very practical for quantum mechanics (weighted sum over all paths)
- Critical for quantum field theories (weighted sum over all field values)
 Successfully applied to QCD (Lattice QCD)

\star Partition function

$$\mathscr{Z} = \int \mathcal{D}[U] D[\bar{\psi}] D[\psi] e^{i S_{\text{QCD}}[U,\bar{\psi},\psi]} = \int D[U] det(D[U])^{N_f} e^{i S_{\text{QCD},G}[U]}$$

Fermion degrees of freedom integrated

Functional volume element for corresponding fields Fermion degrees of freedom integrated out (anticommuting Granssmann variables)

Observables:
 (v.e.v of operator)

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int D[U] \mathcal{O}(D^{-1}, U) det(D[U])^{N_f} e^{iS_{\text{QCD}}[U]}$$

Complex action problem: makes weight sampling impossible (oscillatory phase factors)

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int D[U] \mathcal{O}(D^{-1}, U) det(D[U])^{N} e^{i S_{\text{QCD}}[U]}$$

★ Wick rotation to imaginary (Euclidean) time: $t \rightarrow i\tau$ (temporal and spatial components same sign in invariant length)

 $e^{iS_{\rm QCD}[U]} \rightarrow e^{-S_{\rm QCD}[U]}$

★ Statistical mechanics methods may be utilized (Boltzmann probability)

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int D[U] \mathcal{O}(D^{-1}, U) det(D[U])^{N} e^{i S_{\text{QCD}}[U]}$$

★ Wick rotation to imaginary (Euclidean) time: $t \rightarrow i\tau$ (temporal and spatial components same sign in invariant length)

 $e^{iS_{\text{QCD}}[U]} \rightarrow e^{-S_{\text{QCD}}[U]}$

★ Statistical mechanics methods may be utilized (Boltzmann probability)

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int D[U] \mathcal{O}(D^{-1}, U) \det(D[U])^{N_{e}} e^{iS_{\text{QCD}}[U]}$$

★ Wick rotation to imaginary (Euclidean) time: $t \rightarrow i\tau$ (temporal and spatial components same sign in invariant length)

 $e^{iS_{\text{QCD}}[U]} \rightarrow e^{-S_{\text{QCD}}[U]}$

★ Statistical mechanics methods may be utilized (Boltzmann probability)

We have not reach the lattice part yet!

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int D[U] \mathcal{O}(D^{-1}, U) \det(D[U])^{N_{e}} e^{iS_{\text{QCD}}[U]}$$

★ Wick rotation to imaginary (Euclidean) time: $t \rightarrow i\tau$ (temporal and spatial components same sign in invariant length)

 $e^{iS_{\text{QCD}}[U]} \rightarrow e^{-S_{\text{QCD}}[U]}$

* Statistical mechanics methods may be utilized (Boltzmann probability)

We have not reach the lattice part yet!

★ Path integral has infinite degrees of freedom:

Need to introduce a space-time discretization

Lattice formulation of QCD

 \star Serves as a regulator of theory:

 UV (hard momentum) cut-off (finite integrals): inverse lattice spacing (α⁻¹) momentum and energy < |π/α|

IR cut-off (finite number of d.o.f): inverse lattice size (V^{-1/4})

$$\int dp F(p) \rightarrow \sum_{n}^{N_{\text{max}}} \frac{2\pi}{L} F(p_0 + \frac{2\pi n}{L})$$

 $\int_{-\infty}^{\infty} dp \rightarrow \int_{-\infty}^{\pi/a} \frac{dp}{2\pi}$

Removal of regulator $L \to \infty, a \to 0$

'דנ'

Lattice formulation of QCD

M. Creutz

★ Space-time discretization on a finite-size 4-D grid

 \star Serves as a regulator of theory:

 UV (hard momentum) cut-off (finite integrals): inverse lattice spacing (α⁻¹) momentum and energy < |π/α|

$$\int_{-\infty}^{\infty} dp \rightarrow \int_{-\pi/a}^{\pi/a} \frac{dp}{2\pi}$$

- IR cut-off (finite number of d.o.f): inverse lattice size (V-1/4)

$$\int dp F(p) \rightarrow \sum_{n}^{N_{\text{max}}} \frac{2\pi}{L} F(p_0 + \frac{2\pi n}{L})$$

\bigstar Removal of regulator $L \to \infty$, $a \to 0$

Lattice formulation of QCD

Technical Aspects

Parameters (define cost of simulations):

- quark masses (aim at physical values)
- lattice spacing* (ideally fine lattices)
- lattice size (need large volumes)

★ Discretization not unique

- clover improved fermions
- Domain wall fermions
- Overlap fermions
- Staggered fermions
- Twisted mass fermions

★ Direct evaluation of (finite d.o.f.) path integral is unfeasible: One needs to invert the Dirac matrix (~ $10^8 \times 10^8$)

★ Direct evaluation of (finite d.o.f.) path integral is unfeasible: One needs to invert the Dirac matrix (~ $10^8 \times 10^8$)

★ Solution: Stochastic estimation of path integral

★ Direct evaluation of (finite d.o.f.) path integral is unfeasible: One needs to invert the Dirac matrix (~ $10^8 \times 10^8$)

★ Solution: Stochastic estimation of path integral

★ Discretization in a lattice of volume: e.g., 48³ × 96: 340 Million degrees of freedom!

★ Direct evaluation of (finite d.o.f.) path integral is unfeasible: One needs to invert the Dirac matrix (~ $10^8 \times 10^8$)

★ Solution: Stochastic estimation of path integral

Discretization in a lattice of volume: e.g., 48³ × 96: 340 Million degrees of freedom!

★ Representative ensemble of gauge field configurations of the vacuum with acceptance probability

 $e^{-S[U]+N_f \log(det(D[U]))}$

- Metropolis Algorithm:
- Very slow due to sequential repetition of updating variables
- Hybrid MC, important sampling, use of Markov process: update all variables at once, better scaling behavior in volume

★ Representative ensemble of gauge field configurations of the vacuum with acceptance probability

 $e^{-S[U]+N_f\log(det(D[U]))}$

- Metropolis Algorithm: Very slow due to sequential repetition of updating variables
- Hybrid MC, important sampling, use of Markov process: update all variables at once, better scaling behavior in volume
- ★ Expectation value of operator (correlation functions)
 for this distribution, which requires an inversion of sparse matrix

★ Representative ensemble of gauge field configurations of the vacuum with acceptance probability

 $e^{-S[U]+N_f\log(det(D[U]))}$

- Metropolis Algorithm: Very slow due to sequential repetition of updating variables
- Hybrid MC, important sampling, use of Markov process: update all variables at once, better scaling behavior in volume
- ★ Expectation value of operator (correlation functions)
 for this distribution, which requires an inversion of sparse matrix
- ★ Repetition of this process N times N: number of "measurements"

25

★ Representative ensemble of gauge field configurations of the vacuum with acceptance probability

 $e^{-S[U]+N_f\log(det(D[U]))}$

- Metropolis Algorithm: Very slow due to sequential repetition of updating variables
- Hybrid MC, important sampling, use of Markov process: update all variables at once, better scaling behavior in volume
- ★ Expectation value of operator (correlation functions)
 for this distribution, which requires an inversion of sparse matrix
- ★ Repetition of this process N times N: number of "measurements"

Average of results
$$\overline{O} = \frac{1}{N} \sum_{N} \mathcal{O}(U)$$

★ Representative ensemble of gauge field configurations of the vacuum with acceptance probability

 $e^{-S[U]+N_f\log(det(D[U]))}$

- Metropolis Algorithm:
 Very slow due to sequential repetition of updating variables
 Hybrid MC, important sampling, use of Markov process;
- Hybrid MC, important sampling, use of Markov process: update all variables at once, better scaling behavior in volume
- ★ Expectation value of operator (correlation functions)
 for this distribution, which requires an inversion of sparse matrix
- ★ Repetition of this process N times N: number of "measurements"

Average of results
$$\overline{O} = \frac{1}{N} \sum_{N} \mathcal{O}(U)$$

★ Statistical errors (jackknife, bootstrap) decrease as $\sigma(\overline{O}) \propto 1/\sqrt{N}$

★ Above benchmark is for a small-scale calculation

★ Above benchmark is for a small-scale calculation

★ Above benchmark is for a small-scale calculation

★ Above benchmark is for a small-scale calculation

Landscape of numerical simulations

Lattice (fermion) formulations employed by various groups: Wilson, Clover, Twisted Mass, Staggered, Overlap, Domain Wall, Mixed actions

Landscape of numerical simulations

Lattice (fermion) formulations employed by various groups: Wilson, Clover, Twisted Mass, Staggered, Overlap, Domain Wall, Mixed actions

Landscape of numerical simulations

Lattice (fermion) formulations employed by various groups: Wilson, Clover, Twisted Mass, Staggered, Overlap, Domain Wall, Mixed actions

Theoretical aspects of lattice QCD

Theoretical aspects of lattice QCD

The boring stuff...

M. Constantinou, NPSS 2023

Fermions and Gluons on the Lattice

Link variable U_{μ} relates to gauge field G_{μ}

T

$$U(x + a\hat{\mu}; x) = U_{\mu}(x) = \mathcal{P}e^{-ig \int_{x}^{x+a\hat{\mu}} dx G_{\mu}^{b}(x)T_{b}} \simeq e^{-igaG_{\mu}^{b}(x)T_{b}} \qquad x = na$$

$$\underbrace{U(x + a\hat{\mu}, x)}_{x \quad x + a\hat{\mu}} \qquad \Psi(x) : \text{ anticommuting Grassmann variables}$$

$$\underbrace{U(x, x + a\hat{\mu})}_{x \quad x + a\hat{\mu}} \qquad \Psi(x) : \text{ anticommuting Grassmann variables}$$

Fermions and Gluons on the Lattice

★ Lattice formulation "must" be invariant under SU(3) local gauge transformation

$$\psi(x) \to V(x)\psi(x), \quad \bar{\psi}(x) \to \bar{\psi}(x)V^{\dagger}(x)$$

 $U_{\mu}(x) \to V(x)U_{\mu}(x)V^{\dagger}(x+\hat{\mu}a)$

★ Giving up gauge invariance would create a series of problems:

- More parameters to tune (couplings for quark-gluon, 3- & 4-gluon interactions, the gluon mass,...)
- More operators at any given order in α , thus increase of discretization errors
- Proofs of renormalizability within perturbation theory rely on strict gauge invariance
 [T. Reisz & H. Rothe, Nucl.Phys. B575 (2000) 255]

★ Gauge invariant quantities:

- Products of Ψ(x), Ψ(x') and gauge links connecting x and x'
- Closed gluonic loops

 $V(x) = e^{-i\theta_a(x)\frac{\lambda_a}{2}}$

Fermions and Gluons on the Lattice

★ Lattice formulation "must" be invariant under SU(3) local gauge transformation

$$\psi(x) \to V(x)\psi(x), \quad \bar{\psi}(x) \to \bar{\psi}(x)V^{\dagger}(x)$$

 $U_{\mu}(x) \to V(x)U_{\mu}(x)V^{\dagger}(x+\hat{\mu}a)$

★ Giving up gauge invariance would create a series of problems:

- More parameters to tune (couplings for quark-gluon, 3- & 4-gluon interactions, the gluon mass,...)
- More operators at any given order in α , thus increase of discretization errors
- Proofs of renormalizability within perturbation theory rely on strict gauge invariance [T. Reisz & H. Rothe, Nucl.Phys. B575 (2000) 255]

★ Gauge invariant quantities:

- Products of Ψ(x), Ψ(x') and gauge links connecting x and x'
- Closed gluonic loops

$$P_{\mu\nu} \equiv U_{\mu}(x)U_{\nu}(x+a\hat{\mu})U_{\mu}^{\dagger}(x+a\hat{\nu})U_{\nu}^{\dagger}(x)$$

 $V(x) = e^{-i\theta_a(x)\frac{\lambda_a}{2}}$

Gluons on the Lattice

Gluon Actions:

Gluons on the Lattice

Gluon Actions:

plaquette

★ Choice of discretization not unique

Action	c_0	c_1	c_3
Plaquette	1.0	0	0
Symanzik	1.6666667	-0.083333	0
TILW, $\beta c_0 = 8.60$	2.3168064	-0.151791	-0.0128098
TILW, $\beta c_0 = 8.45$	2.3460240	-0.154846	-0.0134070
TILW, $\beta c_0 = 8.30$	2.3869776	-0.159128	-0.0142442
TILW, $\beta c_0 = 8.20$	2.4127840	-0.161827	-0.0147710
TILW, $\beta c_0 = 8.10$	2.4465400	-0.165353	-0.0154645
TILW, $\beta c_0 = 8.00$	2.4891712	-0.169805	-0.0163414
Iwasaki	3.648	-0.331	0
DBW2	12.2688	-1.4086	0

chair

O(a²) improved actions: approach better continuum limit

★ Discretization of fermionic action complicated

★ Naive discretization preserves gauge invariance, but results in fermion doubling problem: appearance of spurious states and continuum limit wrongly leads to 2⁴ fermions instead of one.

$$S_F^{naive} = a^4 \sum_x \frac{1}{2a} \gamma^{\mu} [\bar{\psi}(x) U_{\mu}(x) \psi(x + a\hat{\mu}) - \bar{\psi}(x) U_{\mu}^{\dagger}(x - a\hat{\mu}) \psi(x - a\hat{\mu})] + m\bar{\psi}(x) \psi(x)$$

Fermion propagator (in momentum space upon Fourier Transform): $\langle \psi(x)\overline{\psi}(y)\rangle = \lim_{a\to 0} \int_{-\pi}^{\pi} \frac{d^4k}{(2\pi)^4} e^{ik(x-y)} \frac{-i\sum_{\mu} \gamma_{\mu} sin(k_{\mu}) + m_0}{\sum_{\mu} sin^2(k_{\mu}) + m_0^2}$

Discretization of fermionic action complicated

Brillouin

In 4-dim

 \star Naive discretization preserves gauge invariance, but results in fermion doubling problem: appearance of spurious states and continuum limit wrongly leads to 2⁴ fermions instead of one.

$$S_F^{naive} = a^4 \sum_x \frac{1}{2a} \gamma^{\mu} [\bar{\psi}(x) U_{\mu}(x) \psi(x + a\hat{\mu}) - \bar{\psi}(x) U_{\mu}^{\dagger}(x - a\hat{\mu}) \psi(x - a\hat{\mu})] + m\bar{\psi}(x) \psi(x)$$

Fermion propagator (in momentum space upon Fourier Transform):

$$\langle \psi(x)\overline{\psi}(y)\rangle = \lim_{a \to 0} \int_{-\pi}^{\pi} \frac{d^4k}{(2\pi)^4} e^{ik(x-y)} \frac{-i\sum_{\mu} \gamma_{\mu} sin(k_{\mu}) + m_0}{\sum_{\mu} sin^2(k_{\mu}) + m_0^2}$$
Additional poles:
Vanishes at the ends of
Brillouin zone [-\pi/\alpha,\pi/\alpha].
In 4-dim these are sixteen
regions instead of p~0 only,
thus 16 species of fermions

$$\pi/a$$

Wilson action to avoid doubling problem [Kenneth G. Wilson, Phys. Rev. D10 2445 (1974)]

$$S_{F}^{W} = a^{4} \sum_{x,\mu} \bar{\psi}(x) \gamma^{\mu} D_{\mu} \psi(x) - a \frac{r}{2} \bar{\psi}(x) D_{\mu} D^{\mu} \psi(x) + m \bar{\psi}(x) \psi(x)$$

Wilson action to avoid doubling problem [Kenneth G. Wilson, Phys. Rev. D10 2445 (1974)]

$$S_F^W = a^4 \sum_{x,\mu} \bar{\psi}(x) \gamma^\mu D_\mu \psi(x) - a \frac{r}{2} \bar{\psi}(x) D_\mu D^\mu \psi(x) + m \bar{\psi}(x) \psi(x)$$

Wilson term, r: (0,1]

Wilson action to avoid doubling problem [Kenneth G. Wilson, Phys. Rev. D10 2445 (1974)]

$$S_F^W = a^4 \sum_{x,\mu} \bar{\psi}(x) \gamma^\mu D_\mu \psi(x) - a \frac{r}{2} \bar{\psi}(x) D_\mu D^\mu \psi(x) + m \bar{\psi}(x) \psi(x)$$

Wilson term, r: (0,1]

Denominator of Fermion propagator becomes

$$\frac{1}{a^2} \sum_{\mu} \sin^2(ak_{\mu}) + \left(m + \frac{2r}{a} \sum_{\mu} \sin(a\frac{k_{\mu}}{2})\right)^2$$

Wilson action to avoid doubling problem [Kenneth G. Wilson, Phys. Rev. D10 2445 (1974)]

$$S_F^W = a^4 \sum_{x,\mu} \bar{\psi}(x) \gamma^\mu D_\mu \psi(x) - a \frac{r}{2} \bar{\psi}(x) D_\mu D^\mu \psi(x) + m \bar{\psi}(x) \psi(x)$$

Wilson term, r: (0,1]

Denominator of Fermion propagator becomes

Properties of Wilson fermion action

- ★ Gauge invariant
- ★ Translational invariance
- ★ Invariant under charge conjugation (C), parity (P) and time reversal (T) transformations
- ★ Only nearest neighbors interactions (useful for lattice pert. theory)
- **★** Wilson-Dirac operator has γ_5 -hermicity: $\gamma_5 D_W \gamma_5 = D^{\dagger}$

Properties of Wilson fermion action

- ★ Gauge invariant
- ★ Translational invariance
- ★ Invariant under charge conjugation (C), parity (P) and time reversal (T) transformations
- ★ Only nearest neighbors interactions (useful for lattice pert. theory)
- **★** Wilson-Dirac operator has γ_5 -hermicity: $\gamma_5 D_W \gamma_5 = D^{\dagger}$
- **\star** Wilson-Dirac operator, D_W+m is not protected against zero modes (quark mass: additive and multiplicative renormalization)
- \star Chiral symmetry is explicitly broken at O(α) by Wilson term
- \star O(α) Discretization effects
- Axial current transformations are not exact symmetry and nonsinglet axial current requires renormalization

It is not possible to define a local, translationally invariant, hermitian lattice action that preserves chiral symmetry and does not have doublers

It is not possible to define a local, translationally invariant, hermitian lattice action that preserves chiral symmetry and does not have doublers

★ Several proposals for fermion action to avoid fermion doubling Wilson, Clover, Twisted Mass, Staggered, Overlap, Domain Wall, Mixed actions

It is not possible to define a local, translationally invariant, hermitian lattice action that preserves chiral symmetry and does not have doublers

- ★ Several proposals for fermion action to avoid fermion doubling Wilson, Clover, Twisted Mass, Staggered, Overlap, Domain Wall, Mixed actions
- Improved actions have different advantages and disadvantages: X **Clover:** computationally fast break chiral symmetry & require operator improvement **Twisted Mass:** computationally fast & automatic improvement break chiral symmetry & violation of isospin **Staggered:** computationally fast 4 doublers & difficult contractions **Overlap:** exact chiral symmetry computationally expensive **Domain Wall** improved chiral symmetry computationally demanding & require tuning

It is not possible to define a local, translationally invariant, hermitian lattice action that preserves chiral symmetry and does not have doublers

- ★ Several proposals for fermion action to avoid fermion doubling Wilson, Clover, Twisted Mass, Staggered, Overlap, Domain Wall, Mixed actions
- Improved actions have different advantages and disadvantages: X **Clover:** computationally fast break chiral symmetry & require operator improvement **Twisted Mass:** computationally fast & automatic improvement break chiral symmetry & violation of isospin **Staggered:** computationally fast All these formulations are used to 4 doublers & difficult contractions understand aspects of QCD **Overlap:** (hadron structure, spectroscopy, etc) exact chiral symmetry computationally expensive **Domain Wall** improved chiral symmetry computationally demanding & require tuning

Recap of Lecture 1

Key points of Lecture 1

- ★ Theoretical study of strong interactions is closely related to understanding the properties of the visible matter
- ★ QCD Lagrangian is compact, but extremely difficult to solve
- ★ Several models of QCD provide intuitive understanding, and can reliable results to high energy scales
- ★ Lattice QCD is the ideal non-perturbative formulation to study QCD from first principle
- ★ Lattice regularization is a well-formulated 4-D discretization
- ★ Several discretizations proposed for fermion and gluon action, with different advantages disadvantages
- \star Computational cost is among the challenges of numerical simulations

Thank you

Prove that the plaquette:

$$P_{\mu\nu} \equiv U_{\mu}(x)U_{\nu}(x+a\hat{\mu})U_{\mu}^{\dagger}(x+a\hat{\nu})U_{\nu}^{\dagger}(x)$$

has the correct continuum limit for the gluon part of L_{QCD}: $\int d^4x \frac{1}{4} F^b_{\mu\nu} F^{\mu\nu}_b$

