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Introduction/subject orientation

‣ Machine learning is a vast and rapidly evolving subject

‣ These lectures provide an informal introduction to the 
basics of AI/ML and its applications to nuclear physics

‣ They are not intended to be comprehensive but rather to 
give you enough of an introduction to the subject that you 
might use these methods in your own research

‣ These lectures draw heavily from the Particle Data Group 
review articles on Statistics and Machine Learning 

https://pdg.lbl.gov/2023/web/viewer.html?file=../reviews/rpp2022-rev-probability.pdf
https://pdg.lbl.gov/2023/web/viewer.html?file=../reviews/rpp2022-rev-statistics.pdf
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The ML “revolution”

‣ Ideas underlying a lot of ML techniques have been 
available for a long time. Some have been used by 
physicists in some capacity for decades… so why now?

- Brute force computing power and availability of data 
made application of such methods more feasible 
leading to much more active research in this area

- Tools have become extremely accessible

• Frameworks like Tensorflow and Pytorch have high-
level Python APIs that allow for the harnessing of 
this computing power

• Teaching/collaborative tools like Jupyter notebooks, 
virtual environments 

Feynman brought quantum 
field theory to the masses.

Julian Schwinger on Feynman 
Diagrams
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Paradigm: fitting
‣ We usually apply a fit function or a model to some data

- The model contains parameters

- In an ML context this is usually called regression

‣ We frequently encounter two types of “fits”

- Parameter estimation where parameter means something 
(inference)

- Characterization/summary/smoothing of some data, individual 
parameters meaningless, just care about overall shape

‣ First fit method researchers enounter is typically a “chi-squared fit” or 
some form of least squares
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Statistical Inference: terminology

‣ Goal is to use data ( ) to test a hypothesis ( ) and possibly infer the values of  
model parameters ( ) using statistics and probability, two interpretations of 
probability typically used

‣ Frequentist— probability for an outcome of an experiment is empirically interpreted 
in terms the frequency with which that outcome occurs when the experiment is 
repeated many times
- Hypotheses and parameters of a model are not assigned a probability, but 

confidence intervals can be evaluated

‣ Bayesian— probabilities quantify degree of belief
- Uses Bayes’ Rule to define probability distributions for model parameters, but 

requires assumptions about the “prior” distribution of the parameters

x H
θ
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Statistical Inference: Bayes’ Rule

Posterior
Probability of model 
parameter given data

Likelihood (aka  )
Probability of data given 
model parameter

L(θ)

Prior
Probability of 
model parameter

Normalization factor
Numerator integrated over all 
possible parameter values

P(θ |x) =
P(x |θ) π(θ)

∫ P(x |θ′ ) π(θ′ )dθ′ 
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Method of Maximum Likelihood

Find values of parameters that maximize the likelihood function

 

Unfortunately this is often also sometimes called “ML.” If the data consists of a fixed number of 
measurements (e.g.  “events”) that are independent and follow the same distribution then

 

For this reason (and a few others) we often consider the log likelihood

Since the logarithm is a monotonic function, the  values that maximize  will also maximize . 
Note that if  itself is random, then one must use the extended likelihood formalism, which has an 
additional factor of  to account for Poisson statistics on .

∂L
∂θi

= 0

N

L(θ) =
N

∏
i=1

P(xi |θ)

ln L(θ) =
N

∑
i=1

ln P(xi |θ)

θ L ln L(θ)
N

μNe−μ/N! N
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Method of Maximum Likelihood: Example

Remarks: 
• If measurements are not independent, a covariance matrix must be included
• If the model is a linear function of the parameters, then setting the derivatives to zero results in a 
system of linear equations, and the exact solution can be written in matrix form

•Simplest case, ’s are all the same and , a single parameter, then  σi f(xi; θ) = μ μMLE = ⟨x⟩

Often we assume measurements  are normally distributed about our measured value with some 
uncertainty , and we fit a model that predicts the mean

So maximizing the likelihood corresponds to minimizing the . This is the Method of Least Squares, 
which is usually what people mean when they say a “chi-squared fit”.  

xi
σi

L(θ) =
N

∏
i=1

exp −
1
2 ( xi − f(xi; θ)

σi )
2

−2 ln L(θ) =
N

∑
i=1 ( xi − f(xi; θ)

σi )
2

= χ2

χ2
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Method of Maximum Likelihood: Uncertainty Estimates

Lore: A “good fit” has a , and for estimated parameter , define 
uncertainty  by , i.e. vary the  by 1.

This is true insofar as the assumption of normally, independently distributed data holds. Often this is 
only approximately true and the  doesn’t have the correct normalization, or has small deviations 
from the parabolic behavior near the minimum. A more general procedure is to evaluate second 
derivatives of the log likelihood

χ2/number of free parameters ∼ 1 ̂θ
δθ χ2( ̂θ + δθ) − χ2( ̂θ) = 1 χ2

χ2

4 40. Statistics

and identically distributed) values. Here one has a set of n statistically independent quantities
x = (x1, . . . , xn), where each component follows the same p.d.f. f(x; ◊). In this case the joint p.d.f.
of the data sample factorizes and the likelihood function is

L(◊) =
nŸ

i=1
f(xi; ◊) . (40.10)

In this case the number n of observations (usually individual “events” in particle physics) is regarded
as fixed. If, however, the probability to observe n events itself depends on the parameters ◊, then
this dependence should be included in the likelihood. For example, if n follows a Poisson distribution
with mean µ and the independent x values all follow f(x; ◊), then the likelihood becomes

L(◊) = µ
n

n! e
≠µ

nŸ

i=1
f(xi; ◊) . (40.11)

Equation (40.11) is often called the extended likelihood (see, e.g., Refs. [5–7]). If µ is given as a
function of ◊, then including the probability for n given ◊ in the likelihood provides additional infor-
mation about the parameters. This therefore leads to a reduction in their statistical uncertainties
and in general changes their estimated values.

In evaluating the likelihood function, it is important that any normalization factors in the p.d.f.
that involve ◊ be included. However, we will only be interested in the maximum of L and in ratios
of L at di�erent values of the parameters; hence any multiplicative factors that do not involve the
parameters that we want to estimate may be dropped, including factors that depend on the data
but not on ◊.

Under a one-to-one change of parameters from ◊ to ÷, the ML estimators ‚◊ transform to ÷( ‚◊).
That is, the ML solution is invariant under change of parameter. However, other properties of ML
estimators, in particular the bias, are not invariant under change of parameter.

The inverse V
≠1 of the covariance matrix Vij = cov[‚◊i,

‚◊j ] for a set of ML estimators can be
estimated by using

( ‚V ≠1)ij = ≠ ˆ
2 ln L

ˆ◊iˆ◊j

-----‚◊
. (40.12)

Equation (40.12) holds for a su�ciently large data sample (or for a small sample only in special
cases, e.g., where the means of Gaussian distributed data are linear functions of the parameters);
otherwise it can result in a misestimation of the variances. Under the conditions where the equation
is valid, L has a Gaussian form and ln L is (hyper)parabolic. In this case, s times the standard
deviations ‡i of the estimators for the parameters can be obtained from the hypersurface defined
by the ◊ such that

ln L(◊) = ln Lmax ≠ s
2
/2 , (40.13)

where ln Lmax is the value of ln L at the solution point (compare with Eq. (40.74)). The minimum
and maximum values of ◊i on the hypersurface then give an approximate s-standard deviation
confidence interval for ◊i (see Section 40.4.2.2).

40.2.2.1 ML with binned data

If the total number of data values xi, (i = 1, . . . , ntot), is small, the unbinned maximum likeli-
hood method, i.e., use of Equation (40.10) (or (40.11) for extended ML), is preferred since binning
can only result in a loss of information, and hence larger statistical errors for the parameter esti-
mates. If the sample is large, it can be convenient to bin the values in a histogram with N bins, so

11th August, 2022

Covariance matrix (inverse)
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Paradigm: classification

‣ Observed data may contain multiple 
contributions, some of which are 
interesting (signal) and some of 
which are not (background)

‣ The simplest thing we might do is 
use our intuition for the two cases 
to apply some cut on an observable 
to separate the events into two 
classes: classification

Probability

Cut quantity 
(Discriminant)
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Paradigm: classification

Rejection:

1 − ∫
1

cut
B(x)dx

Efficiency: ∫
1

cut
S(x)dx

\

Probability

Cut quantity 
(Discriminant)

Cut quantity 
(Discriminant)

Probability

Cut quantity 
(Discriminant)

Probability

Tradeoff in the “cut space”
This is called a ROC curve (Receiver Operating Characteristic) 
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Moving to ML

‣ These are established methods of analyzing data, but they have 
limitations, which have become increasingly limiting the more data we 
have access to

‣ They often require assumptions about the form of the data leading to 
biases

‣ These methods don’t generalize well to a higher number of dimensions
- Computational cost and curse of dimensionality
- Complexity in prescribing form of high-dimensional multi-variate 

correlations
‣ This makes it very difficult to make full use of what the data is telling us
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Machine Learning Paradigms
‣ Supervised learning— Each element of the dataset has a label giving the “ground truth” value of the quantity 

you are trying to estimate, e.g. dataset has form  and we wish to learn 

- Examples: regression and classification

‣ Unsupervised learning— No labels! dataset has form  and we are trying to learn something else, 
usually about the data itself
- Examples: 

• Learning a representation of the data (possibly lower dimensional)
• Clustering and data mining 

• Learning the (probability) density distribution 

‣ Reinforcement learning— Formulated to aid in decision making or “optimal control” problems. Labels are not 
needed, but a “reward function” (provided by user) is used to dynamically contextualize the model output
- Won’t cover this here except to say there is a tradeoff between exploitation of current knowledge and 

exploration of new possible choices. 

{xi, yi}i=1,⋯, N f(x) = y

{xi}i=1,⋯, N

p(x)
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The neural network

‣ In the context of a fit, we usually try to make our model 
more sophisticated by adding terms

‣ In a neural network we do this by repeated function 
composition 

‣ The functions we use are called activation functions 
- These are usually taken from a class of non-linear 

functions with desirably smoothness properties, e.g. 
Tanh or logistic function 

‣ Repeated composition, having a deep neural network, 
enables the model capture non-linear behavior
- Models may have many hidden layers

‣ Neural networks are exceptionally powerful at capturing 
(possibly non-linear) correlations between multiple variables

a(n)(a(n−1)(⋯a(0)(x)⋯)

Common activation functions

Image credit: AI Wiki

Image credit: Towards Data Science

https://machine-learning.paperspace.com/wiki/activation-function
https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834f67a4f6
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The neural network

x(n+1)
i = a(n) ∑

j

wij x(n)
j + bj

Activation function

Weights Biases

These are the model parameters 
that are “fit” to the data.

The full sequence of function compositions is directly differentiable since 
activation functions are known, one can recursively apply the Chain Rule
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Practical anatomy of training an ML model

‣ The model: 

- Parameters (weights and biases) collectively referred to as “ ”, together with activation functions

‣ The loss: 

- This effectively plays the role of the  or  in our previous examples

- In some cases the loss may be one of these quantities, 

- Another common form is the MAE (mean absolute error)

- For classification problems one uses the cross entropy 

‣ Gradient Descent: we compute the gradients of the loss and update the parameter values according 
to 

-  is called the learning rate, as this procedure is repeated iteratively, the value  can be adjusted 
according to a schedule to improve convergence 

- This process is called back propagation

fθ(x)
ϕ

ℒ( fθ(x), y)
χ2 ln L

ℒ( fθ(x), y) = (y − fθ(x))2

ℒ( fθ(x), y) = ∑
c∈classes

1(y = c)ln fθ(x)

θ → θ − λ∇θℒ( fθ(x), y)
λ λ
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Some common problems: network has too many parameters

‣ The model is too general/complicated

- Deep networks are very expressive, but can have millions of 
parameters

- Can lead to instability and difficulty finding minimum

- Can also be highly computationally expensive

‣ Solution: introduce restrictions on which nodes are connected, effectively 
fixing weights equal to zero

- Can dramatically reduce number of parameters, e.g. convolutional NN

- Potential limitations introduced by this and also by the choice of 
activation function are referred to as inductive biases
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Some common problems: gradient descent is inefficient

‣ To improve the efficiency of the 
calculation we use Stochastic 
Gradient Descent (SGD) which 
only computes the gradients 
averaged over a subsample of the 
data, usually these samples are 
called minibatches

- To stabilize the procedure one 
may further extend the gradient-
update step using an optimizer.

Image credit https://sweta-nit.medium.com/batch-mini-batch-and-stochastic-gradient-descent-e9bc4cacd461

Image credit: Towards Data Science

https://towardsdatascience.com/batch-mini-batch-stochastic-gradient-descent-7a62ecba642a
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Some common problems: vanishing gradients

‣ Many activation functions map a large range of inputs to a small 
range of outputs, i.e. they are flat over a large part of their 
domain. This results in small gradients.

‣ In a shallow network this isn’t a huge deal, but in deeper 
networks it is a problem as the problem compounds itself each 
step you go back in the backpropgation

‣ This leads to very small gradients for parameters in the early 
layers, making it difficult to update them effectively

‣ Solutions include:

- Changing the activation function for example ReLU

- Introducing residual connections where output from earlier 
layers is concatenated with layer ones, bypassing the 
cumulative effect of the activation

- Batch normalization: standardizing outputs so tails of 
activation are de-emphasized

Image credit: Towards Data Science

Image credit: Wikipedia— Residual Neural Network

https://codeodysseys.com/posts/gradient-calculation/
https://en.wikipedia.org/wiki/Residual_neural_network
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Some common network architectures
‣ Dense or fully connected

- Most general form which can be good or bad
- Potentially unbiased, but lots of parameters

‣ Convolutional neural networks (CNNs)
- Only “nearby” neurons are combined
- Neighborhood and weighting determined by a filter
- Filter weights are learned parameters and help identify features
- Common in image processing, computer vision
- Tasks: image recognition, object identification, semantic segmentation 

‣ U-Net
- Specific convolutional architecture exploiting residual connections 

Image from Ronneberger et. al.

Image credit:PDG review Machine Learning 

https://arxiv.org/abs/1505.04597
https://pdg.lbl.gov/2023/web/viewer.html?file=../reviews/rpp2022-rev-statistics.pdf
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Generative Models

‣ Super hot topic right now (chat GPT)

‣ Generative: model output looks like real data

‣ Properties:

- Generate samples, i.e. produce 

- Evaluate the density, provide values of  for given  whether that  value was 
used in the training sample or not

‣ Examples:

- Variational Auto-Encoders (VAEs)

- Generative Adversarial Networks (GANs)

- Diffusion Models and Normalizing Flows

xi ∼ p(x)
p(x) x x
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Highlighted application: surrogates
‣ You have a problem involving an operation that is computationally 

expensive and is used repeatedly

- Example: a function evaluation in a minimization procedure or a fit, 
often due to high dimensionality

‣ Train a fast surrogate model to approximate it

- Evaluating a likelihood  where  and/or  are high dimensional 
or the evaluation is simply slow

‣ Since generative surrogate is a DNN it will be smooth, differentiable and 
invertible

- Monte Carlo simulations are stochastic and generally not 
differentiable, but their surrogates are so you can take derivatives and/
or invert the surrogate model

P(x |θ) x θ
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Generative Adversarial Networks (GANs)

‣ Model has two components

- Generator: takes random inputs and outputs 
something with the same format/structure as the input 
data, e.g. an image

- Discriminator: takes images and classifies them as 
real or fake

‣ Train the discriminator to distinguish between real and fake, 
but train the generator to fool the discriminator

- Example of a zero-sum game

‣ GANs are:

- Very powerful

- Generate samples very fast

- Notoriously hard to train

- Tons of GAN variants out there

Image from Machine Learning Mastery

https://machinelearningmastery.com/what-are-generative-adversarial-networks-gans/
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Applications

‣ The following examples are taken from my 
own research, but there are tons of examples 
and reviews from high energy physics here

https://github.com/iml-wg/HEPML-LivingReview
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Tracker

Electromagnetic 
calorimeter

Hadronic 
calorimeter

Muon 
spectrometer

Muon

Hadron

Photon

Primitives 
Calorimeter cells 

Track hits

Low-level objects 
Tracks 

Clusters

Physics Objects 
Muons 

Electrons 
Photons 
Hadrons 

Jets

R
L dt

[fb
�1
]
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t̄tZ
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ZZ

WZ
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H
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t̄t

Z
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NLO QCD + EW (theory) 139 JHEP 11 (2021) 118

� = 0.55 ± 0.14 + 0.15 � 0.13 pb (data)
Sherpa 2.2.2 (theory) 79.8 PLB 798 (2019) 134913

� = 0.82 ± 0.01 ± 0.08 pb (data)
NLO QCD (theory) 139 arXiv:2201.13045

� = 176 + 52 � 48 ± 24 fb (data)
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Madgraph5 + aMCNLO (theory) 139 Eur. Phys. J. C 81 (2021) 737

� = 369 + 86 � 79 ± 44 fb (data)
MCFM (theory) 20.3 JHEP 11, 172 (2015)
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Background removal 
Evaluation of systematics 

Statistical modeling

The ATLAS Experiment
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Calorimetric Particle Reconstruction: Problem Statement

‣We measure the energy of particles using calorimeters 
- Material initiates electromagnetic or hadronic shower  
- Single high-energy particle → many low energy particles 

‣Problem: given a group of measured energy deposits from the shower, assign an energy 
(regression) and type (classification) to the shower that can be used in physics analyses 

‣Challenges: 
- Not all energy is measured 
- Deposited subject to stochastic fluctuations 
- Details of these effects depend on incident particle energy and type 

(electromagnetic vs hadronic) 
‣Features: 

- Physics of shower is ~well known and implemented in highly detailed and validated 
detector simulation 

- Very fine, three-dimensional segmentation of calorimeters (O(100) “voxels” ) per 
shower, but in default reconstruction only a few reduced quantities are used to 
reconstruct particle energies
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Calorimetric Particle Reconstruction: ML Approach

Calorimeter “image”
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‣Started with convolutional networks 
- Calorimeter system has multiple “layers” 

kind of like a “stacked” RGB image 
- Major improvement to energy scale/

resolution 
‣Requires all pixels (cells) in a given layer are the 

same “size” 
- Condition only satisfied for central region of 

detector (~25% of acceptance)

Electromagnetic 
shower

ATL-PHYS-PUB-2020-018

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-018/
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Calorimetric Particle Reconstruction: ML Approach

Cluster Graphs
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Aggregation
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3 Dense Layers of  

64 Neurons

Output Neuron

Addressed by graph 
neural networks

‣Requires all pixels (cells) in a given layer are the 
same “size” 

- Condition only satisfied for central region of 
detector (~25% of acceptance)

Vi

Vj
Nodes (Vi) ↔︎ cells 
Features: energy, 
coordinates, size etc.
Edges (Eij) 
Features: type of neighbor

Globals (U) information 
about the entire graph 
(total energy) 

Eij

U

ATL-PHYS-PUB-2022-040

Terminology from DeepMind's paper: 
arXiv:1806.01261 [cs.LG] 
and built with GraphNets library

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-040/
https://arxiv.org/abs/1806.01261
https://github.com/deepmind/graph_nets
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Calorimetric Particle Reconstruction: ML Approach

ATL-PHYS-PUB-2022-040

100 101 102 103
True Cluster Energy [GeV]

0.0

0.1

0.2

0.3

0.4

0.5

Re
sp

on
se

IQ
R

/(
2

x
M

ed
ia

n)

ATLAS Simulation Preliminary
Single p± MC Regression
Topo-clusters
|h| < 3

EM
LCW
GNN
DeepSets/PFN

100 101 102 103
True Cluster Energy [GeV]

0.0

0.1

0.2

0.3

0.4

0.5

Re
sp

on
se

IQ
R

/(
2

x
M

ed
ia

n)

ATLAS Simulation Preliminary
Single p0 MC Regression
Topo-clusters
|h| < 3

EM
LCW
GNN

π± (hadronic shower)

EM 
calorimeter

Hadronic 
calorimeter

π± 

π0 

π0 (EM shower)

ATL-PHYS-PUB-2022-040

Improved performance wrt CNNs, and now applicable to entire detector

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-040/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-040/
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Calorimetric Particle Reconstruction: Future Directions

‣Studies have been mostly proof of principle 
- Not yet used in physics analysis 
- Deploy in ATLAS reconstruction 

‣Apply similar methods to other areas of 
reconstruction 
- Example: include information from tracker

Vi

Vj

Track

Eij

U cells traversed by track extension
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EIC Detector Design: ML approach

‣Replace detector simulations 
with generative models, 
trained conditionally on 
detector parameters 
- Fast surrogate that is 
differentiable 

‣Also train reconstruction 
model

Input from event 
generator

Detector 
Description

Performance 
metric

Generative model Reconstruction

Detector response 
model (GEANT) Reconstruction

Input from event 
generator

Detector 
Description

Performance 
metric

‣Use differentiability to visualize gradients to have quantitative input into trade off  
‣Provide fast surrogate simulation for optimal detector configuration and co-

optimized reconstruction for that configuration
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Tracking with a TPC: Problem Statement and ML approach

‣Measure (charged) particle momenta by bending them in a 
magnetic field and measure the track trajectory 
‣Track ionizes gas which drifts to pads on end-plate 

according to applied electric field 
‣Position and time at pad sensor → 3D coordinates of hit 
‣Hits used to reconstruct trajectory → momentum

‣Charge multiplication on pads produces ions which flow backwards 
- “Ion backflow” distorts local electric field 
- Hits need distortion corrections 

‣Space charge is periodically measured, but applying correction to 
propagation is extremely resource intensive 
- Train fast ML model that can replace this calculation 
- Using U-Net architecture, good for “pixel-wise regression” 

‣Major speedup observed using simulations with tolerable errors 
‣See report from ALICE Experiment

Image from Ronneberger et. al.

https://inspirehep.net/literature/1909722
https://arxiv.org/abs/1505.04597



