
Applications of Machine Learning in
Nuclear Physics

Aaron Angerami

Lawrence Livermore National Laboratory
2023 National Nuclear Physics Summer School

University of California, Riverside
July 13, 2023

2

Introduction/subject orientation

‣ Machine learning is a vast and rapidly evolving subject

‣ These lectures provide an informal introduction to the
basics of AI/ML and its applications to nuclear physics

‣ They are not intended to be comprehensive but rather to
give you enough of an introduction to the subject that you
might use these methods in your own research

‣ These lectures draw heavily from the Particle Data Group
review articles on Statistics and Machine Learning

https://pdg.lbl.gov/2023/web/viewer.html?file=../reviews/rpp2022-rev-probability.pdf
https://pdg.lbl.gov/2023/web/viewer.html?file=../reviews/rpp2022-rev-statistics.pdf

3

The ML “revolution”

‣ Ideas underlying a lot of ML techniques have been
available for a long time. Some have been used by
physicists in some capacity for decades… so why now?

- Brute force computing power and availability of data
made application of such methods more feasible
leading to much more active research in this area

- Tools have become extremely accessible

• Frameworks like Tensorflow and Pytorch have high-
level Python APIs that allow for the harnessing of
this computing power

• Teaching/collaborative tools like Jupyter notebooks,
virtual environments

Feynman brought quantum
field theory to the masses.

Julian Schwinger on Feynman
Diagrams

4

Paradigm: fitting
‣ We usually apply a fit function or a model to some data

- The model contains parameters

- In an ML context this is usually called regression

‣ We frequently encounter two types of “fits”

- Parameter estimation where parameter means something
(inference)

- Characterization/summary/smoothing of some data, individual
parameters meaningless, just care about overall shape

‣ First fit method researchers enounter is typically a “chi-squared fit” or
some form of least squares

5

Statistical Inference: terminology

‣ Goal is to use data () to test a hypothesis () and possibly infer the values of
model parameters () using statistics and probability, two interpretations of
probability typically used

‣ Frequentist— probability for an outcome of an experiment is empirically interpreted
in terms the frequency with which that outcome occurs when the experiment is
repeated many times
- Hypotheses and parameters of a model are not assigned a probability, but

confidence intervals can be evaluated

‣ Bayesian— probabilities quantify degree of belief
- Uses Bayes’ Rule to define probability distributions for model parameters, but

requires assumptions about the “prior” distribution of the parameters

x H
θ

6

Statistical Inference: Bayes’ Rule

Posterior
Probability of model
parameter given data

Likelihood (aka)
Probability of data given
model parameter

L(θ)

Prior
Probability of
model parameter

Normalization factor
Numerator integrated over all
possible parameter values

P(θ |x) =
P(x |θ) π(θ)

∫ P(x |θ′) π(θ′)dθ′

7

Method of Maximum Likelihood

Find values of parameters that maximize the likelihood function

Unfortunately this is often also sometimes called “ML.” If the data consists of a fixed number of
measurements (e.g. “events”) that are independent and follow the same distribution then

For this reason (and a few others) we often consider the log likelihood

Since the logarithm is a monotonic function, the values that maximize will also maximize .
Note that if itself is random, then one must use the extended likelihood formalism, which has an
additional factor of to account for Poisson statistics on .

∂L
∂θi

= 0

N

L(θ) =
N

∏
i=1

P(xi |θ)

ln L(θ) =
N

∑
i=1

ln P(xi |θ)

θ L ln L(θ)
N

μNe−μ/N! N

8

Method of Maximum Likelihood: Example

Remarks:
• If measurements are not independent, a covariance matrix must be included
• If the model is a linear function of the parameters, then setting the derivatives to zero results in a
system of linear equations, and the exact solution can be written in matrix form

•Simplest case, ’s are all the same and , a single parameter, then σi f(xi; θ) = μ μMLE = ⟨x⟩

Often we assume measurements are normally distributed about our measured value with some
uncertainty , and we fit a model that predicts the mean

So maximizing the likelihood corresponds to minimizing the . This is the Method of Least Squares,
which is usually what people mean when they say a “chi-squared fit”.

xi
σi

L(θ) =
N

∏
i=1

exp −
1
2 (xi − f(xi; θ)

σi)
2

−2 ln L(θ) =
N

∑
i=1 (xi − f(xi; θ)

σi)
2

= χ2

χ2

9

Method of Maximum Likelihood: Uncertainty Estimates

Lore: A “good fit” has a , and for estimated parameter , define
uncertainty by , i.e. vary the by 1.

This is true insofar as the assumption of normally, independently distributed data holds. Often this is
only approximately true and the doesn’t have the correct normalization, or has small deviations
from the parabolic behavior near the minimum. A more general procedure is to evaluate second
derivatives of the log likelihood

χ2/number of free parameters ∼ 1 ̂θ
δθ χ2(̂θ + δθ) − χ2(̂θ) = 1 χ2

χ2

4 40. Statistics

and identically distributed) values. Here one has a set of n statistically independent quantities
x = (x1, . . . , xn), where each component follows the same p.d.f. f(x; ◊). In this case the joint p.d.f.
of the data sample factorizes and the likelihood function is

L(◊) =
nŸ

i=1
f(xi; ◊) . (40.10)

In this case the number n of observations (usually individual “events” in particle physics) is regarded
as fixed. If, however, the probability to observe n events itself depends on the parameters ◊, then
this dependence should be included in the likelihood. For example, if n follows a Poisson distribution
with mean µ and the independent x values all follow f(x; ◊), then the likelihood becomes

L(◊) = µ
n

n! e
≠µ

nŸ

i=1
f(xi; ◊) . (40.11)

Equation (40.11) is often called the extended likelihood (see, e.g., Refs. [5–7]). If µ is given as a
function of ◊, then including the probability for n given ◊ in the likelihood provides additional infor-
mation about the parameters. This therefore leads to a reduction in their statistical uncertainties
and in general changes their estimated values.

In evaluating the likelihood function, it is important that any normalization factors in the p.d.f.
that involve ◊ be included. However, we will only be interested in the maximum of L and in ratios
of L at di�erent values of the parameters; hence any multiplicative factors that do not involve the
parameters that we want to estimate may be dropped, including factors that depend on the data
but not on ◊.

Under a one-to-one change of parameters from ◊ to ÷, the ML estimators ‚◊ transform to ÷(‚◊).
That is, the ML solution is invariant under change of parameter. However, other properties of ML
estimators, in particular the bias, are not invariant under change of parameter.

The inverse V
≠1 of the covariance matrix Vij = cov[‚◊i,

‚◊j] for a set of ML estimators can be
estimated by using

(‚V ≠1)ij = ≠ ˆ
2 ln L

ˆ◊iˆ◊j

-----‚◊
. (40.12)

Equation (40.12) holds for a su�ciently large data sample (or for a small sample only in special
cases, e.g., where the means of Gaussian distributed data are linear functions of the parameters);
otherwise it can result in a misestimation of the variances. Under the conditions where the equation
is valid, L has a Gaussian form and ln L is (hyper)parabolic. In this case, s times the standard
deviations ‡i of the estimators for the parameters can be obtained from the hypersurface defined
by the ◊ such that

ln L(◊) = ln Lmax ≠ s
2
/2 , (40.13)

where ln Lmax is the value of ln L at the solution point (compare with Eq. (40.74)). The minimum
and maximum values of ◊i on the hypersurface then give an approximate s-standard deviation
confidence interval for ◊i (see Section 40.4.2.2).

40.2.2.1 ML with binned data

If the total number of data values xi, (i = 1, . . . , ntot), is small, the unbinned maximum likeli-
hood method, i.e., use of Equation (40.10) (or (40.11) for extended ML), is preferred since binning
can only result in a loss of information, and hence larger statistical errors for the parameter esti-
mates. If the sample is large, it can be convenient to bin the values in a histogram with N bins, so

11th August, 2022

Covariance matrix (inverse)

10

Paradigm: classification

‣ Observed data may contain multiple
contributions, some of which are
interesting (signal) and some of
which are not (background)

‣ The simplest thing we might do is
use our intuition for the two cases
to apply some cut on an observable
to separate the events into two
classes: classification

Probability

Cut quantity
(Discriminant)

11

Paradigm: classification

Rejection:

1 − ∫
1

cut
B(x)dx

Efficiency: ∫
1

cut
S(x)dx

\

Probability

Cut quantity
(Discriminant)

Cut quantity
(Discriminant)

Probability

Cut quantity
(Discriminant)

Probability

Tradeoff in the “cut space”
This is called a ROC curve (Receiver Operating Characteristic)

12

Moving to ML

‣ These are established methods of analyzing data, but they have
limitations, which have become increasingly limiting the more data we
have access to

‣ They often require assumptions about the form of the data leading to
biases

‣ These methods don’t generalize well to a higher number of dimensions
- Computational cost and curse of dimensionality
- Complexity in prescribing form of high-dimensional multi-variate

correlations
‣ This makes it very difficult to make full use of what the data is telling us

13

Machine Learning Paradigms
‣ Supervised learning— Each element of the dataset has a label giving the “ground truth” value of the quantity

you are trying to estimate, e.g. dataset has form and we wish to learn

- Examples: regression and classification

‣ Unsupervised learning— No labels! dataset has form and we are trying to learn something else,
usually about the data itself
- Examples:

• Learning a representation of the data (possibly lower dimensional)
• Clustering and data mining

• Learning the (probability) density distribution

‣ Reinforcement learning— Formulated to aid in decision making or “optimal control” problems. Labels are not
needed, but a “reward function” (provided by user) is used to dynamically contextualize the model output
- Won’t cover this here except to say there is a tradeoff between exploitation of current knowledge and

exploration of new possible choices.

{xi, yi}i=1,⋯, N f(x) = y

{xi}i=1,⋯, N

p(x)

14

The neural network

‣ In the context of a fit, we usually try to make our model
more sophisticated by adding terms

‣ In a neural network we do this by repeated function
composition

‣ The functions we use are called activation functions
- These are usually taken from a class of non-linear

functions with desirably smoothness properties, e.g.
Tanh or logistic function

‣ Repeated composition, having a deep neural network,
enables the model capture non-linear behavior
- Models may have many hidden layers

‣ Neural networks are exceptionally powerful at capturing
(possibly non-linear) correlations between multiple variables

a(n)(a(n−1)(⋯a(0)(x)⋯)

Common activation functions

Image credit: AI Wiki

Image credit: Towards Data Science

https://machine-learning.paperspace.com/wiki/activation-function
https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834f67a4f6

15

The neural network

x(n+1)
i = a(n) ∑

j

wij x(n)
j + bj

Activation function

Weights Biases

These are the model parameters
that are “fit” to the data.

The full sequence of function compositions is directly differentiable since
activation functions are known, one can recursively apply the Chain Rule

16

Practical anatomy of training an ML model

‣ The model:

- Parameters (weights and biases) collectively referred to as “ ”, together with activation functions

‣ The loss:

- This effectively plays the role of the or in our previous examples

- In some cases the loss may be one of these quantities,

- Another common form is the MAE (mean absolute error)

- For classification problems one uses the cross entropy

‣ Gradient Descent: we compute the gradients of the loss and update the parameter values according
to

- is called the learning rate, as this procedure is repeated iteratively, the value can be adjusted
according to a schedule to improve convergence

- This process is called back propagation

fθ(x)
ϕ

ℒ(fθ(x), y)
χ2 ln L

ℒ(fθ(x), y) = (y − fθ(x))2

ℒ(fθ(x), y) = ∑
c∈classes

1(y = c)ln fθ(x)

θ → θ − λ∇θℒ(fθ(x), y)
λ λ

17

Some common problems: network has too many parameters

‣ The model is too general/complicated

- Deep networks are very expressive, but can have millions of
parameters

- Can lead to instability and difficulty finding minimum

- Can also be highly computationally expensive

‣ Solution: introduce restrictions on which nodes are connected, effectively
fixing weights equal to zero

- Can dramatically reduce number of parameters, e.g. convolutional NN

- Potential limitations introduced by this and also by the choice of
activation function are referred to as inductive biases

18

Some common problems: gradient descent is inefficient

‣ To improve the efficiency of the
calculation we use Stochastic
Gradient Descent (SGD) which
only computes the gradients
averaged over a subsample of the
data, usually these samples are
called minibatches

- To stabilize the procedure one
may further extend the gradient-
update step using an optimizer.

Image credit https://sweta-nit.medium.com/batch-mini-batch-and-stochastic-gradient-descent-e9bc4cacd461

Image credit: Towards Data Science

https://towardsdatascience.com/batch-mini-batch-stochastic-gradient-descent-7a62ecba642a

19

Some common problems: vanishing gradients

‣ Many activation functions map a large range of inputs to a small
range of outputs, i.e. they are flat over a large part of their
domain. This results in small gradients.

‣ In a shallow network this isn’t a huge deal, but in deeper
networks it is a problem as the problem compounds itself each
step you go back in the backpropgation

‣ This leads to very small gradients for parameters in the early
layers, making it difficult to update them effectively

‣ Solutions include:

- Changing the activation function for example ReLU

- Introducing residual connections where output from earlier
layers is concatenated with layer ones, bypassing the
cumulative effect of the activation

- Batch normalization: standardizing outputs so tails of
activation are de-emphasized

Image credit: Towards Data Science

Image credit: Wikipedia— Residual Neural Network

https://codeodysseys.com/posts/gradient-calculation/
https://en.wikipedia.org/wiki/Residual_neural_network

20

Some common network architectures
‣ Dense or fully connected

- Most general form which can be good or bad
- Potentially unbiased, but lots of parameters

‣ Convolutional neural networks (CNNs)
- Only “nearby” neurons are combined
- Neighborhood and weighting determined by a filter
- Filter weights are learned parameters and help identify features
- Common in image processing, computer vision
- Tasks: image recognition, object identification, semantic segmentation

‣ U-Net
- Specific convolutional architecture exploiting residual connections

Image from Ronneberger et. al.

Image credit:PDG review Machine Learning

https://arxiv.org/abs/1505.04597
https://pdg.lbl.gov/2023/web/viewer.html?file=../reviews/rpp2022-rev-statistics.pdf

21

Generative Models

‣ Super hot topic right now (chat GPT)

‣ Generative: model output looks like real data

‣ Properties:

- Generate samples, i.e. produce

- Evaluate the density, provide values of for given whether that value was
used in the training sample or not

‣ Examples:

- Variational Auto-Encoders (VAEs)

- Generative Adversarial Networks (GANs)

- Diffusion Models and Normalizing Flows

xi ∼ p(x)
p(x) x x

22

Highlighted application: surrogates
‣ You have a problem involving an operation that is computationally

expensive and is used repeatedly

- Example: a function evaluation in a minimization procedure or a fit,
often due to high dimensionality

‣ Train a fast surrogate model to approximate it

- Evaluating a likelihood where and/or are high dimensional
or the evaluation is simply slow

‣ Since generative surrogate is a DNN it will be smooth, differentiable and
invertible

- Monte Carlo simulations are stochastic and generally not
differentiable, but their surrogates are so you can take derivatives and/
or invert the surrogate model

P(x |θ) x θ

23

Generative Adversarial Networks (GANs)

‣ Model has two components

- Generator: takes random inputs and outputs
something with the same format/structure as the input
data, e.g. an image

- Discriminator: takes images and classifies them as
real or fake

‣ Train the discriminator to distinguish between real and fake,
but train the generator to fool the discriminator

- Example of a zero-sum game

‣ GANs are:

- Very powerful

- Generate samples very fast

- Notoriously hard to train

- Tons of GAN variants out there

Image from Machine Learning Mastery

https://machinelearningmastery.com/what-are-generative-adversarial-networks-gans/

24

Applications

‣ The following examples are taken from my
own research, but there are tons of examples
and reviews from high energy physics here

https://github.com/iml-wg/HEPML-LivingReview

25

Tracker

Electromagnetic
calorimeter

Hadronic
calorimeter

Muon
spectrometer

Muon

Hadron

Photon

Primitives
Calorimeter cells

Track hits

Low-level objects
Tracks

Clusters

Physics Objects
Muons

Electrons
Photons
Hadrons

Jets

R
L dt

[fb
�1
]

Reference

t̄tt̄t

WWZ

WWW

t̄tZ

t̄tW

ts�chan

ZZ

WZ

WW

H

Wt

tt�chan

t̄t

Z

W

pp

� = 24 ± 4 ± 5 fb (data)
NLO QCD + EW (theory) 139 JHEP 11 (2021) 118

� = 0.55 ± 0.14 + 0.15 � 0.13 pb (data)
Sherpa 2.2.2 (theory) 79.8 PLB 798 (2019) 134913

� = 0.82 ± 0.01 ± 0.08 pb (data)
NLO QCD (theory) 139 arXiv:2201.13045

� = 176 + 52 � 48 ± 24 fb (data)
HELAC-NLO (theory) 20.3 JHEP 11, 172 (2015)

� = 990 ± 50 ± 80 fb (data)
Madgraph5 + aMCNLO (theory) 139 Eur. Phys. J. C 81 (2021) 737

� = 369 + 86 � 79 ± 44 fb (data)
MCFM (theory) 20.3 JHEP 11, 172 (2015)

� = 870 ± 130 ± 140 fb (data)
Madgraph5 + aMCNLO (theory) 36.1 PRD 99, 072009 (2019)

� = 4.8 ± 0.8 + 1.6 � 1.3 pb (data)
NLO+NNL (theory) 20.3 LB 756, 228-246 (2016)

� = 6.7 ± 0.7 + 0.5 � 0.4 pb (data)
NNLO (theory) 4.6 JHEP 03, 128 (2013)

PLB 735 (2014) 311

� = 7.3 ± 0.4 + 0.4 � 0.3 pb (data)
NNLO (theory) 20.3 JHEP 01, 099 (2017)

� = 17.3 ± 0.6 ± 0.8 pb (data)
Matrix (NNLO) & Sherpa (NLO) (theory) 36.1 PRD 97 (2018) 032005

� = 19 + 1.4 � 1.3 ± 1 pb (data)
MATRIX (NNLO) (theory) 4.6 EPJC 72 (2012) 2173

� = 24.3 ± 0.6 ± 0.9 pb (data)
MATRIX (NNLO) (theory) 20.3 PRD 93, 092004 (2016)

� = 51 ± 0.8 ± 2.3 pb (data)
MATRIX (NNLO) (theory) 36.1 EPJC 79 (2019) 535

� = 51.9 ± 2 ± 4.4 pb (data)
NNLO (theory) 4.6 Phys. Rev. D 87 (2013) 112001

arXiv:1408.5243

� = 68.2 ± 1.2 ± 4.6 pb (data)
NNLO (theory) 20.3 PLB 763, 114 (2016)

� = 130.04 ± 1.7 ± 10.6 pb (data)
NNLO (theory) 36.1 EPJC 79 (2019) 884

� = 22.1 + 6.7 � 5.3 + 3.3 � 2.7 pb (data)
LHC-HXSWG YR4 (theory) 4.5 EPJC 76 (2016) 6

� = 27.7 ± 3 + 2.3 � 1.9 pb (data)
LHC-HXSWG YR4 (theory) 20.3 EPJC 76 (2016) 6

� = 55.5 ± 3.2 + 2.4 � 2.2 pb (data)
LHC-HXSWG YR4 (theory) 139 ATLAS-CONF-2022-002

� = 16.8 ± 2.9 ± 3.9 pb (data)
NLO+NLL (theory) 2.0 PLB 716, 142-159 (2012)

� = 23 ± 1.3 + 3.4 � 3.7 pb (data)
NLO+NLL (theory) 20.3 JHEP 01, 064 (2016)

� = 94 ± 10 + 28 � 23 pb (data)
NLO+NNLL (theory) 3.2 JHEP 01 (2018) 63

� = 68 ± 2 ± 8 pb (data)
NLO+NLL (theory) 4.6 PRD 90, 112006 (2014)

� = 89.6 ± 1.7 + 7.2 � 6.4 pb (data)
NLO+NLL (theory) 20.3 EPJC 77 (2017) 531

� = 247 ± 6 ± 46 pb (data)
NLO+NLL (theory) 3.2 JHEP 04 (2017) 086

� = 182.9 ± 3.1 ± 6.4 pb (data)
top++ NNLO+NNLL (theory) 4.6 EPJC 74 (2014) 3109

� = 242.9 ± 1.7 ± 8.6 pb (data)
top++ NNLO+NNLL (theory) 20.2 EPJC 74 (2014) 3109

� = 826.4 ± 3.6 ± 19.6 pb (data)
top++ NNLO+NNLL (theory) 36.1 EPJC 80 (2020) 528

� = 29.53 ± 0.03 ± 0.77 nb (data)
DYNNLO+CT14 NNLO (theory) 4.6 JHEP 02 (2017) 117

� = 34.24 ± 0.03 ± 0.92 nb (data)
DYNNLO+CT14 NNLO (theory) 20.2 JHEP 02 (2017) 117

� = 58.43 ± 0.03 ± 1.66 nb (data)
DYNNLO+CT14 NNLO (theory) 3.2 JHEP 02 (2017) 117

� = 98.71 ± 0.028 ± 2.191 nb (data)
DYNNLO + CT14NNLO (theory) 4.6 EPJC 77 (2017) 367

� = 112.69 ± 3.1 nb (data)
DYNNLO + CT14NNLO (theory) 20.2 EPJC 79 (2019) 760

� = 190.1 ± 0.2 ± 6.4 nb (data)
DYNNLO + CT14NNLO (theory) 0.081 PLB 759 (2016) 601

� = 95.35 ± 0.38 ± 1.3 mb (data)
COMPETE HPR1R2 (theory) 8⇥10�8 Nucl. Phys. B, 486-548 (2014)

� = 96.07 ± 0.18 ± 0.91 mb (data)
COMPETE HPR1R2 (theory) 50⇥10�8 PLB 761 (2016) 158

10�5 10�4 10�3 10�2 10�1 1 101 102 103 104 105 106 1011

� [pb]
0.5 1.0 1.5 2.0 2.5

data/theory
Status: February 2022

ATLAS Preliminary
p
s = 7,8,13 TeV

Theory

LHC pp
p
s = 13 TeV

Data
stat
stat � syst

LHC pp
p
s = 8 TeV

Data
stat
stat � syst

LHC pp
p
s = 7 TeV

Data
stat
stat � syst

Standard Model Total Production Cross Section Measurements

Results

Reconstruction

Raw detector signals

Physics Analysis
Experimental corrections

Background removal
Evaluation of systematics

Statistical modeling

The ATLAS Experiment

26

Calorimetric Particle Reconstruction: Problem Statement

‣We measure the energy of particles using calorimeters
- Material initiates electromagnetic or hadronic shower
- Single high-energy particle → many low energy particles

‣Problem: given a group of measured energy deposits from the shower, assign an energy
(regression) and type (classification) to the shower that can be used in physics analyses

‣Challenges:
- Not all energy is measured
- Deposited subject to stochastic fluctuations
- Details of these effects depend on incident particle energy and type

(electromagnetic vs hadronic)
‣Features:

- Physics of shower is ~well known and implemented in highly detailed and validated
detector simulation

- Very fine, three-dimensional segmentation of calorimeters (O(100) “voxels”) per
shower, but in default reconstruction only a few reduced quantities are used to
reconstruct particle energies

27

Calorimetric Particle Reconstruction: ML Approach

Calorimeter “image”

100 101 102 103

True Energy [GeV]
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Re
sp

on
se

IQ
R

/(
2

x
M

ed
ia

n)

ATLAS Simulation Preliminary
Single p0, All Clusters

EM
LCW
DNN
CNN
DenseNet

E
ne

rg
y

R
es

ol
ut

io
n

(fr
ac

tio
na

l)

100 101 102 103

True Energy [GeV]
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Re
sp

on
se

IQ
R

/(
2

x
M

ed
ia

n)

ATLAS Simulation Preliminary
Single p0, All Clusters

EM
LCW
DNN
CNN
DenseNet

Previous
ATLAS
methods

ML
Reconstruction

100 101 102 103

True Energy [GeV]
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Re
sp

on
se

IQ
R

/(
2

x
M

ed
ia

n)

ATLAS Simulation Preliminary
Single p0, All Clusters

EM
LCW
DNN
CNN
DenseNet

‣Started with convolutional networks
- Calorimeter system has multiple “layers”

kind of like a “stacked” RGB image
- Major improvement to energy scale/

resolution
‣Requires all pixels (cells) in a given layer are the

same “size”
- Condition only satisfied for central region of

detector (~25% of acceptance)

Electromagnetic
shower

ATL-PHYS-PUB-2020-018

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-018/

28

Calorimetric Particle Reconstruction: ML Approach

Cluster Graphs

GNN Block 1

GNN Block 2

GNN Block 3

GNN Block 4

Dense Dense

Dense

Energy

Pion

Globals (U)

Edge MLP

Node MLP

Global MLP

∑

∑

Nodes (V)

Globals (U)

Edges (E)

V'

U'

E'

In
pu

t G
ra

ph

U
pdated G

raph

(a) GNN Block
(b) GNN Model

Dense
Dense Layer with
1 output Neuron

Graph Concatenation

Globals Concatenation

∑ Permutation-Invariant
Aggregation

MLP
3 Dense Layers of

64 Neurons

Output Neuron

Addressed by graph
neural networks

‣Requires all pixels (cells) in a given layer are the
same “size”

- Condition only satisfied for central region of
detector (~25% of acceptance)

Vi

Vj
Nodes (Vi) ↔︎ cells
Features: energy,
coordinates, size etc.
Edges (Eij)
Features: type of neighbor

Globals (U) information
about the entire graph
(total energy)

Eij

U

ATL-PHYS-PUB-2022-040

Terminology from DeepMind's paper:
arXiv:1806.01261 [cs.LG]
and built with GraphNets library

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-040/
https://arxiv.org/abs/1806.01261
https://github.com/deepmind/graph_nets

29

Calorimetric Particle Reconstruction: ML Approach

ATL-PHYS-PUB-2022-040

100 101 102 103
True Cluster Energy [GeV]

0.0

0.1

0.2

0.3

0.4

0.5

Re
sp

on
se

IQ
R

/(
2

x
M

ed
ia

n)

ATLAS Simulation Preliminary
Single p± MC Regression
Topo-clusters
|h| < 3

EM
LCW
GNN
DeepSets/PFN

100 101 102 103
True Cluster Energy [GeV]

0.0

0.1

0.2

0.3

0.4

0.5

Re
sp

on
se

IQ
R

/(
2

x
M

ed
ia

n)

ATLAS Simulation Preliminary
Single p0 MC Regression
Topo-clusters
|h| < 3

EM
LCW
GNN

π± (hadronic shower)

EM
calorimeter

Hadronic
calorimeter

π±

π0

π0 (EM shower)

ATL-PHYS-PUB-2022-040

Improved performance wrt CNNs, and now applicable to entire detector

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-040/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-040/

30

Calorimetric Particle Reconstruction: Future Directions

‣Studies have been mostly proof of principle
- Not yet used in physics analysis
- Deploy in ATLAS reconstruction

‣Apply similar methods to other areas of
reconstruction
- Example: include information from tracker

Vi

Vj

Track

Eij

U cells traversed by track extension

31

EIC Detector Design: ML approach

‣Replace detector simulations
with generative models,
trained conditionally on
detector parameters
- Fast surrogate that is
differentiable

‣Also train reconstruction
model

Input from event
generator

Detector
Description

Performance
metric

Generative model Reconstruction

Detector response
model (GEANT) Reconstruction

Input from event
generator

Detector
Description

Performance
metric

‣Use differentiability to visualize gradients to have quantitative input into trade off
‣Provide fast surrogate simulation for optimal detector configuration and co-

optimized reconstruction for that configuration

32

Tracking with a TPC: Problem Statement and ML approach

‣Measure (charged) particle momenta by bending them in a
magnetic field and measure the track trajectory
‣Track ionizes gas which drifts to pads on end-plate

according to applied electric field
‣Position and time at pad sensor → 3D coordinates of hit
‣Hits used to reconstruct trajectory → momentum

‣Charge multiplication on pads produces ions which flow backwards
- “Ion backflow” distorts local electric field
- Hits need distortion corrections

‣Space charge is periodically measured, but applying correction to
propagation is extremely resource intensive
- Train fast ML model that can replace this calculation
- Using U-Net architecture, good for “pixel-wise regression”

‣Major speedup observed using simulations with tolerable errors
‣See report from ALICE Experiment

Image from Ronneberger et. al.

https://inspirehep.net/literature/1909722
https://arxiv.org/abs/1505.04597

