
Lecture 2: Deep 
Learning Regressions
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Overview



• A few things, but the big one was deep learning


• In particular, two novel deep learning approaches


• These approaches involved deep learning regression

5What caused the 
difference?



• In this lecture we are going to talk about 


• Deep Learning Regression


• Regression uses all the usual deep learning tools


• Tries to solve a different problem than other DL lecture


• Additionally it combines many of the concepts in fitting


• Lets review previous lectures to understand  
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Overview



• In the past lectures we focused on : 


• Deep learning based classification 
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Deep Learning

How do I separate to classes of points?

A B



• In the past lectures we focused on : 


• Deep learning based classification 
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Deep Learning

How do I separate to classes of points?

A B

Minimize Loss: 


ℒ = Btrue log(p(A) + Atrue log(p(B))

ℒ = (1 − Atrue)log(p(A) + Atrue log(1 − p(A))



• How do I take a continuous set of points and connect them?


• We have considered  two separate approaches


• Fitting a range of polynomials


• Spline Interpolation and Gaussian Processes
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Interpolation



• https://colab.research.google.com/drive/
1jmBNDxG2lLoYv2_WLawQbo2CGiJX91Oo?usp=sharing 
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Notebook

https://colab.research.google.com/drive/1jmBNDxG2lLoYv2_WLawQbo2CGiJX91Oo?usp=sharing
https://colab.research.google.com/drive/1jmBNDxG2lLoYv2_WLawQbo2CGiJX91Oo?usp=sharing
https://colab.research.google.com/drive/1jmBNDxG2lLoYv2_WLawQbo2CGiJX91Oo?usp=sharing
https://colab.research.google.com/drive/1jmBNDxG2lLoYv2_WLawQbo2CGiJX91Oo?usp=sharing


• Between minimizing the likelihood and statistics we know 
what to do to get a fit that describes the data well. With 
interpolation and gaussian processes, we can connect the 
dots. However there are limitations what if we want to do 
something more complicated!


• Challenge: Fit the points below without guessing a function.
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Fitting Any Distribution

To the notebook



• With an NN all we are doing is a minimizing a loss


• This loss can be any loss in the end


• Really Whatever we want!


• A common loss is so-called Mean Squared Error


• MSE =
1
n

n

∑
i=1

(yi − ̂yi)2 =
1
n

n

∑
i=1

(yi − f( ⃗x ))2
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How do we do w/NN?

This is our input to our Neural Network it can be a vector of arbitrary size 

This our target data in the training it can also be a vector of arbitrary size

To the Notebook
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Edit me 



• Despite being able to fit such a distribution


• There is a limit to how much we can do


• The functional form for this distribution is complicated


• To get a mean and a resolution, requires reverse engineering
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Parameter Extraction



• Let’s look at the tau lepton
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Lets Solve A Real Problem 

The Tau is the heaviest of the leptons (electron-like)

What makes it so special?



• Higgs probability of decay to quarks and leptons is proportional 
the mass of the particle. Taus are very heavy particles. Higgs 
decays to them 6% of the time. That’s great. It was the first 
channel we could actually probe the proportionality to mass. 
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Higgs Decays

Almost impossible to probe

Not Proportional to mass Basically impossible to probe
Our Best Bet for heavy 

objects

Main Discovery channels (<2% of Higgs)
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Tau Decays
Neutrino decays

Single Particle Decays

A Minijet

Neutrino Decays: The probability of a neutrino interaction is too small to 
see at the LHC. These particles are invisible 

Single Particle decays:These events just give us one particle e or µ

Minijet: Decays to quarks give us a shower of particles in small jet

d

d-bar

u-bar

u

π



18

Problem

Can we guess direction of the neutrinos and reconstruct the 
original tau energy? 

Take a jet

And Sum all the particles


Can we go from 

Jet p Tau p→
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How does a Tau decay

Taus have a small mass, which means they can be found 
within a small cone

mτ = 1.76 MeV
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How does a Tau decay

π0 → γγ

We are looking for collection of 1-5 particles

Neutrino will fall in the same cone 
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What we did for that result

Neutrinos
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What we did for that result

Neutrinos
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What we did for that result

Neutrinos



• In this case, we want to try to use the tau momentum


• Goal here is to rely on the fact that there is some correlation


• The tau momentum can predict the total tau energy
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Some Correlation
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NN Problem
Can we guess direction of the neutrinos and reconstruct the 

original tau energy? 

• simple: 


• reduced scale: 


• Complex: 

pT τ = NN(pjet
T )

pT τ
pjet

T
= NN(pjet

T )

pT τ
pjet

T
= NN( ⃗p1, ⃗p2, ⃗p3, ⃗p4, ⃗p5)

Fake Particle

Neutrino

Particle is Missing

Particle should be removed



• Finding the Higgs boson is hard we need to separate


• Higgs boson mass peak from the Z boson mass 


• When Higgs discovered didn’t have the NN tech to add neutrinos
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Why this?

Adding Neutrino

With a kinematic


Fit
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The Full Challenge
Plot is a composite 

of 70 separate fits 

There were > 2000

Floated parameters


Fit took 24h to run

Background Signal



• Best fit
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Higgs to Tau Tau Bound



• We did end up a using an NN regression for that plot
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What we did for that result

All of these separate MET calculations were put into 1 single regression
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Impact of Regression

• Regression ended improving the Higgs sensitivity by 30%


• Both in the diphoton channel and Higgs to tau leptons


• This is teh difference between 2σ and 3σ

Improvement in resolution

Photon energy regression



• Recall form Dylan’s talk

31When are different NN 
geometries useful? 

Convolutional Neural Network (CNN)

Recursive Neural Network (RNN)

Time Series/lists

Images

Dense/Linear Layer

Dense/Linear Layer



• Recusive neural network takes input one by tone
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Using an RNN
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Using an RNN



• Recusive neural network takes input one by tone
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Using an RNN



• Recusive neural network takes input one by tone
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Using an RNN

I        Like      Dogs

 J’       aime     chiens
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A Point
That Plot has a photon

energy NN regression



• This class we showed the flexibility of the NN


• The real insight here is that we modified the loss


• We tried to solve a problem different than classification


• You can solve many more 
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Summary



Bonus



• Lets do something fun: 


• Online there is a recipe list of about 100k recipes


• Challenge: 


• Lets try to generate our own recipes


• Any ideas of how you can do this? 
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Are you Hungry? 


