CMS, 4.9fb' at 7 TeV, 19.7 fb™' at 8 TeV
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Lecture 2: Deep
Learning Regressions
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At the Higgs discovery




vy, 41l updated with
ATLAS ~6 fb! of 8 TeV data
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Largest local excess:

4.90 around m, ~ 125 GeV

(using H—yy and H—4l: 5.00)

A big difference was present



ATLAS 77, 4L updated with CMS All channels updated with
~6 fb! of 8 TeV data M ~5 fb1 of 8 TeV data

(_c;-o 103 I'IA'-’-ILIAIéII:I)r]elIIIrT;"I']'a.'ry'' EELELE '26i1|;'261'216;t;' g -1 T I T 1 LI B B N N B I N O N B B B N B
3 10° =50bg, \s=7TeV: ILdt=4.6—4.8 fo! g’
- 10 ---Exp. {s=8TeV: |Ldt=5.8-59 fb" &
1 f I
O
o
—

E_

—

of
10 E — Combined obs.

Y o i CMS Preliminary ™
B | e = Vs=7TeV.L=5.1fb"
10 B i §=8TeV,L=53M0" F__
1111111111111111111111111111“1‘.1111111111 10-12 """""""" et rritrrrd
110 115 120 125 130 135 140 145 150 116 118 120 122 124 126 128 130

m,, [GeV] Higgs boson mass (GeV)

Largest local excess:
4.90 around m =~ 125 GeV
(using H—yy and H—4l: 5.00)

Largest local excess:
50 at m ~ 126.5 GeV

CMS was nearly 30% more sensitive
Despite an excess of same size



VWhat caused the

difference??

* A few things, but the big one was deep learning

* |n particular, two novel deep learning approaches

* These approaches involved deep learning regression
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Overview

In this lecture we are going to talk about

* Deep Learning Regression

Regression uses all the usual deep learning tools

e Tries to solve a different problem than other DL lecture
e Additionally it combines many of the concepts in fitting

Lets review previous lectures to understand



Deep Learniné

* |n the past lectures we focused on :

 Deep learning based classification

How do | separate to classes of points?
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Deep Learning8

* |n the past lectures we focused on :

 Deep learning based classification
How do | separate to classes of points?
Minimize Loss:
Sf — Btrue lOg(p(A) + Atrue lOg(p(B))
L =0-A4A,,)ogpA)+A,.,,log(l —plAd))
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Interpolatior;

e How do | take a continuous set of points and connect them?
* We have considered two separate approaches
e Fitting a range of polynomials

e Spline Interpolation and Gaussian Processes



Noteboolz

El"r'!r. = L

e https://colab.research.google.com/drive/
1JmBNDxG2ILoYv2 Wl awQbo2CGiJX9100?usp=sharing



https://colab.research.google.com/drive/1jmBNDxG2lLoYv2_WLawQbo2CGiJX91Oo?usp=sharing
https://colab.research.google.com/drive/1jmBNDxG2lLoYv2_WLawQbo2CGiJX91Oo?usp=sharing
https://colab.research.google.com/drive/1jmBNDxG2lLoYv2_WLawQbo2CGiJX91Oo?usp=sharing
https://colab.research.google.com/drive/1jmBNDxG2lLoYv2_WLawQbo2CGiJX91Oo?usp=sharing

Fitting Any Distribution

* Between minimizing the likelihood and statistics we know
what to do to get a fit that describes the data well. With
iInterpolation and gaussian processes, we can connect the
dots. However there are limitations what if we want to do
something more complicated!

 Challenge: Fit the points below without guessing a function.
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To the notebook



How do we do W/NN5

 With an NN all we are doing is a minimizing a loss
 This loss can be any loss in the end
* Really Whatever we want!

e A common loss is so-called Mean Squared Error

1 © | G
. MSE:—Z (yz'_}A’i)2=—z 1yi_f)2
i i \

This is our input to our Neural Ngtwork it can be a vector of arbitrary size

To the Notebook



Activation Functions

Sigmoid Linear Tanh
Softmax RelLU LeakyRelLU

(multiclass)
e’i
J i
S e
8

13



Parameter Extraction

 Despite being able to fit such a distribution
* There is a limit to how much we can do
 The functional form for this distribution is complicated

 Jo get a mean and a resolution, requires reverse engineering

Regression Analysis

Dependent variable

50

7'5 ldO 125 150
Independent variable
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Lets Solve A Real Problem

e |et’s look at the tau lepton

Quarks

@Bottom

Generation 3

Generation 2

Electron o Electron-neutrino

The Tau is the heaviest of the leptons (electron-like)
What makes it so special?

Generation 1

I----*----r---

L



Higgs Decayg

Higgs decays at m«=125GeV
Not Proportional to mass Basically impossible to probe
Our Best Bet for heavy

A Y L o 4 objects

/_3%

., 3% Qo
\ou- Main Discovery channels (<2% of Higgs)
er

1%
Almost impossible to probe

e Higgs probability of decay to quarks and leptons is proportional
the mass of the particle. Taus are very heavy particles. Higgs
decays to them 6% of the time. That’s great. It was the first

channel we could actually probe the proportionality to mass.



Neutrino Decays: The probability of a neutrino interaction is too small to
see at the LHC. These particles are invisible

Single Particle decays:These events just give us one particle e or



Problem

Vi
_ Take a jet
> And Sum all the particles
- — Can we go from
W_ € ! ,"l ! d Jet p—Tau p
Vo vr U

Can we guess direction of the neutrinos and reconstruct the
original tau energy?
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How does a Tau decay

CMS Preliminary, 19.7 fb™" at 8 TeV —
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How does a [au deca;

others
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We are looking for collection of 1-5 particles
Neutrino will fall in the same cone



What we did for that resulg’é

Neutrinos

N
¢ Conservation of
4+ v . = (
'/ \ transverse energy




What we did for that resulg’é

Neutrinos
~ )
_ O Conservation of
- e \ transverse energy’
| & 4 Y,




What we did for that resulg’é

4 X X
4 X Neutrinos

r ~N
Conservation of

"2 a1 particles P17 ME T ¢ | transverse energy
N y,




Some Correlation

* |n this case, we want to try to use the tau momentum
e Goal here is to rely on the fact that there is some correlation

* The tau momentum can predict the total tau energy

100 -

0 20 40 60 80 100



NN Problem

Can we guess direction of the neutrinos and reconstruct the
original tau energy?

o simple: pr 7 = NN(pJT.et) Particle is Missing
T .
reduced scale: pT. = NN(p}et)
o p‘%et
_ pT T > > > > >
., Complex: = NN(p1, D3> P3, P4 Ds)

Jet
Pr
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Why this?
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* Finding the Higgs boson is hard we need to separate
* Higgs boson mass peak from the Z boson mass

* When Higgs discovered didn’t have the NN tech to add neutrinos
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Higgs to Tau Tau Bounad

e Best fit 1 CMS H—1r, 4.9 fb'at 7 TeV, 19.7 fb" at 8 TeV
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What we d|d for that result

/

.

PU Track \
Good Track

Good Jet

PU jet
PF MET

4 \

N

_/

7

PU Track

\ ; Good

Good Jet

\PU Corrected MET

N

Track

_/

\Track MET /
4 2

- ; Good Track

Good Jet

\No PU MET (w/PU Jety

5 Different METs
Each targeted on a
different aspect

Take recoll
(except PU MET)

/PUTrack )

All of these separate MET calculations were put into 1 single regression

 We did end up a using an NN regression for that plot



CMS Preliminary 2012
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Impact of Regression

Photon energy regression
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 Regression ended improving the Higgs sensitivity by 30%

 Both in the diphoton channel and Higgs to tau leptons

e This is teh difference between 20 and 30



When are different NN
geometries useful?

e Recall form Dylan’s talk

[ I [ ‘ Time Series/lists
<t 1> D D <t+1>

p-
$<t> $<t+l%

Recursive Neural Network (RNN)

SIS RESRRR
@
|

sor | DT T EL R

FFFFFFFFFFFFFFFFFFF

Dense/Linear Laver sepee e CLASSIFICATION



Using an RNNSZ

* Recusive neural network takes input one by tone

one to one one to many many to one many to many many to many
! I 0 0 ! L It 0 £ i, i
! ! I bt ! i

\ e.g. Sentiment Classification
sequence of words -> sentiment



Using an RNN%

Re-use the same weight matrix at every time-step

W >h1 >fW >h2 >‘fW >h3 >...—>h_|_
X1 X2 X3




Using an RNNM

RNN: Computational Graph: Many to Many __~ L

Y ) I‘1 Y> — L2 y3 L3 Yt ’ |—-|-
ho—>fW—>h1—>fW—>h2—>fW—>h3—>...—>h_|_
W X1 X2 X3




Using an RNN%

J aime chiens

Y. " Ly Y, " L Y3 " L3 Y: 1 Lt
fW—>h1—>fW—>h —>fW—>h—> —» h

| Like  Dogs
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A Point

PHYSICSSERMERERS gB o That Plot has a photon

e energy NN regression
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Summary

This class we showed the flexibility of the NN
The real insight here is that we modified the loss
We tried to solve a problem different than classification

You can solve many more



Bonus



Are you Hungry’.;

e |ets do something fun:

 Online there is a recipe list of about 100k recipes
e Challenge:

e |ets try to generate our own recipes

* Any ideas of how you can do this?



