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MOO ÿor HEP/NP
Applications 
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Obviously MOGA is widely utilized for many applications and in different fields
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Novel aerogel material

● Aerogels with low refractive indices are very 
fragile - tiles break during production and 
handling, and their installation in detectors.

● To improve the mechanical strength of aerogels, 
Scintilex is introducing fibers into the aerogel that 
increase mechanical strength, but do not affect 
the optical properties. 

● We are designing the aerogel+fibers optimizing 
mechanical stability and resolution. 

● Paper in preparation. 

 V. Berdnikov, J. Crafts, E. Cisbani, CF, T. Horn, R. Trotta (in preparation)
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Muon Track Reconstruction at CUORE

Crystal absorbers suspended in copper 
frames in a 19-tower, 13-floor array

Schematic of the CUORE 
detector inside the cryostat 
held at T~12mK

Cryogenic Underground Observatory for Rare Events A ton-scale detector searching for 0νββ decay in 130Te

988 high-purity 5cm✕5cm✕5cm in TeO2

● Segmented bolometric detector array 
○ 0νββ, direct DM, exotic track-like 

signatures

● Studies with muon tracks 

J. Yocum, D. Mayer, J. Ouellet, L. Winslow, 2202.03194 (2022)
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Muon Track Reconstruction at CUORE

● Reconstruction of tracks based on MOO of 
three objectives; two-steps reconstruction 
(path-lengths and dE/dx); NSGA-II+NSGA-III 

● Candidate trajectory:

○ Intersects as many lit crystals as 
possible 

○ Minimizes intersection with unlit crystals 

○ Encourages dE/dx values with high 
probability  

J. Yocum, D. Mayer, J. Ouellet, L. Winslow, 2202.03194 (2022)
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MOGA Parallelization time taken by GA + sorting

● Used a test problem DTLZ1
● Verified scaling following MN2 and convergence to 

true front
● ~1s/call with 104 size!
● For 11 variables and 3 objectives needs ~ 10000 

evaluations to converge 
~10k CPUhours / pipeline
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MOGA Parallelization on Supercomputers
● Well known that NSGA-II increase in computational complexity as O(MN2).

● A recent trend in MOEA is distributed NSGA-II and implementation on supercomputers. This is useful when large 
populations are needed (e.g., 105), due to complexity and/or to approximate the Pareto front with high accuracy.

● A custom optimized parallel NSGA-II called swNSGA-II has been designed for Sunway TaihuLight [1] 
supercomputer. 

● swNSGA-II utilizes process and thread 
level parallelism based on an improved 
island master-puppet model.  

● Performance have been benchmarked 
against conventional NSGA-II with a 
speedup of ~5⋅104 for standard 
optimization problems. 

● Comparisons with GPU (GeForce GT 630) 
-based NSGA-II done using 1 core group 
only (64 CPE), obtaining a speedup of 
~10 with large populations.

160

40960 SW26010

4 core groups 
each: 
1 MPE, 64 CPE

[1] Liu, Xin, et al. IEEE Trans Parallel Distrib Syst 32.4 (2020): 975-987.
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ImprovinĀ the 
workflow
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Design Workflow

Detector 
Simulation 

Analysis of 
High-level 

reconstruction of 
events

Physics 
Events 

Design parameters

✔ ✔

objectives

✔ ✔

Developed to cope with complex problems 
which are computationally expensive in 
order to reduce the number of evaluations 
needed for the optimization

A.I.
gathers observations and 

suggests new points

(i)
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Design Workflow

Detector 
Simulation 

Analysis of 
High-level 

reconstruction of 
events

Physics 
Events 

Design parameters objectives

A.I.
gathers observations and 

suggests new points

(ii)
E.g., Reconstruction, Pattern Recognition 

(i)
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Design Workflow

Detector 
Simulation 

Analysis of 
High-level 

reconstruction of 
events

Physics 
Events 

Design parameters objectives

A.I.
gathers observations and 

suggests new points

(ii)(iii)
Interactions of simulated particle with matter / detector response

(i)
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Design Workflow

Detector 
Simulation 

Analysis of 
High-level 

reconstruction of 
events

Physics 
Events 

Design parameters objectives

A.I.
gathers observations and 

suggests new points

AI/ML can potentially enter in all the steps of the design pipeline
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Design Workflow

Detector 
Simulation 

Analysis of 
High-level 

reconstruction of 
events

Physics 
Events 

Design parameters objectives

✔

X Y

✔

A.I.
gathers observations and 

suggests new points

…with large datasets… 
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Speed-up 
● In general speed-up is reached by:

○ Hardware-based solutions to accelerate 
traditional algorithms 

○ Hybrid ML/traditional techniques 
○ End-to-end ML methods 

● Of course the overall performance improvement 
gained by optimizing a single part of a system is 
limited by the fraction of time that the improved 
part is actually used (Amdhal’s law)

● What follows will show some ML/DL example and is not meant to be exhaustive — 
argument for another talk; see P. Harris’ lectures

P: fraction of execution time that the part benefiting 
from improved resources originally occupied 

s: speed-up of the part benefiting 
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LearninĀ 
Interactions oÿ 
Simulated Particle 
with Matter
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ML-accelerated “Simulations”

● Computational demands for simulation of current and next generation HEP experiments inspired 
investigation of surrogates using deep generative models (GAN, VAE, NF based) to decrease simulation 
time while maintaining fidelity — “real” and “fake” harder to distinguish with NF

● Complex detectors require many fully simulated events as a dataset for the ML architecture 

● Notice that a new detector design requires a new dataset…  
A. Adelmann et al., New directions for surrogate models and differentiable programming for HEP detector 

simulation, arXiv:2203.08806v1 and references therein



18

Survey of ML-based Event Generators
Courtesy of M. Kuchera,
AI4EIC — What can AI offer for 
Simulation at the EIC?

Y. Alanazi et al, A Survey of ML-Based Physics Event Generation, Proceedings of the XXX IJCAI-21

There is a rich literature
Generally aiming at significantly faster simulations without sacrificing physics accuracy 

https://indico.bnl.gov/event/10699/contributions/53787/attachments/36983/60913/Kuchera-AI4EIC-exp.pdf
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Survey of ML-based Event Generators

Y. Alanazi et al, A Survey of ML-Based Physics Event Generation, Proceedings of the XXX IJCAI-21

Autoencoders
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Survey of ML-based Event Generators

Y. Alanazi et al, A Survey of ML-Based Physics Event Generation, Proceedings of the XXX IJCAI-21

Generative 
Adversarial Networks
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Survey of ML-based Event Generators

Y. Alanazi et al, A Survey of ML-Based Physics Event Generation, Proceedings of the XXX IJCAI-21

Normalizing Flows
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Variational Autoencoders

Image credit: Aditha Sharma

Examples in HEP/NP

More examples in HEPML-LivingReview: A Living Review of Machine Learning for Particle Physics 

https://iml-wg.github.io/HEPML-LivingReview/
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Generative Adversarial Networks

More examples in HEPML-LivingReview: A Living Review of Machine Learning for Particle Physics 

etc

Examples in HEP/NP

https://iml-wg.github.io/HEPML-LivingReview/
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Normalizing Flows

Maps complex distributions by transforming a probability 
density through a series of invertible mappings.

More examples in HEPML-LivingReview: A Living Review of Machine Learning for Particle Physics 

Examples in HEP/NP

https://iml-wg.github.io/HEPML-LivingReview/
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Accelerating Detector Simulations

Calorimeters are often the slowest to simulate

Stopping particles requires simulating 
interactions of all energies

Pixel intensity = energy deposited

M. Paganini, L. de Oliveira, B. Nachman, 1705.02355, 1712.10321 (2017)

Courtesy of B. Nachman,
AI4EIC — Generative ML applications 
for simulations in colliders

https://indico.bnl.gov/event/10699/contributions/51455/attachments/36984/60914/SimulationAI4EIC_Fall2021.pdf


26

Performance: average images 
Geant4

CaloGAN
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Performance: Energy per Layer 

● Comparison of shower shape variables 

● Pions deposit much less energy in the first layers; leave the calorimeter with significant energy

M. Paganini, L. de Oliveira, B. Nachman, 1712.10321 (2017)



28

Conditioning 

L. de Oliveira, M. Paganini, B. Nachman, 1711.08813 (2017)

Fix noise, scan latent variable corresponding to energy

Fix noise, scan latent variable corresponding to x-position
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Timing Performance / Speedup

Intel Xeon 
E5-2670

NVIDIA K80

These numbers have changed as 
both technologies have improved 

This is simply meant to be 
qualitative & motivating!

M. Paganini, L. de Oliveira, B. Nachman, 1712.10321 (2017)
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Integration into real detector simulations

AtlFast3: the next generation of fast simulation in ATLAS (ATLAS Collaboration), 2109.02551 (2021)

The ATLAS Collaboration fast simulation (AF3) includes a GAN at 
intermediate energies for pions
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Calorimeter Showers Generation: SOTA
Generative models have gotten much better; flow models are particularly 

promising. Added bonus: have an explicit density.

C. Kraus and D. Shih, CaloFlow, ArXiv:2106.05285 (2021)
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Calorimeter Showers Generation: SOTA

● AUC = 1 means easily 
distinguishable, AUC = 
0.5 means not 
distinguishable 

● JSD ~ 0 means labels 
are similarly distributed; 
JSD ~ 1 largest 
divergence 

C. Kraus and D. Shih, CaloFlow, ArXiv:2106.05285 (2021)

Geant4 vs. Simulations
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Calorimeter Showers Generation: SOTA
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LearninĀ
Event Reconstruction, 
Pattern RecoĀnition 
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Considerations
● In general in the context of detector design is good to have 

algorithms that are geometry agnostic (and possibly 
differentiable, see later).

● Machine Learning algorithms can offer this flexibility (and are 
differentiable by construction)

● Some of them can easily adapt to changing conditions 

● Reconstruction procedure must generalize easily if the detector 
design changes. 

○ Otherwise we introduce a bias towards some detector 
design…  

It’s not only about “speeding-up”, but also about “reducing” 
biases in the pipeline during its optimization. 
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Tracking example
● Kalman Filter typically boasts excellent performance for track 

finding and fitting; this comes at runtime cost since the time it 
scales quadratically or worse with # spacepoints in the event 

● High-luminosity experiments like HL-LHC for example will lead 
to a combinatorial explosion in KF-based algorithm

● Many projects and initiatives on ML, in the last few years, e.g., 

○ HEP.trkX (ML + HPC) + TrackML data Challenge  

(1) Construct a metric space and define a graph linking pairs of space-points together; 

(2) Use dense neural network to filter edges of this graph to increase its purity and sparsity; 

(3) Core step: use GNN (“interaction network”  to classify edges as being part of a true track or not; 

(4) Post-processing: walk the resulting graph to build tracks from which parameters can be estimated

Courtesy of L.-G. Gagnon 
AI4EIC —,ML for track reconstruction at the LHC

Performance of a geometric deep learning pipeline for HL-LHC particle tracking, EPJC 81, 876 (2021)

https://indico.bnl.gov/event/10699/contributions/51455/attachments/36984/60914/SimulationAI4EIC_Fall2021.pdf
https://iopscience.iop.org/article/10.1088/1748-0221/17/02/C02026/pdf
https://iopscience.iop.org/article/10.1088/1748-0221/17/02/C02026/pdf
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Clustering example
● Hierarchical clustering VS traditional clustering of energy deposited by 

photons; AI robust against variations in experimental conditions 

● Example of Streaming Readout tests in CLAS12 Forward Tagger (with 
uncalibrated data in SRO) 

F. Ameli, CF, et al. ,Streaming readout for next generation electron scattering experiments, arXiv:2202.03085, 2022

Core distance (defined by 
a required # of neighbors) 
as estimate of density

Points have to be in a high 
density region and close to 
each other (“mutual 
reachability”)

The area of the regions is 
the measure of 
“persistence”.

Maximize the persistence of the clusters under the 
constraint that they do not overlap.

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=uftZIOYAAAAJ&sortby=pubdate&citation_for_view=uftZIOYAAAAJ:M_lZXyI38BkC
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Pattern Recognition: Imaging Cherenkov Detectors example

Dependence on charged 
particle kinematics 

(p,(θ,φ)*,X,Y)
1

Kaons @ 4 GeV/c for different polar and 
azimuthal angle

Cherenkov 
photons

Image taken from https://web-docs.gsi.de/~rdzhigad/
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effective inference time / particle 
O(1 μs) 

Combines both great reconstruction performance and computing time:
● ~ same accuracy of established method with best reconstruction 

performance (FastDIRC[2])
● O(1µs) on GPU VS O(1ms) on CPU as compared to fastest 

established method (geometric w look-up table)

AUC(DeepRICH) ≳ 0.99 AUC(FastDIRC)

reconstructed

injected

latent space

reconstructed  π 
injected π 

[1] C. Fanelli, J. Pomponi, DeepRICH: Learning Deeply Cherenkov Detectors,  Mach. Learn.: Sci. Technol. 1 015010 (2020)
[2] J. Hardin, M. Williams. FastDIRC: a fast Monte Carlo and reconstruction algorithm for DIRC detectors. JINST 11.10 (2016): P10007.

Pattern Recognition: Imaging Cherenkov Detectors example
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Remarks
● Full simulation can involve complete physics responses and digitization, including 

but not limited to Cherenkov photon production and electron cascades. 

● Accelerated simulations aims at speeding up full simulations 

● Faster reconstruction allows for an additional speed-up in reconstructing and 
analysing high-level observables 

● The exploration of the design space can be driven by AI as discussed (with 
multiple driving criteria/objectives). 

● What happens when you change your design point to the AI/ML in the simulation 
and reconstruction steps? Different scenarios/options:

○ Training was done on multiple design points (difficult); no change in the sim/reco  

○ Re-training needed — this may be time consuming and lose all advantage of accelerated steps 

○ Some algorithms may undergo a simple “retuning“: e.g., unsupervised approaches 

○ etc
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CombininĀ all 
toĀether: 
End-to-end 
Optimization 
Pipelines
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MODE-Machine Learning Optimized Design of Experiments
● Detectors design with AI is gaining a lot of interest. 

● MODE is a recently formed collaboration of physicists and computer scientists who target the use of differentiable programming in 
design optimization of detectors for particle physics applications A. G. Baydin et al. Nuclear Physics News 31.1 (Mar 30, 2021): 25-28.

● Ambitious project: develop a modular, customizable, and scalable, fully differentiable pipeline for the end-to-end optimization of 
articulated objective functions that model in full the true goals of experimental particle physics endeavours, to ensure optimal detector 
performance, analysis potential, and cost-effectiveness.

Conceptual layout of an optimization pipeline 
taken from a muon radiography apparatus. 

An end to end optimization requires modeling 
of simulations. Requires collect reference data 
to train the surrogate models ML 
implementations. 

MODE, Toward the End-to-End Optimization of Particle Physics Instruments with Differentiable Programming: arXiv:2203.13818, 2022 

https://arxiv.org/abs/2203.13818
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Design Optimization: Problem Description

MODE, Toward the End-to-End Optimization of Particle Physics Instruments with Differentiable Programming: arXiv:2203.13818, 2022 

SENSOR 
READOUT

PHYSICS 
PROCESSES

DETECTOR PHYSICAL 
PROPERTIES AND 

GEOMETRY 

HIGH-LEVEL 
FEATURES

NUISANCE
PARAMETERS

PDF OF DETECTION GIVEN PHYSICS, DETECTOR RECONSTRUCTION MODEL

(PDF PHYSICS)

DATA ANALYSIS: CLASSIFIER OR REGRESSOR (NN)

1 2

3The design problem becomes: 
PERFORMANCE COST

LOSS FUNCTION

Since typically the PDF p(z|x,θ) is not available in 
closed form we use forward simulations to sample from:

approx

4

5

https://arxiv.org/abs/2203.13818
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Design Optimization: Problem Description

MODE, Toward the End-to-End Optimization of Particle Physics Instruments with Differentiable Programming: arXiv:2203.13818, 2022 

The design problem becomes: 
PERFORMANCE COST

LOSS FUNCTION

Since typically the PDF p(z|x,θ) is not available in 
closed form we use forward simulations to sample from:

approx

4

5

Useful to approximate the non-differentiable stochastic simulator 
with a local surrogate model that depends on a parameter y for 
the stochastic variation of the approximated distribution: 
[arXiv:2002.04632]   

6

7
Descend the minimum of the approximated 
loss by following the surrogate gradient

SURROGATE

GLOBAL OPTIMIZATION TASK

https://arxiv.org/abs/2203.13818
https://arxiv.org/abs/2002.04632
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Auto-differentiation

● Automatic-differentiation, aka algorithmic differentiation or autodiff
○ “a set of techniques to evaluate the derivative of a function specified by a computer 

program, which, no matter how complicated, executes a sequence of elementary 
operations, and a repeated usage of chain rule.”

● Differentiable programming captures the essence of DL practice; differentiable 
code is realized to solve various tasks; their optimization is done via 
gradient-based optimization of an objective based on training data 

● Neural networks are member of the family of differentiable programs, in that they 
can be seen a series of non-linear transformations 

● There are two ways to make a simulation differentiable:
○ Using AD directly in the simulation code 
○ Using DL to produce a differentiable surrogate model

[1] MODE, Toward the End-to-End Optimization of Particle Physics Instruments with Differentiable Programming: arXiv:2203.13818, 2022
[2] Y. LeCun. Facebook post on differentiable programming, 2018 https://facebook.com/yann.lecun/posts/10155003011462143

https://en.wikipedia.org/wiki/Derivative
https://arxiv.org/abs/2203.13818
https://facebook.com/yann.lecun/posts/101550003011462143
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Surrogate Models

● With a surrogate based on a deep-learning architecture, AD is immediately 
available within the machine learning framework used to train the surrogate 

● Note that the surrogate can be differentiable even if the original function is not
○ Also for this reason is important to come up with a pipeline that can address systematic 

uncertainties [2,3,4]

● Evaluation of the surrogate (and its derivatives) is orders of magnitude faster 
than the computation of the “true” model (due to vectorization and hardware 
parallelism of GPUs and TPUs available in ML libraries)

● Nonetheless training the surrogate requires a substantial number of evaluations 
of the original function

● And again poorly trained surrogates can introduce bias in the analysis…  
[1] MODE, Toward the End-to-End Optimization of Particle Physics Instruments with Differentiable Programming: arXiv:2203.13818, 2022 
[2] P. de Castro and T. Dorigo, INFERNO: Inference-Aware Neural Optimisation. Comput. Phys. Commun. 244:170-179, 2019 
[3] A. Ghosh and B. Nachman, and Daniel Whiteson, Phys. Rev. D 104, 056026, 2021
[4] AI4EIC, topic-oriented meeting on uncertainty quantification https://indico.bnl.gov/event/16073/ 

https://arxiv.org/abs/2203.13818
https://indico.bnl.gov/event/16073/
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Modeling the Cost of Detectors

● It is possible to compute the effect of construction costs on the loss function in 
two main steps:

○ Local cost parameters φ are specific to the technology used (e.g., active 
components material, light transport techniques etc)

○ Global cost c(φ,θ) can be expressed as a function of local cost parameters φ 
and a set of parameters θ describing the overall detector concept, like 
number and size of detector modules, their positions, etc. 

MODE, Toward the End-to-End Optimization of Particle Physics Instruments with Differentiable Programming: arXiv:2203.13818, 2022 

● More complicated to factor in the parametrization costs like labor, etc.  

https://arxiv.org/abs/2203.13818
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Example use cases: Accelerator Optimization

● The challenge and interest in optimizing these systems both during the design and the operation phases 
increase as we push the energy and intensity frontiers of beam physics. The design process and online 
optimization are segmented at present: this produces sub-optimal results… [1]

[1] MODE, Toward the End-to-End Optimization of Particle Physics Instruments with Differentiable Programming: arXiv:2203.13818, 2022 
[2] R. Roussel, A. Hanukkah and A. Edelen. MOBO for online accelerator tuning, Phys. Rev. Accel. Beams, 24:062801, 2021 

● MOBO has been 
successfully utilized for 
online accelerator tuning 
with 7D objective space for 
the Argonne Wakefield 
Accelerator [2]

MOBO is more efficient

MOBO font has higher resolution

More evaluations brings refinement

https://arxiv.org/abs/2203.13818
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Example use cases: Calorimeter Optimization

● Fine-tuning of the individual 
blocks important to propagate 
the properties of the 
configuration under study 

● Surrogate models may be built 
and trained on labelled data 
using regular ML approaches 

● Speed up model building for 
different pipeline steps.

● Necessity of fine-tuning 
reconstruction algorithms for 
every new calorimeter 
technology and geometry

The big slowdown factor for running an optimization workflow is the need to fine-tune the reconstruction 
algorithm for every new calorimeter technology (R&D) and geometry (design) configuration. 

ML may help tuning the reconstruction in an “automatic” way (regression).
MODE, Toward the End-to-End Optimization of Particle Physics Instruments with Differentiable Programming: arXiv:2203.13818, 2022 

https://arxiv.org/abs/2203.13818
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ML-assisted approach to calorimeter R&D
● In [1] ML can substitute the most computationally intensive steps while retaining the GEANT4 accuracy to 

details. 

● Focus on the Phase II Upgrade of the LHCb Calorimeter under the requirements on operation at high 
luminosity. The optimization pipeline looks like the following:

ML (decision trees) intervenes in tuning the reconstruction.  

(optimizers can be used to tune hyper-parameters). 
 [1] A. Boldyrev et al (Yandex), arXiv:2005.07700v1 [physics.ins-det] 2020
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ECAL LHCb

4 mm thick scintillator tiles and 2 mm thick lead plates (Shashlik technology) ~25 X0 (1.1 λI); 
Moliere radius ~ 36 mm; 

Modules 121.2 x 121.2 mm2, 66 Pb +67 scintillator tiles; 

Segmentation: 3 zones 3 module types, Inner (9 cells per module), Middle (4), Outer (1). 
Total of 3312 modules, 6016 cells, (7.7 x 6.3) m2, ~100 tons.

● Take advantage of segmentation / modularity (see discussion on 
characterization of the detector design problem) and create a Geant4 
standalone simulation for 30x30 cells of size 20.2x20.2 mm2 which can be 
rearranged in the inner, middle and outer ECAL modules. 

● Used a signal sample B0
s⟶J/ψ(μ+μ-)π0(γγ) and the LHCb minimum bias 

sample as background. 

● Studies as a function of pile-up (PU) and number of primary vertices (nPV). 

● Calibration (spatial and energy) optimized using XGBoost and BO for 
fine-tuning of parameters at the simulation and reconstruction steps. 

 A. Boldyrev et al (Yandex), arXiv:2005.07700v1 [physics.ins-det] 2020
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ECAL LHCb
uncalibrated parametric approach ML-regressor (XGBoost)

Signal 
(no background)

nPV/event = 10

ML-based reconstruction of the calorimeter cluster position provides good spatial resolution 
without a priori knowledge about the spatial properties of the calorimeter under study

 A. Boldyrev et al (Yandex), arXiv:2005.07700v1 [physics.ins-det] 2020



53

Other Examples

MODE, Toward the End-to-End Optimization of Particle Physics Instruments with Differentiable Programming: arXiv:2203.13818, 2022 

● EM Calorimeter of a Muon Collider 

● Optimization of the MUoNE Detector 

● Searches for Milli-charged Particles

● Astro-particle Physics and Neutrino Experiments 

● High-Energy Gamma-Ray Astronomy 

● Interferometric Gravitational-Wave Detectors

● Cosmic-Ray Muon Imaging 

● Portable Modular Detectors for Flexible Muography 

● Proton Computed Tomography 

● Low-Energy Particle Physics   

https://arxiv.org/abs/2203.13818
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System architecture and requirements 

● Support variety of simulation packages (GEANT4, Pythia, etc)
● Flexibility 
● Distributed execution and scalability 
● Interruption-friendly execution 
● User ask independence and result sharing 

[1] MODE, Toward the End-to-End Optimization of Particle Physics Instruments with Differentiable Programming: a White Paper arXiv:2203.13818 

Main SW components:

● Structural storage (database) management
● Volume storage management
● Cloud compute management
● Simulation package connection and software environment configuration 
● User task management 
● Optimization monitoring/benchmarking interface 
● Black-box optimization runtime 
● Differentiable optimization runtime 

“Excerpts” from MODE workshop

https://arxiv.org/abs/2203.13818
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Final Remarks 

● Moving towards Physics-driven optimization pipelines: i.e., from FoM encoding 
the detector intrinsic response to physics observables and implementation of full 
analysis pipeline — need identify main processes for the experiment

● For each design point, we are utilizing the same analysis pipelines and validation 
procedures that everyone else has used in the past to design detectors 

● Differently from the past, for the exploration of the design space, instead of 
relying on manual optimizations done by a team of PhD students, we can do this 
more efficiently using modern AI-assisted pipelines (eventually developed and 
maintained by PhD students :) 

● Next steps: physics-driven design, where FoM are physics observables 
measured by different EIC detector design configurations  
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Sociology

● Utility of new approaches 
to design increases with 
complexity of experiment 

● Possibility of concrete 
realization 
(embracing/deploying 
these new technologies), 
inversely related to the 
complexity of the 
experiment / collaboration



57

Workshops/Schools on Detector Design

● AI4EIC, https://eic.ai/workshops, 
https://eic.ai/events 

Special Meeting on Design: July 20 

       Next workshop: October 10-14, 2022

● MODE, 
https://mode-collaboration.github.i
o/workshop/index.html 

Next: September 12-16, 2022

https://eic.ai/workshops
https://eic.ai/events
https://mode-collaboration.github.io/workshop/index.html
https://mode-collaboration.github.io/workshop/index.html
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“Review” Articles on Detector Design/Sim.

● T. Dorigo et al., Toward the End-to-End Optimization of Particle 
Physics Instruments with Differentiable Programming: a White Paper, 
arXiv:2203.13818

● A. Adelmann et al., New directions for surrogate models and 
differentiable programming for HEP detector simulation, 
arXiv:2203.08806

● C. Fanelli, Design of Detectors at the Electron Ion Collider with AI, 
arXiv:2203.04530

https://arxiv.org/abs/2203.13818
https://arxiv.org/abs/2203.08806
https://arxiv.org/pdf/2203.04530.pdf
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Conclusions
● These lectures covered a set of tools/technologies that can empower our community to tackle larger scale 

and more complex detector design problems: [1] 

○ AI-assisted optimization strategies and ML-based surrogate-models (with possibility of autodiff) 
○ The “hand and intuition” of the expert cannot be substituted at present, but these automated pipelines 

cannot be any longer ignored as valuable tools to assist the design problems
○ In the (near) future their utilization can bring to “groundbreaking solutions to century-old problems” 

● The optimization of an entire detector or accelerator is a daunting task that is probably beyond present-day 
capabilities; nonetheless we already saw successful applications to portion of these machines and their 
automated control.

● AI can indeed assist the design and R&D of complex experimental systems by providing more efficient 
design (considering multiple objectives) and optimizing the computing budget needed to achieve that. EIC is 
one of the first experiments to be designed with the support of AI. [2] 

● One of the conclusions from the DOE Town Halls on AI for Science on 2019 was that “AI techniques that can 
optimize the design of complex, large-scale experiments have the potential to revolutionize the way 
experimental nuclear physics is currently done”. [3] 

[1] MODE, Toward the End-to-End Optimization of Particle Physics Instruments with Differentiable Programming: a White Paper arXiv:2203.13818 
[2] C. Fanelli et al (ECCE consortium)  AI-assisted Optimization of the ECCE Tracking System at the Electron Ion Collider, arXiv:2205.09185
[3] R. Stevens et al.,  AI for Science: Report on the Department of Energy (DOE) Town Halls on Artificial Intelligence (AI) for Science

https://arxiv.org/abs/2203.13818
https://arxiv.org/abs/2205.09185
https://www.osti.gov/biblio/1604756
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AI-optimization strategies are much 
more than just fine-tuning the 

detector design… 



Backup
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Integration into real detector simulations

AtlFast3: the next generation of fast simulation in ATLAS (ATLAS Collaboration), 2109.02551 (2021)

The GAN architecture is relatively 
simple, but it is able to match the energy 

scale and resolution well.

There is one GAN per η slice
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CaloGAN

M. Paganini, L. de Oliveira, B. Nachman, 1705.02355, 1712.10321 (2017)

One image per calo layer One network per particle type;
Input particle energy

Use layer i as input to layer i+1 ReLU to encourage sparsityLA:
Locally Aware,

Like a CNN
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FastCaloGAN

AtlFast3: the next generation of fast simulation in ATLAS (ATLAS Collaboration)

The Rectified Linear Unit (ReLU) activation function 
is used in all layers of the discriminator with the 
exception of the last.

input

output

A Wasserstein GAN with gradient 
penalty is used 

ATL-SOFT-PUB-2018-001

http://cds.cern.ch/record/2630433/files/ATL-SOFT-PUB-2018-001.pdf?version=1
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Integration into real detector simulations

The new fast simulation (AF3) 
significantly improves jet 

substructure with respect to the 
older one (AF2)

Ideally, the same calibrations 
derived for full sim. 

(Geant4-based) can be applied 
to the fast sim.

As expected, the fast sim. 
timing is independent of 

energy, while Geant4 
requires more time for 

higher energy.

AtlFast3: the next generation of fast simulation in ATLAS (ATLAS Collaboration), 2109.02551 (2021)
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More details on AD
● Gradient-based optimization 

○ Gradient descent; (damped) Newton’s method; quasi-Newton methods (BFGS, L-BFGS-B, etc)

○ Can require user-defined stopping-criteria 

○ For applications, solutions that do not perfectly reach the global minimum, typically still present a valuable improvement over 
previous designs 

○ Popular optimization algorithms are implemented in open-source packages such as SciPy, with the gradient of the objective 
supplied by the PyTorch’s AD module

●  Computing derivatives

○ Numerical differentiation; symbolic differentiation; automatic differentiation

● Automatic differentiation

○ Forward Mode: extends each variable a by a variable a’, for its partial derivative in some direction, also called “tangent”. Time 
complexity to compute the full gradient is proportional to the time complexity of calculating the function f times the number of 
input variables  

○ Reverse Mode: all statements are recorded usually in computational graph or stack=like data called tape; after this primal run, 
each primal variable is extended by an adjoint variable; the adjoint variables are successively updated while revisiting the 
statements in reverse; the time complexity  relative to the primal is independent of the number of input variables, making it 
faster than the forward mode; however recording a tape requires a significant amount of memory 

MODE, Toward the End-to-End Optimization of Particle Physics Instruments with Differentiable Programming: arXiv:2203.13818, 2022 

https://arxiv.org/abs/2203.13818
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Magnetic Field with DNN Courtesy of A. Quiroga, W. Phelps
AI Town Hall@JLab 2021 — Magnetic 
Fields with DNN 

● The production magnetic field was ~1.5 GB (2019) for both solenoid 
and torus fields combined.

● Can a neural network model be faster? 

● It could also be used for OSG transfers to save bandwidth

https://indico.jlab.org/event/462/contributions/8870/attachments/7246/9996/Modeling%20Magnetic%20Fields%20with%20deep%20neural%20networks%20Andru%20Quiroga.pdf

