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MOO for HEP/NP
Applications
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Obviously MOGA is widely utilized for many applications and in different fields



Novel aerogel material

e Aerogels with low refractive indices are very
fragile - tiles break during production and
handling, and their installation in detectors.

e To improve the mechanical strength of aerogels, Z—=
Scintilex is introducing fibers into the aerogel that ==~ A8 s
increase mechanical strength, but do not affect g |
the optical properties. ;

e \We are designing the aerogel+fibers optimizing
mechanical stability and resolution.

e Paper in preparation.

‘7 ‘l \ V. Berdnikov, J. Crafts, E. Cisbani, CF, T. Horn, R. Trotta (in preparation)



Muon Track Reconstruction at CUORE

Cryogenic Underground Observatory for Rare Events Aton-scale detector searching for OvBg decay in '*Te

Dilution . Pulse

e Segmented bolometric detector array

O  0vpBp, direct DM, exotic track-like
signatures

300K

40K . —‘1‘ . — F Outer

Vacuum

4K Chamber

e Studies with muon tracks

Still
. Inner
Heat " Vacuum

EXchan. gy Chamber

Mixing :
(Chamber Top
Lead
CUORE

detector =
Tower

Support
Plate

Internal

Lead
Shield

Schematic of the CUORE
detector inside the cryostat
held at T~12mK

Crystal absorbers suspended in copper
frames in a 19-tower, 13-floor array

J. Yocum, D. Mayer, J. Ouellet, L. Winslow, 2202.03194 (2022)



Muon Track Reconstruction at CUORE

e Reconstruction of tracks based on MOO of
three objectives; two-steps reconstruction
(path-lengths and dE/dx); NSGA-II+NSGA-III

e Candidate trajectory:

O Intersects as many lit crystals as I S

False-Misses in Event

possible
o Minimizes intersection with unlit crystals ) P = 088885

MSE = 42.481

o Encourages dE/dx values with high

probability
fa@ =Y 1
1L2WX) = 1 4+ et2(xi—a12)
iE.Ql,z
20 40 60 8 20 40 60
Simulated Track Length (mm) Simulated Track Length (mm)
f3(x) == ) log(p(8) o e
i

J. Yocum, D. Mayer, J. Ouellet, L. Winslow, 2202.03194 (2022)



MOGA Parallelization

{ Design Point 1

Analyze

time taken by GA + sorting

(Thread_1)
(Thread_2)

Initialise Design Population

| ,

Al-assisted design

Design Point 2

|

Design Point 3

| H Design Point 4

Evaluate Design Points @ Expected Pareto (DTLZ1)

Parallelize Evaluations (Thread_M)

\ 4

‘ Multi-objective Optimization

Pymoo

Parallelizer / Scheduler
(2 Level Parallelization)

® NSGA-ll Pareto (DTLZ1)

;| —@— NSGA-Il time (DTLZ1)
0| —@— NSGA-I time (tracker)

3

description

| symbol

value

population size
# objectives
offspring
design size
# calls (tot. budget)

# cores

# charged 7 tracks
#binsinn
# bins in p

100
3
30
11 (9)
200
same as
offspring
120k
5
10

Population;Size

Used a test problem DTLZ1

Verified scaling following MN? and convergence to
true front

~1s/call with 10* size!

For 11 variables and 3 objectives needs ~ 10000
evaluations to converge

~10k CPUhours / pipeline

i _ _New
Ratio = Baseline




MOGA Parallelization on Supercomputers

Well known that NSGA-Il increase in computational complexity as O(MN?).

A recent trend in MOEA is distributed NSGA-Il and implementation on supercomputers. This is useful when large
populations are needed (e.g., 10°), due to complexity and/or to approximate the Pareto front with high accuracy.

A custom optimized parallel NSGA-II called swNSGA-Il has been designed for Sunway TaihuLight [1]

supercomputer.

TABLE 3
The Running Time of swNSGA-II on Multiple Core Group(s)

Sunway Taihulight 40960 SW26010
System
60 Time in second(s) Speedup
Path Planning

Canbinet Cabinet Cabinet
4 Supernodes 4 Supernodes **" | 4 Supernodes

256 Nodes per Supernode )
swNSGA-II

swNSGA-II
4 core groups

each:
1 MPE, 64 CPE

*MPE only.

sWNSGA-II utilizes process and thread
level parallelism based on an improved
island master-puppet model.

Performance have been benchmarked
against conventional NSGA-II with a
speedup of ~5-10* for standard
optimization problems.

Comparisons with GPU (GeForce GT 630)
-based NSGA-II done using 1 core group
only (64 CPE), obtaining a speedup of
~10 with large populations.

I [1] Liu, Xin, et al. IEEE Trans Parallel Distrib Syst 32.4 (2020): 975-987.



Improving the
workflow
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Design Workflow .
(i)
Developed to cope with complex problems
which are computationally expensive in
order to reduce the number of evaluations
needed for the optimization
V =l V

|
Design parameters t
{ k.’

5

Analysis of
Physics I?etectpr ngh—Iev'eI
Events Simulation reconstruction of
events

4 v

N -




Design Workflow

Design parameters

l AT

Physics I?etectpr
Events Simulation

Analysis of
High-level
reconstruction of
events

E.g., Reconstruction, Pattern Recognition

‘ ‘L\i



Design Workflow

Design parameters

L

7 Analysis of N\
High-level '
reconstruction of

\, _ events v 4

Detector
Simulation

(iii)

‘ ‘L_ Interactions of simulated particle with matter / detector response
il



Design Workflow

La )

t |
Design parameters
{ k.’

==

N o = T 7 Analysis of N\

Physics Detector \ ( High-level '
Events Simulation / reconstruction of

\ — N e e s \ _eve_nts_ /

‘* ‘” AI/ML can potentially enter in all the steps of the design pipeline



Design Workflow

/1 L ! AN

] / Design parameters -~ :I )
0 N N /
f1(zo) fn(zn-1) M \\\\\\ X r‘

Physics
Events

Detector
Simulation

Al

gathers observations and
suggests new points

Analysis of
High-level
reconstruction of
events

...with large datasets...



Speed-up

e In general speed-up is reached by:
o Hardware-based solutions to accelerate
traditional algorithms
o Hybrid ML/traditional techniques
o End-to-end ML methods

e Of course the overall performance improvement
gained by optimizing a single part of a system is
limited by the fraction of time that the improved
part is actually used (Amdhal’s law)

il P: fraction of execution time that the part benefiting
from improved resources originally occupied
P
(1-P)+ 3

s: speed-up of the part benefiting

e \What follows will show some ML/DL example and is not meant to be exhaustive —
1[;i argument for another talk; see P. Harris’ lectures



Learning
Interactions of
Simulated Particle
with Matter

=]

Generator

T
AN

f} o=

Fake image

‘ ‘ I



ML-accelerated “Simulations”

) G e a n t4 --------- > DM
N
N
AN : (] Data

Accuracy
,l

. A
4« FastSim i (L] Nokee
o @DD
* Delphes B D
Speed

Computational demands for simulation of current and next generation HEP experiments inspired
investigation of surrogates using deep generative models (GAN, VAE, NF based) to decrease simulation
time while maintaining fidelity — “real” and “fake” harder to distinguish with NF

Complex detectors require many fully simulated events as a dataset for the ML architecture

Notice that a new detector design requires a new dataset...

A. Adelmann et al., New directions for surrogate models and differentiable programming for HEP detector
simulation, arXiv:2203.08806v1 and references therein



Survey of ML-based Event Generators

Courtesy of M. Kuchera,
AI4EIC — What can Al offer for
Simulation at the EIC?

| MLEGs @~ | DataSource =~ | Detector Effect | Reaction/Experiment | ML Model

[Hashem1 etal.,2019] Pyth1a8 DELPHES Z = puuT regular GAN
+ pile-up effects
[Otten et al., 2019] MadGraph5 aMC@NLO | DELPHES3
pp — it

[Butter et al., 2019] | MadGraph5aMC@NLO | | pp —~ tt — (bg7)(bgg’) | MMD-GAN

Di Sipio et al., 2019 MadGraph5, Pythia8 DELPHES 2 — 2 parton scattering | GAN+CNN
Rl R v T il bk

Ahdida et al., 2019 Pythia8 + GEANT4 Search for Hidden Parti- | regular GAN
B e S 5yl

Alanazi et al., 2020b] | Pythia8 electron-proton scatter- | MMD-
[Velasco et al., 2020] ing WGAN-GP,

cGAN

Martnez et al., 2020 Pythia8 DELPHES proton collision GAN, cGAN
particle-flow

Guoerdl, 2001 [Shema | | W/ZTns
[Howard et al., 2021] MadGraph5 + Pythia8 DELPHES SWAE
[Choi and Lim, 2021] MadGraphS5 + Pythia8 DELPHES pp — bbyy WGAN-GP

There is a rich literature
Generally aiming at significantly faster simulations without sacrificing physics accuracy

Y. Alanazi et al, A Survey of ML-Based Physics Event Generation, Proceedings of the XXX IJCAI-21


https://indico.bnl.gov/event/10699/contributions/53787/attachments/36983/60913/Kuchera-AI4EIC-exp.pdf

Survey of ML-based Event Generators

MLEGs ML Model

[Hashemi et al., 2019] Pythia8 DELPHES Z—ptp regular GAN
+ pile-up effects
[Otten et al., 2019] MadGraphS aMC@NLO | DELPHES3
pp — tt

[Butter et al., 2019] MadGraphS aMC @NLO _ pp — tt — (bgq')(bgq’) [MMD-GAN |

Di Sipio et al., 2019 -'.T:r!j'ﬁ_ parton scattering | GAN+CNN
+ FASTJET

Ahdida et al., 2019 ia8 + GE ' NT4 Search for Hidden Parti- | regular GAN
' cles (SHiP) experiment
[Alanazi et al., 2020b _ electron-pro MMD-
[Velasco et al., 2020] - WGAN-GP,
cGAN

Martnez et al., 2020 Pythia8 DELPHES proton collision GAN, cGAN
partlcle -flow

Gao et al., 2020 | Sheppa | [ p-o>W Z + n jets
[Howard et al., 2021] MadGraph5 + Pythia8 | DELPHES Zoefee [ SWAE
[Choi and Lim, 2021] MadGraph5 + Pythia8 DELPHES pp — bbyy WGAN-GP

Y. Alanazi et al, A Survey of ML-Based Physics Event Generation, Proceedings of the XXX IJCAI-21



Survey of ML-based Event Generators

| MLEGs @~ | DataSource =~ | Detector Effect | Reaction/Experiment | ML Model

[Hasheml etal.,2019] Pyth1a8 DELPHES Z = putp” regular GAN
+ pile-up effects
[Otten et al., 2019] MadGraph5 aMC@NLO | DELPHES3 _
pp — it

[Butter et al., 2019] MadGraphS aMC@NLO _ pp — tt = (bgq’)(bgq’) | MMD-GAN

Di Sipio et al., 2019 _DELPHES __ 2 parton scattering | GAN+CNN
\ |~ Q"J'FT

Ahdida et al., 2019 i - Search for Hidden Parti- | regular GAN
cles (SHiP) experiment

[Alanazi et al., 2020b] | Py} a : ! f]..( L"Cu -pro MMD-
[Velasco et al., 2020] : WGAN-GP,
cGAN

Martnez et al., 2020 Pythia8 DELPHES proton collision ‘ GAN, cGAN
partlcle -flow

| [Gaoetal.,20201 ~ [Sherpa | [ p-oW Z + n jets
[Howard et al., 2021] MadGraph5 + Pythia8 | DELPHES SWAE
[Choi and Lim, 2021] MadGraphS5 + Pythia8 DELPHES pp — bbyy | WGAN-GP

Y. Alanazi et al, A Survey of ML-Based Physics Event Generation, Proceedings of the XXX IJCAI-21



Survey of ML-based Event Generators

MLEGs ML Model

[Hashemi et al., 2019] Pythia8 DELPHES Z—ptp regular GAN
+ pile-up effects
[Otten et al., 2019] MadGraphS aMC@NLO | DELPHES3 eve” > 4 = ITL
pp — tt

[Butter et al., 2019] MadGraph5 aMC@NLO pp — tt — (bqq')(bgq') | MMD-GAN

Di Sipio et al., 2019 thia 8 _DELPHES ____| 2 2 parton scattering | GAN+CNN
hichiiacdll S I

Ahdida et al., 2019 i , Search for Hidden Parti- | regular GAN
Bl | ' Ve Sipeinen | o
[Alanazi et al., 2020b electron-pro MMD-
[Velasco et al., 20201 ing WGAN-GP,
. CGAN
Martnez et al., 2020 Pythia8 DELPHES proton collision
Il i - L

Gao et al, 2020 Shepa | (o W/Zings [NF__ |
[Howard et al., 2021] MadGraph5 + Pythia8 DELPHES SWAE
[Choi and Lim, 2021] MadGraph5 + Pythia8 DELPHES pp — bbyy WGAN-GP

Y. Alanazi et al, A Survey of ML-Based Physics Event Generation, Proceedings of the XXX IJCAI-21



Variational Autoencoders

X ENCODER
Py (2] X)

Input-Image Sampled
Latent-Vector

Variance or
Standard Deviation

Sample a point from G(Z,,, Z,)

Z=p+o0®e
e~ N(0,1)

Image credit: Aditha Sharma

DECODER
Py(X|2)

Predicted-Image from Z

Latent
Distribution

Latent-Variables to
follow a Standard Normal Distribution

Deep Learning as a Parton Shower

Deep generative models for fast shower simulation in ATLAS
Variational Autoencoders for Anomalous Jet Tagging

Variational Autoencoders for Jet Simulation

Foundations of a Fast, Data-Driven, Machine-Learned Simulator

Decoding Photons: Physics in the Latent Space of a BIB-AE Generative
Network

Bump Hunting in Latent Space

{End-to-end Sinkhorn Autoencoder with Noise Generator

Graph Generative Models for Fast Detector Simulations in High Energy
Physics

DeepRICH: Learning Deeply Cherenkov Detectors [DOI]

An Exploration of Learnt Representations of W Jets

Sparse Data Generation for Particle-Based Simulation of Hadronic Jets in
the LHC

Improving Variational Autoencoders for New Physics Detection at the LHC
with Normalizing Flows

Particle Graph Autoencoders and Differentiable, Learned Energy Mover's
Distance

Hadrons, Better, Faster, Stronger

Particle-based Fast Jet Simulation at the LHC with Variational
Autoencoders

Modeling hadronization using machine learning

More examples in HEPML-LivingReview: A Living Review of Machine Learning for Particle Physics


https://iml-wg.github.io/HEPML-LivingReview/

Generative Adversarial Networks

Real image @

GAN
(DCGAN)

z~ N(0,1)
or Generator
2~ UELT)

Real image @

z~ N(©,1)
or Generator
2~ U,

m

VHH’I; Z [logD (m[") + log (1 -D (

Discriminator

Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis [DOI]

lerating Science with Generative Adversarial Networks: An Application to 3D Particle Showers in Multilayer
Calorimeters [DOI]

CaloGAN : Simulating 3D high energy particle showers in multilayer electromagnetic calorimeters with generative
adversarial networks [DOI}

I based model using Model-Assi Adversarial Networks [DOI]

How to GAN Event Subtraction [DOI]

Particle Generative Adversarial Networks for full-event simulation at the LHC and their application to pileup descriptio
[poi

How to GAN away Detector Effects [DOI]

3D convolutional GAN for fast simulation

Fast simulation of muons produced at the SHiP experiment using Generative Adversarial Networks [DOI]

Lund jet images from generative and cycle-consistent adversarial networks [DOI]

How to GAN LHC Events [DOI]

Machine Learning Templates for QCD Factorization in the Search for Physics Beyond the Standard Model [DOI)
DijetGAN: A Generative-Adversarial Network Approach for the Simulation of QCD Dijet Events at the LHC [DOI]
LHC analysis-specific datasets with Generative Adversarial Networks

Generative Models for Fast Calorimeter Simulation.LHCb case [DOI]

Deep generative models for fast shower simulation in ATLAS

Regressive and generative neural networks for scalar field theory [DOI]

Three dimensional Generative Adversarial Networks for fast simulation

Generative models for fast simulation

Unfolding with Generative Adversarial Networks

Fast and Accurate Simulation of Particle Detectors Using Generative Adversarial Networks [DOI]

Generating and refining particle detector simulations using the Wasserstein distance in adversarial networks [DOI]
Generative models for fast cluster simulations in the TPC for the ALICE experiment

RICH 2018 [DOI]

GANS for generating EFT models [DOI]

Precise of gnetic calorimeter showers using a Wasserstein Generative Adversarial Network [DOI]
Reducing Autocorrelation Times in Lattice Simulations with Generative Adversarial Networks [DOI]

Tips and Tricks for Training GANS with Physics Constraints

Controlling Physical Attributes in GAN-Accelerated Simulation of Electromagnetic Calorimeters [DOI]

Next Generation Generative Neural Networks for HEP

Calorimetry with Deep Learning: Particle Classification, Energy Regression, and Simulation for High-Energy Physics
Calorimetry with Deep Learning: Particle Simulation and Reconstruction for Collider Physics [DOI]

A Novel Scenario in the Semi-constrained NMSSM [DOI])

Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed

etc

More examples in HEPML-LivingReview: A Living Review of Machine Learning for Particle Physics


https://iml-wg.github.io/HEPML-LivingReview/

Normalizing Flows

Maps complex distributions by transforming a probability
density through a series of invertible mappings.

Flow-based generative models for Markov chain M > Carlo in lattice field theory [DOI]
Equivariant flow-based sampling for lattice gauge theory [DOI]

Flows for simultaneous manifold learning and density estimation

Exploring phase space with Neural Importance Sampling [DOI]

Event Generation with Normalizing Flows [DOI]

i-flow: High-Dimensional Integration and Sampling with Normalizing Flows [DOI]

Anomaly Detection with Density Estimation [DOI]

Data-driven Estimation of Background Distribution through Neural Autoregressive Flov

SARM: Sparse Autoregressive Model for Scalable Generation of Sparse Images in Particle Physics
[(a]e]}}

Measuring QCD Splittings with Invertible Networks

Efficient sampling of constrained high-dimensional theoretical spaces with machine learning
Latent Space Refinement for Deep Generative Models

CaloFlow: Fast and Accurate Generation of Calorimeter Showers with Normalizing Flows
Flow-based sampling for multimodal distributions in lattice field theory

Learning to discover: expressive Gaussian mixture models for multi-dimensional simulation and
parameter inference in the physical sciences

Classifying Anomalies THrough Outer Density Estimation (CATHODE)

Black-Box Optimization with Local Generative Surrogates [url]

Neural Empirical Bayes: Source Distribution Estimation and its Applications to Simulation-Based
Inference [url]

Improving Variational Autoencoders for New Physics Detection at the LHC with Normalizing Flow
Inference of cosmic-ray source properties by conditional invertible neural networks

CaloFlow II: Even Faster and Still Accurate Generation of Calorimeter Showers with Normalizing
Flows

Generative Networks for Precision Enthusiasts
Ephemeral Learning — Augmenting Triggers with Online-Trained Normalizing Flows

Event Generation and Density Estimation with Surjective Normalizing Flows

More examples in HEPML-LivingReview: A Living Review of Machine Learning for Particle Physics



https://iml-wg.github.io/HEPML-LivingReview/

Accelerating Detector SimulationsS couesos v

AI4EIC — Generative ML applications
for simulations in colliders

Calorimeters are often the slowest to simulate

Energy (MeV)

Stopping particles requires simulating

0
1
2
3
4
5 interactions of all energies
6
7
8
9

=
= O

012 3456 78 91011
n Cell ID

Pixel intensity = energy deposited

M. Paganini, L. de Oliveira, B. Nachman, 1705.02355, 1712.10321 (2017)


https://indico.bnl.gov/event/10699/contributions/51455/attachments/36984/60914/SimulationAI4EIC_Fall2021.pdf

Performance: average images
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Performance: Energy per Layer

e* GEANT [ e* GAN
y GEANT [y GAN
nm* GEANT nm* GAN

et GEANT [ e* GAN e* GEANT [ e* GAN
y GEANT [ y GAN y GEANT [y GAN
n* GEANT nt GAN nt GEANT n* GAN

e Comparison of shower shape variables

e Pions deposit much less energy in the first layers; leave the calorimeter with significant energy

M. Paganini, L. de Oliveira, B. Nachman, 1712.10321 (2017)



Conditioning

Fix noise, scan latent variable corresponding to energy

Layer °'FWMMH”MWW%MMHW““W"HWWHW“U

-4 EEERERONN

-~ GNRARETEESTS

Fix noise, scan latent variable corresponding to x-position

e o ol oo il ik

- R PR R
- IANEDD TS 55

L. de Oliveira, M. Paganini, B. Nachman, 1711.08813 (2017)




Timing Performance / Speedup

TABLE III: Total expected time (in milliseconds)
required to generate a single shower under various
algorithm-hardware combinations

Simulator Hardware Batch Size ms/shower
GEANT4 CPU N/A

CPU
Intel Xeon

E5-2670 5.

CALOGAN

GPU
NVIDIA K80

These numbers have changed as
both technologies have improved

This is simply meant to be
qualitative & motivating!

M. Paganini, L. de Oliveira, B. Nachman, 1712.10321 (2017)



Integration into real detector simulations

Muon
Spectrometer

(8-16) GeV < Ey, +Geant4

< (256 - 512) GeV

FastCalo Muon
GAN Punchthrough

The ATLAS Collaboration fast simulation (AF3) includes a GAN at
intermediate energies for pions
AtlFast3: the next generation of fast simulation in ATLAS (ATLAS Collaboration), 2109.02551 (2021)

‘ ‘L\i



Calorimeter Showers Generation: SOTA

Generative models have gotten much better; flow models are particularly
promising. Added bonus: have an explicit density.

102 10% ' 0.5 1.0 1.5 2.0 00 02 04 06 08
Depth-weighted total energy Iy Shower Depth s4 Shower Depth Width o,

nmt GEANT nt CaloGAN nt CaloFlow

C. Kraus and D. Shih, CaloFlow, ArXiv:2106.05285 (2021)



Calorimeter Showers Generation: SOTA

Geant4 vs. Simulations

AUC / JSD
vs. CALOGAN vs. CALOFLOW

unnormalized | 1.000(0) / 0.993(1) | 0.847(8) / 0.345(12) ‘ e AUC = 1 means easily

)
normalized | 1.000(0) / 0.997(0) | 0.869(2) / 0.376(4 distinguishable, AUC =
0.5 means not
unnormalized | 1.000(0) / 0.996(1) | 0.660(6) / 0.067(4
(

)
) ) ) distinguishable
”
(0) (1) )
) )

(
N 1.000(0) / 0.988(1) | 0.632(2) / 0.048(1
(

‘ e JSD ~ 0 means labels

are similarly distributed;
JSD ~ 1 largest
divergence

T
1.000(0) / 0.997(0) | 0.751(4) / 0.148(4

‘7 1 C. Kraus and D. Shih, CaloFlow, ArXiv:2106.05285 (2021)



Calorimeter Showers Generation:

SOTA

—— GEANT 4
CaloFlow v1

—— CaloFlow v2

—— CaloGAN

106 107 108 10°
Generated Showers
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Considerations

e In general in the context of detector design is good to have
algorithms that are geometry agnostic (and possibly
differentiable, see later).

e Machine Learning algorithms can offer this flexibility (and are
differentiable by construction)

e Some of them can easily adapt to changing conditions

e Reconstruction procedure must generalize easily if the detector
design changes.

o Otherwise we introduce a bias towards some detector
design...

It's not only about “speeding-up”, but also about “reducing”
I biases in the pipeline during its optimization.



Courtesy of L.-G. Gagnon

Tracking example

° Kalman Filter typically boasts excellent performance for track
finding and fitting; this comes at runtime cost since the time it
scales quadratically or worse with # spacepoints in the event

° High-luminosity experiments like HL-LHC for example will lead
to a combinatorial explosion in KF-based algorithm

) Many projects and initiatives on ML, in the last few years, e.g.,

o HEP.trkX (ML + HPC) + TrackML data Challenge

Filter likely, Filter, convert

adjacent to triplets

Raw hit data = doubiate @ @

embedded - N -

I *_“._.ﬂﬂ

Train/classify  Train/classify '\' \

doublets in triplets in
GNN GNN Apply cut  DBSCAN
for seeds for track
labels

o
N
o

Track efficiency
o
Total time (s)

e
g
=]

(1) Construct a metric space and define a graph linking pairs of space-points together;

Physics Eff
(2) Use dense neural network to filter edges of this graph to increase its purity and sparsity; - 14 Tez:nciim Eff

(3) Core step: use GNN (“interaction network” to classify edges as being part of a true track or not; 2 Number of spacepoints

(4) Post-processing: walk the resulting graph to build tracks from which parameters can be estimated

Performance of a geometric deep learning pipeline for HL-LHC particle tracking, EPJC 81, 876 (2021)


https://indico.bnl.gov/event/10699/contributions/51455/attachments/36984/60914/SimulationAI4EIC_Fall2021.pdf
https://iopscience.iop.org/article/10.1088/1748-0221/17/02/C02026/pdf
https://iopscience.iop.org/article/10.1088/1748-0221/17/02/C02026/pdf

Clustering example B

e Hierarchical clustering VS traditional clustering of energy deposited by Lopies
photons; Al robust against variations in experimental conditions N \

e Example of Streaming Readout tests in CLAS12 Forward Tagger (with
uncalibrated data in SRO)

€ Scintillation

Hodoscope

Core distance (defined by
a required # of neighbors)
as estimate of density

Points have to be in a high
density region and close to
each other (“mutual
reachability”)

Feb 2020 data

wrong clusterization 1
by standard cut-based L. Optimized cut-based clustering |

—— Unsupervised clustering

The area of the regions is
the measure of
“persistence”.

Maximize the persistence of the clusters under the 100 200
constraint that they do not overlap. M(highest ene. clul. clu2) [MeV/c’]

F. Ameli, CF, et al. ,Streaming readout for next generation electron scattering experiments, arXiv:2202.03085, 2022


https://scholar.google.com/citations?view_op=view_citation&hl=en&user=uftZIOYAAAAJ&sortby=pubdate&citation_for_view=uftZIOYAAAAJ:M_lZXyI38BkC

Pattern Recognition: Imaging Cherenkov Detectors example

= X =
3 Kaons @ 4 GeV/c for different polar and
' azimuthal angle
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Image taken from https://web-docs.gsi.de/~rdzhigad/
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Pattern Recognition: Imaging Cherenkov Detectors example

injected DeepRICH FastDIRC

Kinematics Es €s
4 GeV/c

4.5 GeV/c
5GeV/c

" injected T
' recopstructed Tr.
- i

AUC(DeepRICH) > 0.99 AUC(FastDIRC)

VAE
Encoder |

\

S

CNN/MLP
Classifier

effective inference time / particle
O(1 ps)

o 10 108
Batch size

VAE
| Decoder

Classification ‘
Output

Combines both great reconstruction performance and computing time:

e ~ same accuracy of established method with best reconstruction
performance (FastDIRC[2])
e O(1ups) on GPU VS O(1ms) on CPU as compared to fastest
established method (geometric w look-up table)

[1] C. Fanelli, J. Pomponi, DeepRICH: Learning Deeply Cherenkov Detectors, Mach. Learn.: Sci. Technol. 1 015010 (2020)
[2] J. Hardin, M. Williams. FastDIRC: a fast Monte Carlo and reconstruction algorithm for DIRC detectors. JINST 11.10 (2016): P10007.



Remarks

e Full simulation can involve complete physics responses and digitization, including
but not limited to Cherenkov photon production and electron cascades.

e Accelerated simulations aims at speeding up full simulations

e Faster reconstruction allows for an additional speed-up in reconstructing and
analysing high-level observables

e The exploration of the design space can be driven by Al as discussed (with
multiple driving criteria/objectives).

e What happens when you change your design point to the Al/ML in the simulation
and reconstruction steps? Different scenarios/options:
o Training was done on multiple design points (difficult); no change in the sim/reco
o Re-training needed — this may be time consuming and lose all advantage of accelerated steps
o Some algorithms may undergo a simple “retuning“: e.g., unsupervised approaches

\ o eftc



Combining all
together:
End-to-end
Optimization
Pipelines




MODE -Machine Learning Optimized Design of Experiments

e  Detectors design with Al is gaining a lot of interest.

e MODE is a recently formed collaboration of physicists and computer scientists who target the use of differentiable programming in
design optimization of detectors for particle physics applications A. G. Baydin et al. Nuclear Physics News 31.1 (Mar 30, 2021): 25-28.

e  Ambitious project: develop a modular, customizable, and scalable, fully differentiable pipeline for the end-to-end optimization of
articulated objective functions that model in full the true goals of experimental particle physics endeavours, to ensure optimal detector
performance, analysis potential, and cost-effectiveness.

Detector parameters

S Conceptual layout of an optimization pipeline

detector-related

systematic uncertainties taken from a muon radiography apparatus.

An end to end optimization requires modeling
of simulations. Requires collect reference data
to train the surrogate models ML
implementations.

Cosmic ray

simulator Detector

response

e

4
1
1
1
1
1
1
1
1
1
1
1
l
\
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Design Optimization: Problem Description

Al PHYSICS
[ observations DETECTOR PHYSICAL HIGH-LEVEL NUISANCE
: SENSOR PROCESSES PROPERTIES AND FEATURES PARAMETERS
READOUT. GEOMETRY } /4
Analysis of @ \Z | x 9/ @ Z 0 V (0)]
Physics T Detector High-level
Events Simulation reconstruction of
events PDF OF DETECTION GIVEN PHYSICS, DETECTOR RECONSTRUCTION MODEL

~ p(z|x,0) =z ~f(z)(PoF PHysICS)

The design problem becomes: @ S :/A[C(H)]

@ PERFORMANCE cosT DATA ANALYSIS: CLASSIFIER OR REGRESSOR (NN)

= arg miny //L[A(C), c(0)|p(z|x,0)f(x)dzdz

LOSS FUNCTION

Since typically the PDF p(z|x,8) is not available in
closed form we use forward simulations to sample from:

A

0, = arg ming — Z L[A(R(z;)),c(0)]

approx
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Design Optimization: Problem Description

Al

Analysis of
Physics petectpr Hngh—lev_el
Events Simulation reconstruction of
events

The design problem becomes:

PERFORMANCE

®

9

LOSS FUNCTION

Since typically the PDF p(z|x,8) is not available in
closed form we use forward simulations to sample from:

A

n -

approx

@ Useful to approximate the non-differentiable stochastic simulator
with a local surrogate model that depends on a parameter y for
the stochastic variation of the approximated distribution:

[

arg ming //L[A(C), c(0)|p(z|x,0)f(x)dzdz

0, = arg ming 1 Z L[A(R(z;)),c(0)]

]
— S(y,z,0
2z /(y:c)

SURROGATE

Descend the minimum of the approximated
loss by following the surrogate gradient

VolL(2) = 3 VoLIA(R(S 3, :,6))), c(0)

GLOBAL OPTIMIZATION TASK

‘7 ‘I | MODE, Toward the End-to-End Optimization of Particle Physics Instruments with Differentiable Programming: arXiv:2203.13818, 2022



https://arxiv.org/abs/2203.13818
https://arxiv.org/abs/2002.04632

Auto-differentiation

e Automatic-differentiation, aka algorithmic differentiation or autodiff

o “a set of techniques to evaluate the derivative of a function specified by a computer
program, which, no matter how complicated, executes a sequence of elementary
operations, and a repeated usage of chain rule.”

Differentiable programming captures the essence of DL practice; differentiable
code is realized to solve various tasks; their optimization is done via
gradient-based optimization of an objective based on training data

Neural networks are member of the family of differentiable programs, in that they
can be seen a series of non-linear transformations

There are two ways to make a simulation differentiable:

o Using AD directly in the simulation code
o Using DL to produce a differentiable surrogate model

[1]1 MODE, Toward the End-to-End Optimization of Particle Physics Instruments with Differentiable Programming: arXiv:2203.13818, 2022
[2] Y. LeCun. Facebook post on differentiable programming, 2018 https://facebook.com/yann.lecun/posts/10155003011462143
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https://arxiv.org/abs/2203.13818
https://facebook.com/yann.lecun/posts/101550003011462143

Surrogate Models

With a surrogate based on a deep-learning architecture, AD is immediately
available within the machine learning framework used to train the surrogate

Note that the surrogate can be differentiable even if the original function is not

o Also for this reason is important to come up with a pipeline that can address systematic
uncertainties [2,3,4]

Evaluation of the surrogate (and its derivatives) is orders of magnitude faster
than the computation of the “true” model (due to vectorization and hardware
parallelism of GPUs and TPUs available in ML libraries)

Nonetheless training the surrogate requires a substantial number of evaluations
of the original function

And again poorly trained surrogates can introduce bias in the analysis...

[1] MODE, Toward the End-to-End Optimization of Particle Physics Instruments with Differentiable Programming: arXiv:2203.13818, 2022
[2] P. de Castro and T. Dorigo, INFERNO: Inference-Aware Neural Optimisation. Comput. Phys. Commun. 244:170-179, 2019

[3] A. Ghosh and B. Nachman, and Daniel Whiteson, Phys. Rev. D 104, 056026, 2021

[4] AI4EIC, topic-oriented meeting on uncertainty quantification
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Modeling the Cost of Detectors

e Itis possible to compute the effect of construction costs on the loss function in
two main steps:

o Local cost parameters ¢ are specific to the technology used (e.g., active
components material, light transport techniques etc)

o Global cost c(¢,8) can be expressed as a function of local cost parameters ¢
and a set of parameters 0 describing the overall detector concept, like
number and size of detector modules, their positions, etc.

Lcost — C(ea ¢)

e More complicated to factor in the parametrization costs like labor, etc.
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Example use cases: Accelerator Optimization

The challenge and interest in optimizing these systems both during the design and the operation phases
increase as we push the energy and intensity frontiers of beam physics. The design process and online
optimization are segmented at present: this produces sub-optimal results... [1]

MOBO is more efficient

MOBO has been — woBo
successfully utilized for NSGAI
online accelerator tuning Oservton

with 7D objective space for
the Argonne Wakefield
Accelerator [2] 5 100 ] m. om0

Hj-nv

0.35 /0.40 0.45 0.50 0.55 0.60 0.65

MOBO font has higher resolution

More evaluations brings refinement

H(100)
. 74(200)

0.35 0.40 0.45 050 0.55 0.60 0.65
dE (MeV)

Input Variables Output Beam Parameters

P

AE
\

Beam

[1] MODE, Toward the End-to-End Optimization of Particle Physics Instruments with Differentiable Programming: arXiv:2203.13818, 2022
[2] R. Roussel, A. Hanukkah and A. Edelen. MOBO for online accelerator tuning, Phys. Rev. Accel. Beams, 24:062801, 2021
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Example use cases: Calorimeter Optimization

calorimeter

geometry o
optimization

procedure

calorimeter
technology

RECO
algorithm

reference
background
sample

beam &
bench tests

Fine-tuning of the individual
blocks important to propagate
the properties of the
configuration under study

Surrogate models may be built
and trained on labelled data
using regular ML approaches

Speed up model building for
different pipeline steps.

Necessity of fine-tuning
reconstruction algorithms for
every new calorimeter
technology and geometry

The big slowdown factor for running an optimization workflow is the need to fine-tune the reconstruction
algorithm for every new calorimeter technology (R&D) and geometry (design) configuration.
ML may help tuning the reconstruction in an “automatic” way (regression).

‘7 ‘I MODE, Toward the End-to-End Optimization of Particle Physics Instruments with Differentiable Programming: arXiv:2203.13818, 2022
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ML-assisted approach to calorimeter R&D

e In[1] ML can substitute the most computationally intensive steps while retaining the GEANT4 accuracy to
details.

e Focus on the Phase Il Upgrade of the LHCb Calorimeter under the requirements on operation at high
luminosity. The optimization pipeline looks like the following:

Tunable inputs: ‘ ( Metric \‘
_technology, geometry, etc \_ definiton /
\\

N

Particle generation W/
response Self-tuned
NN

LHCb Simulation Software

ML (decision trees) intervenes in tuning the reconstruction.

(optimizers can be used to tune hyper-parameters).

‘7 ‘I | [11A. Boldyrev et al (Yandex), arXiv:2005.07700v1 [physics.ins-det] 2020



ECAL LHCb 810 5107

E JEGeV)

4 mm thick scintillator tiles and 2 mm thick lead plates (Shashlik technology) ~25 X, (1.1 A);
Moliere radius ~ 36 mm;

Modules 121.2 x 121.2 mm?2, 66 Pb +67 scintillator tiles;

Segmentation: 3 zones 3 module types, Inner (9 cells per module), Middle (4), Outer (1).
Total of 3312 modules, 6016 cells, (7.7 x 6.3) m?, ~100 tons.

e Take advantage of segmentation / modularity (see discussion on
characterization of the detector design problem) and create a Geant4
standalone simulation for 30x30 cells of size 20.2x20.2 mm? which can be
rearranged in the inner, middle and outer ECAL modules.

e Used a signal sample BOS—>J/L|J(p+p')1T°(yy) and the LHCb minimum bias
sample as background.

RMSE [cm]

e Studies as a function of pile-up (PU) and number of primary vertices (nPV).

Y uncalibrated

e Calibration (spatial and energy) optimized using XGBoost and BO for : O arcsinh calibration

® XGBoost calibration

fine-tuning of parameters at the simulation and reconstruction steps.

‘7 ‘I A. Boldyrev et al (Yandex), arXiv:2005.07700v1 [physics.ins-det] 2020



ECAL LHCb

uncalibrated parametric approach  ML-regressor (XGBoost)

Signal
(no background)

xGen_loc, cm
xGen_loc, cm
xGen_loc, cm

.0 .0
-0.5 0.0 0.5 i & 4 -20 =15 =-1.0 =05 0.0 0.5 1.0 15 2.0 -1.0 =05 0.0 0.5
xRec_loc, cm xRec_calib, cm XRec_calib, cm

2.0

nPV/event = 10

xGen_loc, cm
xGen_loc, cm

xGen_loc, cm

.0 .0 .0
-20 =15 -1.0 =05 0.0 . . . g -20 -15 -1.0 -0.5 0.0 0.5 . . 8 -20 =15 =10 =05 0.0 0.5
xRec_loc, cm xRec_calib, cm xRec_calib, cm

ML-based reconstruction of the calorimeter cluster position provides good spatial resolution
without a priori knowledge about the spatial properties of the calorimeter under study

‘7 ‘I A. Boldyrev et al (Yandex), arXiv:2005.07700v1 [physics.ins-det] 2020



Other Examples

e EM Calorimeter of a Muon Collider

e Optimization of the MUoNE Detector

e Searches for Milli-charged Particles

e Astro-particle Physics and Neutrino Experiments

e High-Energy Gamma-Ray Astronomy

e Interferometric Gravitational-Wave Detectors

e Cosmic-Ray Muon Imaging

e Portable Modular Detectors for Flexible Muography
e Proton Computed Tomography

e Low-Energy Particle Physics

‘7 ‘I | MODE, Toward the End-to-End Optimization of Particle Physics Instruments with Differentiable Programming: arXiv:2203.13818, 2022
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System architecture and requirements

Support variety of simulation packages (GEANT4, Pythia, etc)
Flexibility

Distributed execution and scalability

Interruption-friendly execution

User ask independence and result sharing

“Excerpts” from MODE workshop

Main SW components:

Structural storage (database) management

Volume storage management

Cloud compute management

Simulation package connection and software environment configuration
User task management

Optimization monitoring/benchmarking interface

Black-box optimization runtime

Differentiable optimization runtime

‘ “ [1] MODE, Toward the End-to-End Optimization of Particle Physics Instruments with Differentiable Programming: a White Paper arXiv:2203.13818
o | ]|
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Final Remarks

Moving towards Physics-driven optimization pipelines: i.e., from FoM encoding
the detector intrinsic response to physics observables and implementation of full
analysis pipeline — need identify main processes for the experiment

For each design point, we are utilizing the same analysis pipelines and validation
procedures that everyone else has used in the past to design detectors

Differently from the past, for the exploration of the design space, instead of
relying on manual optimizations done by a team of PhD students, we can do this
more efficiently using modern Al-assisted pipelines (eventually developed and
maintained by PhD students :)

Next steps: physics-driven design, where FoM are physics observables
measured by different EIC detector design configurations



Sociology

STILL NO INTEREST
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® marketoonist.com

Utility of new approaches
to design increases with
complexity of experiment

Possibility of concrete
realization
(embracing/deploying
these new technologies),
inversely related to the
complexity of the
experiment / collaboration



Workshops/Schools on Detector Design

e AI4EIC,

Special Meeting on Design: July 20
Next workshop: October 10-14, 2022
e MODE,

Machine-learning Optimized Design of Experiments

Next: September 12-16, 2022


https://eic.ai/workshops
https://eic.ai/events
https://mode-collaboration.github.io/workshop/index.html
https://mode-collaboration.github.io/workshop/index.html

"Review” Articles on Detector Design/Sim.

e T. Dorigo et al., Toward the End-to-End Optimization of Particle
Physics Instruments with Differentiable Programming: a White Paper,

e A.Adelmann et al., New directions for surrogate models and
differentiable programming for HEP detector simulation,

e C. Fanelli, Design of Detectors at the Electron lon Collider with Al,


https://arxiv.org/abs/2203.13818
https://arxiv.org/abs/2203.08806
https://arxiv.org/pdf/2203.04530.pdf

Conclusions

These lectures covered a set of tools/technologies that can empower our community to tackle larger scale
and more complex detector design problems: [1]

o Al-assisted optimization strategies and ML-based surrogate-models (with possibility of autodiff)

o The “hand and intuition” of the expert cannot be substituted at present, but these automated pipelines
cannot be any longer ignored as valuable tools to assist the design problems

o In the (near) future their utilization can bring to “groundbreaking solutions to century-old problems”

The optimization of an entire detector or accelerator is a daunting task that is probably beyond present-day
capabilities; nonetheless we already saw successful applications to portion of these machines and their
automated control.

Al can indeed assist the design and R&D of complex experimental systems by providing more efficient
design (considering multiple objectives) and optimizing the computing budget needed to achieve that. EIC is
one of the first experiments to be designed with the support of Al. [2]

One of the conclusions from the DOE Town Halls on Al for Science on 2019 was that “Al techniques that can
optimize the design of complex, large-scale experiments have the potential to revolutionize the way
experimental nuclear physics is currently done”. [3]

[1] MODE, Toward the End-to-End Optimization of Particle Physics Instruments with Differentiable Programming: a White Paper arXiv:2203.13818
[2] C. Fanelli et al (ECCE consortium) Al-assisted Optimization of the ECCE Tracking System at the Electron lon Collider, arXiv:2205.09185
[3] R. Stevens et al., Al for Science: Report on the Department of Energy (DOE) Town Halls on Artificial Intelligence (Al) for Science
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https://www.osti.gov/biblio/1604756

Al-optimization strategies are much
more than just fine-tuning the
detector design..

‘Hu






Integration into real detector simulations

ATLAS Simulation ® G4

n* E=65.5 G(?V Y FastCaloGAN

The GAN architecture is relatively
simple, but it is able to match the energy
scale and resolution well.

=
[
S
0
=
T
el
c
©
A
W
v

<E> FGAN/G4

There is one GAN per n slice

RMS FGAN/G4

AtlFast3: the next generation of fast simulation in ATLAS (ATLAS Collaboration), 2109.02551 (2021)



CaloGAN One image per calo layer One network per particle type;
Input particle energy

|NPUTS/ \OUTPUTS

4 |particle
1 |energy H—>rescale
E -

' Linear

Scalar lear
multiplication Combination

>

1024 space - '
z ™ Linear
Resize Combination
N

2

=1
LAGAN , | J 1
\_ ¢ >,

LA:
' Use layer i as input to layer i+1 :
Locally Aware, y Inpu yerl RelLU to encourage sparsity

iim Like a CNN - -
M. Paganini, L. de Oliveira, B. Nachman, 1705.02355, 1712.10321 (2017)



FastCaloGAN

A Wasserstein GAN with gradient
penalty is used

Generator

Latent Dense Output

Space (50) NVoxel
RelLU

True momentum Concatenate

NVoxel Number of voxels

Generator nodes 50, 50, 100, 200, NVoxel
Discriminator nodes | NVoxel, NVoxel, NVoxel, NVoxel, 1
Activation function | ReLU

Optimizer Adam [60]

Discriminator
Output

Dense Dense Dense Dense

NVoxel NVoxel NVoxel NVoxel .

Linear RelLU RelU RelU
@ Learning rate 10~
Bl 0.5
B2 0.999

Batch size 128

The Rectified Linear Unit (ReLU) activation function Training ratio (D/G) | 5
is used in all layers of the discriminator with the Gradient penalty (1) | 10
exception of the last.

AtlFast3: the next generation of fast simulation in ATLAS (ATLAS Collaboration)


http://cds.cern.ch/record/2630433/files/ATL-SOFT-PUB-2018-001.pdf?version=1

Integration into real detector simulations

ATLAS Simulation
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The.ne.v\./ fast simulation (_ ) |deally, the same calibrations ~ As expected, the fast sim.
S|gn|f|cantly improves jet derived for full sim. timing is independent of
substructure with respect to the  (Geant4-based) can be applied energy, while Geant4
older one (AF2) to the fast sim. requires more time for
higher energy.
ol

AtlFast3: the next generation of fast simulation in ATLAS (ATLAS Collaboration), 2109.02551 (2021)



More details on AD

e  Gradient-based optimization
o Gradient descent; (damped) Newton’s method; quasi-Newton methods (BFGS, L-BFGS-B, etc)
o  Can require user-defined stopping-criteria

o  For applications, solutions that do not perfectly reach the global minimum, typically still present a valuable improvement over
previous designs

o  Popular optimization algorithms are implemented in open-source packages such as SciPy, with the gradient of the objective
supplied by the PyTorch’s AD module

° Computing derivatives
o  Numerical differentiation; symbolic differentiation; automatic differentiation
e  Automatic differentiation

o  Forward Mode: extends each variable a by a variable a’, for its partial derivative in some direction, also called “tangent”. Time
complexity to compute the full gradient is proportional to the time complexity of calculating the function f times the number of
input variables

o  Reverse Mode: all statements are recorded usually in computational graph or stack=like data called tape; after this primal run,
each primal variable is extended by an adjoint variable; the adjoint variables are successively updated while revisiting the
statements in reverse; the time complexity relative to the primal is independent of the number of input variables, making it
faster than the forward mode; however recording a tape requires a significant amount of memory

‘7 ‘I | MODE, Toward the End-to-End Optimization of Particle Physics Instruments with Differentiable Programming: arXiv:2203.13818, 2022
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Magnetic Field with DNN

Al Town Hall@JLab 2021 — Magnetic
Fields with DNN

The production magnetic field was ~1.5 GB (2019) for both solenoid

and torus fields combined.

Can a neural network model be faster?

It could also be used for OSG transfers to save bandwidth

Production Field Map
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https://indico.jlab.org/event/462/contributions/8870/attachments/7246/9996/Modeling%20Magnetic%20Fields%20with%20deep%20neural%20networks%20Andru%20Quiroga.pdf

