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Multi-Objective Optimization
● So far we have been discussing of optimization driven by a single objective

● The design can be actually driven by multiple objectives: an optimal design should be the 
result of a simultaneous optimization of multiple figures of merits (FoMs), taking into account, 
e.g, efficiency, resolution, distinguishing power between different particle types, as well as 
costs for the realization.

● In this context, the detector design can be considered as a complex combinatorial problem 
where AI-based approaches are clearly the most suited tools to deal with such complexity. In 
terms of computing resources, Geant-based simulations consume processor time, while AI is 
dealing with complicated regression problems.

● MOO is an active field of research in AI which has experienced in recent years a remarkable 
growth of applications like in social systems [1], material discovery [2], and multi-task 
learning problems thanks to the increased computational power available [3]. 

[1] G.-G. Wang, X. Cai, Z. Cui, G. Min, and J. Chen, “High performance computing for cyber physical social systems by using evolutionary multi-objective 
optimization algorithm,” IEEE Transactions on Emerging Topics in Computing, 2017.
[2] A. M. Gopakumar, P. V. Balachandran, D. Xue, J. E. Gubernatis, and T. Lookman, “Multi-objective optimization for materials discovery via adaptive 
design,” Scientific reports, vol. 8, no. 1, pp. 1–12, 2018.
[3] O. Sener and V. Koltun, “Multi-task learning as multi-objective optimization,” Advances in Neural Information Processing Systems, vol. 31, pp. 
527–538, 2018
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Frameworks
● Notice that MOO with dynamic/evolutionary 

algorithms (see, e.g., [1-3]) are probably the 
most utilized approaches on github, followed 
by more recent developments on 
multi-objective bayesian optimization (see, 
e.g., [4-7]). Using them has the advantage of 
having an entire community developing 
those tools. 

● Agent-based approaches to MOO are also 
possible (see, e.g., [8]), but won’t be 
discussed here. 

● Remarkably these approaches can 
accommodate mechanical and geometrical 
constraints during the optimization process.

https://github.com/topics/multi-objective-optimization
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[1] J. J. Durillo and A. J. Nebro, “jMetal: A Java framework for 
multi-objective optimization,” Advances in Engineering Software, vol. 42, 
no. 10, pp. 760–771, 2011.

[2] F.-A. Fortin, F.-M. De Rainville, M.-A. G. Gardner, M. Parizeau, and 
C. Gagné, “DEAP: Evolutionary algorithms made easy,” The Journal of 
Machine Learning Research, vol. 13, no. 1, pp. 2171–2175, 2012. 

[3] J. Blank and K. Deb, “pymoo: Multi-objective Optimization in 
Python,” IEEE Access, vol. 8, pp. 89497–89509, 2020

[4] M. Laumanns and J. Ocenasek, “Bayesian optimization algorithms 
for multi-objective optimization,” in International Conference on Parallel 
Problem Solving from Nature, pp. 298–307, Springer, 2002.

[5] M.  Balandat,  B.  Karrer,  D.  R.  Jiang,  S.  Daulton,  B.  Letham,  A.  
G.  Wilson,  and E. Bakshy, “Botorch: Programmable bayesian 
optimization in pytorch,” arXiv preprint arXiv:1910.06403, 2019.

[6] P. P. Galuzio, E. H. de Vasconcelos Segundo, L. dos Santos Coelho, 
and V. C. Mariani, “MOBOpt—multi-objective Bayesian optimization,” 
SoftwareX, vol. 12, p. 100520, 2020.

[7] A. Mathern, O. S. Steinholtz, A. Sjöberg, M. Önnheim, K. Ek, R. 
Rempling, E. Gustavsson, and M. Jirstrand, “Multi-objective constrained 
Bayesian optimization for structural design,” Structural and 
Multidisciplinary Optimization, pp. 1–13, 2020.

[8] R. Yang, X. Sun, and K. Narasimhan, “A generalized algorithm for 
multi-objective reinforcement learning and policy adaptation,” in 
Advances in Neural Information Processing Systems, pp. 14636–14647, 
2019
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MOO

● In the following we will refer to the multi-objective optimization based on evolutionary 
algorithms [1], and in particular pymoo [2], written in Python, which also includes 
visualization and decision making tools.  

● The definition of a generic MOO problem can be formulated as:

[1] Deb, Kalyanmoy. Multi-objective optimization using evolutionary algorithms. Vol. 16. John Wiley & Sons, 2001.
[2] Blank, Julian, and Kalyanmoy Deb. "pymoo: Multi-objective Optimization in Python." IEEE Access 8 (2020): 89497-89509

● M objective functions f(x) to optimize. By 
construction, pymoo performs 
minimization so a function to maximize 
needs a minus sign. 

● There can be J inequalities g(x) 

● There can be K equality constraints h(x)

● There are N variables xi with lower and 
upper boundaries. 
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● The solutions satisfying the constraints 
and variable bounds constitute a feasible 
decision variable space S ⊂ Rn , which 
corresponds to our design space. 

● One of the striking differences between single-objective and multi-objective optimization, is that 
in the latter the objective functions constitute a multi-dimensional space called objective space, 
Z ⊂ RM. 

● The optimal solutions in multi-objective optimization can be defined from a mathematical 
concept of partial ordering. In the parlance of multi-objective optimization, the term “domination” 
is used for this purpose.

● All points which are non-dominated by any other member of the set are called the 
non-dominated points. One property of any two such points is that a gain in an objective from 
one point to the other happens only due to a sacrifice in at least one other objective (trade-off).

x1

x2

xN

Pareto Frontier

X
YΦ(x)

Design Space Objective SpaceMOO
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Evolutionary Optimization
● Evolutionary optimization (EO) algorithms use a population based approach in which more than one 

solution participates in an iteration and evolves a new population of solutions in each iteration. 

● The reasons for the popularity of EOs are many: 

(i)  do not require any derivative information 

(ii) relatively simple to implement  

(iii) flexible and have a widespread applicability. 

● The use of a population of solutions to solve multi-objective optimization problems an EO procedure 
seems a “natural” choice. 

● The MOO problems give rise to a set of Pareto-optimal solutions which need a further processing to arrive 
at a single preferred solution. To achieve the first task, the use of population in an iteration helps an EO to 
simultaneously find multiple non-dominated solutions, which portrays a trade-off among objectives, in a 
single simulation run.

[1] Deb, Kalyanmoy. "Multi-objective optimisation using evolutionary 
algorithms: an introduction." Multi-objective evolutionary 
optimisation for product design and manufacturing. Springer, 
London, 2011. 3-34.

MO-based solutions are helping to reveal important hidden knowledge about a problem 
– a matter which is difficult to achieve otherwise [1]. 
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Evolutionary Optimization
EO principles differ from classical approaches in many ways:

● An EO procedure does not typically use gradient information in the search process. EO methodologies 
are direct search procedures. 

● An EO procedure uses a population approach in an iteration, and has some advantages: (i) parallel 
processing power; (ii) allows EO to find multiple optimal solutions; (iii) provides EO with the ability to 
normalize decision variables (as well as objective and constraint functions) within an evolving population 
using the population-best minimum and maximum values. 

● An EO uses stochastic operators. This allows an EO algorithm to negotiate multiple optima and other 
complexities better and provide them with a global perspective in their search.

The initialization usually involves a random creation of solutions. it is highlighted that for solving complex 
real-world optimization problems, a customized initialization is helpful in achieving a faster search.

A selection is made to form an intermediate mating pool. A simple approach, called tournament selection, 
consists in picking two solutions at random from the population and the better of the two is kept, etc. 

The variation operator is a collection of a number of operators (such as crossover, mutation etc.) which are 
used to generated a modified population.  

EMO: Evolutionary Multi-Objective Optimization
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Genetic Algorithm
● The purpose of the crossover operator is 

to pick two or more solutions (parents) 
from the mating pool and create one or 
more solutions by exchanging information 
among the parent solutions. 

● This is applied with a crossover probability (ℙc ∈ [0,1]), indicating the proportion of population 
members participating to the operation. The remaining proportion is simply copied to the modified 
(child) population. 

● Each child solution, created by the crossover operator, is then perturbed in its vicinity by a mutation operator 
with a probability ℙm, usually set as 1/n, where n is the number of variables (on average, 1 variable is 
mutated per solution). For real-parameter optimization, a simple Gaussian probability distribution with 
a predefined variance can be used with its mean at the child variable value.  

● The elitism operator combines old with newly created population and chooses to keep the better solutions 
from the combined populations. It makes sure that an algorithm has a monotonically non-degrading 
performance. 

○ Finally the user of an EO needs to choose some termination criteria. 
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Crossover Operators
● Actually a variety of types of crossovers [1]: Single point crossover, �Linear crossover, Blend crossover, �

Simulated binary crossover (SBX). 

● SBX is an efficient crossover for real variables, which mimics the crossover of binary encoded variables.   It 
uses probability density function that simulates the single-point crossover in binary-coded GAs.  

SBX Algorithm:
● Select parents x1 and x2 
● Generate random u ∈ [0,1)
● Calculate β (ηc is the 

distribution index)

Compute offspring as:

Large ηc tends to generate children closer to the parents�
Small ηc allows the children to be far from the parents
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Phases of Evolution

● First, the GA exhibits a more 
global search by maintaining a 
diverse population, discovering 
potentially good regions of 
interest. 

● Second, a more local search 
takes place by bringing the 
population members closer 
together.

Toy example: 1 objective, 2 constraints

Initial
population

After 5 
generations

After 40
generations

After 100
generations

All solutions 
became feasible

x1

x1

x2

x1

x1

x2

x2

x2
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Non-dominated front

● This trade-off property between the non-dominated points makes the practitioners interested 
in finding a wide variety of them before making a final choice.

● The computational effort needed to select the points of the non-domination front from a set of 
N points is O(N log N) for 2 and 3 objectives, and O(N (log N)M−2 ) for M > 3 objectives [1,2].

● If the given set of points for the above task contain all points in the search space (assuming a 
countable number), the points lying on the non-domination front, by definition, do not get 
dominated by any other point in the objective space, hence are Pareto-optimal points 
(together they constitute the Pareto-optimal front) and the corresponding pre-images (decision 
variable vectors) are called Pareto-optimal set of solutions.

● Evolutionary MOO attempts to satisfy the following principles:

1. Find a set of solutions which lie on the Pareto-optimal front
2. Find a set of solutions which are diverse enough to represent the entire range of the 

Pareto-optimal front.

[1] Kung HT, Luccio F, Preparata FP. On finding the maxima of a set of vectors. Journal of the Association for 
Computing Machinery. 1975;22(4):469–476 

[2] Jensen, Mikkel T. "Reducing the run-time complexity of multiobjective EAs: The NSGA-II and other 
algorithms." IEEE Transactions on Evolutionary Computation 7.5 (2003): 503-515.
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Choice of Solution

● Since a number of solutions are optimal, the obvious question arises: which of these 
optimal solutions must one choose?

● Answers this typically involves higher-level information which is often non-technical, 
qualitative and experience-driven. One has to evaluate the pros and cons of each of 
these solutions.

● So in MOO the effort must be made in finding the set of trade-off optimal solutions by 
considering all objectives to be important. Then operate a choice.

● Therefore Evolutionary Multi-Objective Optimization can be summarized as: 

Step 1: Find multiple non-dominated points as close to the Pareto-optimal 
front as possible, with a wide trade-off among objectives.

Step 2 Choose one of the obtained points using higher-level information.
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Choose 
one solution

Workflow 
MOO

Minimize f1 
Minimize f2

 … 
Minimize fN 

Subject to constraints

Ideal MOO

Multiple tradeoff 
solutions found

Higher-level information

(follows from previous slide)

Step 1: Find multiple non-dominated points as 
close to the Pareto-optimal front as possible, 
with a wide trade-off among objectives.

Step 2 Choose one of the obtained points using 
higher-level information.

[1] K. Deb, "Multi-objective optimisation using evolutionary 
algorithms: an introduction." Multi-objective evolutionary 
optimisation for product design and manufacturing. Springer, 
London, 2011. 3-34.

1

2
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Single objective(s) VS MOO
In an EMO, multiple Pareto-optimal solutions are attempted 
to be found in a single simulation. 

In the Fig., you can imagine instead to have Multiple Criteria 
Decision Making (MCDM), i.e., independent single-objective 
optimization which find different Pareto-optimal solutions.

The Pareto front corresponds to several scalarized 
objectives (an example of scalarization is the weighted-sum 
approach  f(x) = ∑wi ・ fi (x), for a given set of weights).   

During the optimization task, algorithms must overcome a 
number of difficulties, to converge to the global optimum 
(e.g., there could be infeasible regions, local optimum 
solutions, etc.)
  These problems can represent a challenge in computational time.  EMO, constitutes an inherent parallel 

search, and when a population member overcomes these difficulties and make a progress towards the 
Pareto-optimal front, its variable values and their combination reflect this fact, and information get shared 
through variable exchange…  

Finding multiple trade-off solutions is a parallelly processed task. 
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Elitist Non-Dominated Sorting GA (NSGA-II)
[1] Deb, K., et al. "A fast and elitist multiobjective genetic algorithm: NSGA-II." 
IEEE transactions on evolutionary computation 6.2 (2002): 182-197. 

NSGA-II is one of the most popular EMO (>34k 
citations on google scholar), characterized by:

❏ Use of an elitist principle,
❏ Explicit diversity preserving mechanism
❏ Emphasis in non-dominated solutions.

● At any generation t, the offspring population (Qt) is first created from the parent population (Pt) with 
GA. The two are combined to form a new population (Rt) of size 2N. 

● The population Rt is classified into different non-dominated classes. The new population is filled 
with points from different non-domination fronts, one at a time 

● Not all fronts can be accomodated in N slots available for the new population (Pt+1). Some fronts 
will be deleted, the first ones will be included. The last front to be considered may need to have 
some members trimmed.
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NSGA-II and Crowding Distance 

● Instead of arbitrarily discarding some members 
from the last front, the points which will make the 
diversity of the selected points the highest are 
chosen. 

● The crowded-sorting of the points of the last front 
which will not be accommodated fully is achieved 
according to the descending order of their 
crowding distance values. 

The crowding distance di of point 
i is a measure of the objective 

space around i which is not 
occupied by any other solution in 

the population. 

i

f1

f2

i+1

i-1

● The crowding distance di of point i is a measure of the objective space around i which 
is not occupied by any other solution in the population. A possible metric is the 
perimeter of the cuboid in Figure, formed by using the neighbors in the objective 
space as vertices. 
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Handling Constraints in EMO
● The binary tournament selection can be modified by the constraints. In presence of 

constraints, each solution can be either feasible or infeasible. 

● There can be three situations:

○ Both solutions are feasible 
○ One is feasible, the other not
○ Both are infeasible 

A redefinition of the dominion principle is done (called constrained-domination):

This implies that the first non-domination front consists of the “best” (that is, non-dominated and feasible) points from the 
population and any feasible point lies on a better non-domination front than an infeasible point
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Performance Measures [1] Zitzler E, Thiele L, Laumanns M, Fonseca CM, Fonseca VG. Performance 
assessment of multiobjective optimizers: An analysis and review. IEEE 
Transactions on Evolutionary Computation. 2003;7(2):117– 132.

● There are two conflicting goals in an EMO procedure: (i) a good convergence to the Pareto-optimal 
front and (ii) good diversity in obtained solutions:

○ Metrics evaluating convergence to the known Pareto-optimal front (such as error ratio, distance from 
reference set, etc.),

○ Metrics evaluating spread of solutions on the known Pareto-optimal front (such as spread, spacing, 
etc.), and

○ Metrics evaluating certain combinations of convergence and spread of solutions (such as 
hypervolume, coverage, R-metrics, etc.).

● For Hypervolume (see right) only a 
reference point (r) needs to be 
provided. Pymoo uses the same 
implementation of DEAP. 
https://deap.readthedocs.io

● A study has argued that 
convergence and diversity cannot be 
measured by a single metric [1]...   

Objective space

Function Evaluations

Ob
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e 
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Decision Making 
● Finding a set of representative Pareto-optimal solutions using an EMO procedure is half the 

task; choosing a single preferred solution from the obtained set is an equally important task. 

● Only the integration of the decision-making procedure with the EMO procedure makes the 
multi-objective optimization a complete procedure.

● There are three main directions of developments that we mention here briefly (details in [1]):

○ A priori approach: i.e.,  focus the search effort into a part of the Pareto-optimal front, 
instead of the entire frontier (e.g., reference point approach, reference direction 
approach, etc.).

○ A posteriori approach: preference information used after a set of representative 
Pareto optimal solutions are found.

○ Interactive approach: the decision maker is called after every τ generations 
diversified solutions from the non-dominated front are chosen, and DM is asked to rank 
them according to preference (utility function). This drives NSGA-II search procedure.  

[1] K. Deb, "Multi-objective optimisation using evolutionary algorithms: an introduction." Multi-objective 
evolutionary optimisation for product design and manufacturing. Springer, London, 2011. 3-34.



22

DM in pymoo [1] Blank, Julian, and Kalyanmoy Deb. "pymoo: Multi-objective Optimization in 
Python." IEEE Access 8 (2020): 89497-89509.

● Pymoo for example offers different approaches for DM, after obtaining a set of non-dominated 
solutions (in post-processing) [1].

○ Compromise ProĀramminĀ: One way of making a decision is to compute value of a 
scalarized and aggregated function and select one solution based on minimum or 
maximum value of the function.

○ Pseudo-WeiĀhts: a more intuitive way, where pseudo-weights are defined as:

Namely, the normalized distance to the worst 
solution regarding each objective i is calculated.
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Some Practical Aspects
● EMO is an established successful procedure since many years. 

● It’s well known that problems with many objectives (e.g., O(10)) can present challenges. [1]

○ As the number of objectives increases, most members in a randomly created population 
become non-dominated to each other.  E.g., if N=200, and M=3, ~10% members are 
non-dominated; if N=200 and M=10, ~90% are non-dominated. An exponentially large 
population size is needed to represent a large-dimensional Pareto optimal front.

○ This causes a stagnation in the performance of an EMO algorithm. 

● Two typical approaches to tackle large objective-problems are:

○ FindinĀ only a part oÿ the Pareto-optimal ÿront:  there are many means to indicate a 
preference information (e.g., distributed computing environment with a unique “cone” for 
defining domination) see [1]. This worked well up to ~20 objectives.  

○ IdentiÿyinĀ and EliminatinĀ Redundant Objectives:  objectives causing positively 
correlated relationship between each other on the obtained NSGA-II solutions are identified 
and declared as redundant using PCA. The EMO-PCA is continued until no further reduction 
in the objective space is found. Test studies have been done with O(102) objectives. 

[1] V. Khare, X. Yao, K. Deb. Performance Scaling of Multi-objective Evolutionary 
Algorithms. In: Proceedings of the Second Evolutionary Multi-Criterion Optimization 
(EMO-03) Conference (LNCS 2632); 2003. p. 376–390.
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The ECCE Example



25

EIC Comprehensive Chromodynamics Experiment

A proposal (60+ pages) [end of 2021] recommended by the DPAP as the reference detector

Used AI during the proposal for the design of the detector concept 

98 institutions 

Develop low-risk, cost-effective, flexible and 
optimized EIC detector

Detector concept based on a 1.5 T magnet 
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EIC Detector Tracker

CF, K. Suresh, Z. Papandreou et al (ECCE)

AI-assisted Optimization of the ECCE 
Tracking System at the Electron Ion Collider

arXiv:2205.09185
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EIC Detector Tracker 
Sub Detector 

System
No Of 
Layers

Technology
Pitch/res

[𝛍m]
Thickness

[X/X0]
Description

Vertex Barrel 3 MAPS-ITS3 10 0.05 Monolithic Active Pixel Sensor; EIC R&D eRD111. 
High precision tracking.

Sagitta Barrel 2 MAPS-ITS3 10 0.05 Monolithic Active Pixel Sensor; EIC R&D eRD11. 
High precision tracking.

Outer Barrel 3 𝛍Rwell 55 0.2 𝛍Rwell is a gaseous based tracker. EIC R&D ERD6.
 Low Cost tracking solution

CTTL (TOF) 1 AC-LGAD 30 ~0.1
Low Gain Avalanche Detectors (ACLGAD): EIC R&D 

ERD112. 
High precision tracking and Timing.

EST 4 MAPS-ITS3 10 0.3 Monolithic Active Pixel Sensor; EIC R&D eRD11. 
High precision tracking.

FST 5 MAPS-ITS3 10 0.3 Monolithic Active Pixel Sensor; EIC R&D eRD111. 
High precision tracking.

ETTL 1 AC-LGAD 30 ~0.1 Low Gain Avalanche Detectors (ACLGAD): EIC R&D 
ERD112. High precision tracking and timing

FTTL 1 AC-LGAD 30 ~0.1 Low Gain Avalanche Detectors (ACLGAD): EIC R&D 
ERD112. High precision tracking and timing

 

https://indico.bnl.gov/category/354/
https://indico.bnl.gov/category/354/
https://wiki.bnl.gov/eic/upload/ERD6_ProgressReport_202103_Final.pdf
https://indico.bnl.gov/category/323/
https://indico.bnl.gov/category/323/
https://indico.bnl.gov/category/354/
https://indico.bnl.gov/category/354/
https://indico.bnl.gov/category/323/
https://indico.bnl.gov/category/323/
https://indico.bnl.gov/category/323/
https://indico.bnl.gov/category/323/
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Parametrization arXiv:2205.09185

Parametrization of the support structure

Parametrization of disks radii and TTL

Implementation of Geometric 
Constraints

RMax and RMin of the disks are then 
calculated based on the support 

structure.

Sagitta Length fixed and Radius 
changed based on the cone angle.

Parametrization underlies the AI-assisted design and can explore non-projective as well as projective
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Reference VS Projective (R&D)

Parametrization underlies the AI-assisted design and can explore non-projective as well as projective



30

Reference VS Projective (R&D)
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Soft and Hard Constraints, Overlaps & Other
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Integration during the EIC Detector Proposal

● We want to use these 
algorithms to: (1) steer the 
design and suggest 
parameters that a 
“manual”/brute-force 
optimization will likely miss to 
identify; (2) further optimize 
some particular detector 
technology (see d-RICH 
paper, e.g., optics properties)

● AI allows to capture hidden 
correlations among the 
design parameters.

● All “steps” (physics, detector) 
involved in the AI 
optimization, strong interplay 
between working groups  

AI-“Optimization” does not 
necessarily mean “fine-tuning”

Light/smart optimization pipelines ran during the “explorative” 
phase of the detector proposal

https://iopscience.iop.org/article/10.1088/1748-0221/15/05/P05009/meta
https://iopscience.iop.org/article/10.1088/1748-0221/15/05/P05009/meta
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Implementation 

● Objective functions Average of Weighted 

Averages (n_obj ≥ 3)

○ Momentum resolution dp/p 
○ Theta resolution d𝜃/𝜃
○ Projected d𝜃/𝜃 at PID location.
○ Kalman Filtering inefficiency 

(improving the tracking reconstruction 

ability of the algorithm)

● Validation of the solutions

○ Validate by comparing optimal vs 

baseline d𝜑 resolution, vertex 

resolution and reconstruction 

efficiency 
W
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Weighted sum with errors



34

Implementation

W
ei
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d 
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s

Weighted sum with errors

Sum in bins of P 
14 bins

Average 
objective in 
a η bin

Propagate uncertainties from fits
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Computational Resources time taken by GA + sorting

● Used a test problem DTLZ1
● Verified scaling following MN2 and convergence to 

true front
● ~1s/call with 104 size!
● For 11 variables and 3 objectives needs ~ 10000 

evaluations to converge 
~10k CPUhours / pipeline
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“Navigate” Pareto Front
Can take a snapshot any time 

during evaluation
1 2 Updated Pareto Front at time t

At each point in the Pareto front 
corresponds a design 3

Analysis of Objectives (momentum resolution, angular resolution, KF efficiency)4
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Single VS Double Gaussian
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Evolution

● Black points represent the first 
simulation campaign, and a preliminary 
detector concept in phase-I optimization 
which did not have a developed support 
structure;

● Blue points represent the fully 
developed simulations for the final 
ECCE detector proposal concept; red 
points the ongoing R&D for the 
optimization of the support structure. 

● Compared to black, there is an 
improvement in performance in all η bins 
with the exception of the transition 
region, an artifact that depends on the 
fact that black points do not include a 
realistic simulation of the material 
budget in the transition region! 

● In the transition region, it can be also 
appreciated the improvement provided 
by the projective design

1st simulation (black) 
not realistic!

✅

✅

✅
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Validation Reconstruction Efficiency Performance evaluated after optimization process 
(both designs). 

Notice red points are related to an ongoing project 
R&D with a projective support structure for the 
ECCE tracker.   

D0 invariant mass from semi-inclusive deep 
inelastic scattering
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Navigate Pareto front interactively 

● Visualization of results from 
approximated Pareto front 

● Exploration in a multiple objective 
space

● Facilitate study/comparison of 
tradeoff solutions

● Here MOBO is used using 
BoTorch/Ax (benefit from strong 
community support — Facebook) 

K. Suresh (U. of Regina) https://ai4eicdetopt.pythonanywhere.com
CF, Z. Papandreou, K. Suresh, Designing EIC with the assistance of AI: strategies and perspectives (in progress)  

https://ai4eicdetopt.pythonanywhere.com
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Other Applications: novel aerogel material

● Aerogels with low refractive indices are very 
fragile - tiles break during production and 
handling, and their installation in detectors.

● To improve the mechanical strength of aerogels, 
Scintilex is introducing fibers into the aerogel that 
increase mechanical strength, but do not affect 
the optical properties. 

● We are designing the aerogel+fibers optimizing 
mechanical stability and resolution. 

● Paper in preparation. 

 V. Berdnikov, J. Crafts, E. Cisbani, CF, T. Horn, R. Trotta
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