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Multi-Objective Optimization

So far we have been discussing of optimization driven by a single objective

The design can be actually driven by multiple objectives: an optimal design should be the
result of a simultaneous optimization of multiple figures of merits (FoMs), taking into account,
e.g, efficiency, resolution, distinguishing power between different particle types, as well as
costs for the realization.

In this context, the detector design can be considered as a complex combinatorial problem
where Al-based approaches are clearly the most suited tools to deal with such complexity. In
terms of computing resources, Geant-based simulations consume processor time, while Al is
dealing with complicated regression problems.

MOQOO is an active field of research in Al which has experienced in recent years a remarkable
growth of applications like in social systems [1], material discovery [2], and multi-task
learning problems thanks to the increased computational power available [3].

[1] G.-G. Wang, X. Cai, Z. Cui, G. Min, and J. Chen, “High performance computing for cyber physical social systems by using evolutionary multi-objective
optimization algorithm,” IEEE Transactions on Emerging Topics in Computing, 2017.

[2] A. M. Gopakumar, P. V. Balachandran, D. Xue, J. E. Gubernatis, and T. Lookman, “Multi-objective optimization for materials discovery via adaptive
design,” Scientific reports, vol. 8, no. 1, pp. 1-12, 2018.

[3] O. Sener and V. Koltun, “Multi-task learning as multi-objective optimization,” Advances in Neural Information Processing Systems, vol. 31, pp.
527-538, 2018
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e Notice that MOO with dynamic/evolutionary S
algorithms (see, e.g., [1-3]) are probably the comaronssoazed sana o,
most utilized approaches on github, followed
by more recent developments on
multi-objective bayesian optimization (see,
e.g., [4-7]). Using them has the advantage of
having an entire community developing
those tools.

https://github.com/topics/multi-objective-optimization

e Agent-based approaches to MOO are also
possible (see, e.g., [8]), but won’t be
discussed here.
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e Remarkably these approaches can ot | o Wy A
accommodate mechanical and geometrical
constraints during the optimization process.
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[11J. J. Durillo and A. J. Nebro, “jMetal: A Java framework for
multi-objective optimization,” Advances in Engineering Software, vol. 42,
no. 10, pp. 760-771, 2011.

[2] F.-A. Fortin, F.-M. De Rainville, M.-A. G. Gardner, M. Parizeau, and
C. Gagné, “DEAP: Evolutionary algorithms made easy,” The Journal of
Machine Learning Research, vol. 13, no. 1, pp. 2171-2175, 2012.

[3] J. Blank and K. Deb, “pymoo: Multi-objective Optimization in
Python,” IEEE Access, vol. 8, pp. 89497-89509, 2020

[4] M. Laumanns and J. Ocenasek, “Bayesian optimization algorithms
for multi-objective optimization,” in International Conference on Parallel
Problem Solving from Nature, pp. 298-307, Springer, 2002.

[5] M. Balandat, B. Karrer, D. R. Jiang, S. Daulton, B. Letham, A.
G. Wilson, and E. Bakshy, “Botorch: Programmable bayesian
optimization in pytorch,” arXiv preprint arXiv:1910.06403, 2019.

[6] P. P. Galuzio, E. H. de Vasconcelos Segundo, L. dos Santos Coelho,
and V. C. Mariani, “MOBOpt—multi-objective Bayesian optimization,”
SoftwareX, vol. 12, p. 100520, 2020.

[71A. Mathern, O. S. Steinholtz, A. Sjoberg, M. Onnheim, K. Ek, R.
Rempling, E. Gustavsson, and M. Jirstrand, “Multi-objective constrained
Bayesian optimization for structural design,” Structural and
Multidisciplinary Optimization, pp. 1-13, 2020.

[8] R. Yang, X. Sun, and K. Narasimhan, “A generalized algorithm for
multi-objective reinforcement learning and policy adaptation,” in
Advances in Neural Information Processing Systems, pp. 14636—14647,
2019



M O [1] Deb, Kalyanmoy. Multi-objective optimization using evolutionary algorithms. Vol. 16. John Wiley & Sons, 2001.
[2] Blank, Julian, and Kalyanmoy Deb. "pymoo: Multi-objective Optimization in Python." IEEE Access 8 (2020): 89497-89509

e In the following we will refer to the multi-objective optimization based on evolutionary
algorithms [1], and in particular pymoo [2], written in Python, which also includes
visualization and decision making tools.

e The definition of a generic MOO problem can be formulated as:

e M objective functions f(x) to optimize. By
min fm(x) m = 1, ..,M, co_ngtryctpn, pymoo pgﬁorms .

minimization so a function to maximize
needs a minus sign.

s.t. g;(x) <0, Fi= o,
e There can be J inequalities g(x)
hk(x) == 0’ k= 1’ “9 K’ e There can be K equality constraints h(x)
L U = e There are N variables x. with lower and
X SX; S Xp» 15 L,..,N. upper boundaries.
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The solutions satisfying the constraints X ~|
and variable bounds constitute a feasible O
decision variable space S C R", which
corresponds to our design space. ”
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One of the striking differences between single-objective and multi-objective optimization, is that
in the latter the objective functions constitute a multi-dimensional space called objective space,
Z C RM

The optimal solutions in multi-objective optimization can be defined from a mathematical
concept of partial ordering. In the parlance of multi-objective optimization, the term “domination’
is used for this purpose.

All points which are non-dominated by any other member of the set are called the
non-dominated points. One property of any two such points is that a gain in an objective from
one point to the other happens only due to a sacrifice in at least one other objective (trade-off).



[1] Deb, Kalyanmoy. "Multi-objective optimisation using evolutionary

E \V/ O 1 u t i O N a I y O D t i m i y4 a t i O [N algorithms: an introduction.” Multi-objective evolutionary

optimisation for product design and manufacturing. Springer,
London, 2011. 3-34.

Evolutionary optimization (EO) algorithms use a population based approach in which more than one
solution participates in an iteration and evolves a new population of solutions in each iteration.

The reasons for the popularity of EOs are many:
(i) do not require any derivative information
(ii) relatively simple to implement
(iii) flexible and have a widespread applicability.

The use of a population of solutions to solve multi-objective optimization problems an EO procedure
seems a “natural” choice.

The MOO problems give rise to a set of Pareto-optimal solutions which need a further processing to arrive
at a single preferred solution. To achieve the first task, the use of population in an iteration helps an EO to
simultaneously find multiple non-dominated solutions, which portrays a trade-off among objectives, in a
single simulation run.

MO-based solutions are helping to reveal important hidden knowledge about a problem
— a matter which is difficult to achieve otherwise [1].



Evo 1 utiona r'y 0] P timization EMO: Evolutionary Multi-Objective Optimization

EO principles differ from classical approaches in many ways:

e An EO procedure does not typically use gradient information in the search process. EO methodologies
are direct search procedures.

e An EO procedure uses a population approach in an iteration, and has some advantages: (i) parallel
processing powers; (ii) allows EO to find multiple optimal solutions; (iii) provides EO with the ability to
normalize decision variables (as well as objective and constraint functions) within an evolving population
using the population-best minimum and maximum values.

e An EO uses stochastic operators. This allows an EO algorithm to negotiate multiple optima and other
complexities better and provide them with a global perspective in their search.

The initialization usually involves a random creation of solutions. it is highlighted that for solving complex
real-world optimization problems, a customized initialization is helpful in achieving a faster search.

A selection is made to form an intermediate mating pool. A simple approach, called fournament selection,
consists in picking two solutions at random from the population and the better of the two is kept, etc.

The variation operator is a collection of a number of operators (such as crossover, mutation etc.) which are
used to generated a modified population.



Parents 1]olo[1]1[1]o0[1]0]0]0[1]0] 0/0/1]1/0[1/0/1/0[1]0[1]1

Genetic Algorithm

e The purpose of the crossover operator is Cross-over
to pick two or more solutions (parents) Children oJo/1[1[1[1[o1o]o]o]1]0
from the mating pool and create one or
more solutions by exchanging information ARiration

among the parent solutions.

[1JofoJ1]o]1]o]ol0l1]0]1[1

e This is applied with a crossover probability (Pc € [0,1]), indicating the proportion of population
members participating to the operation. The remaining proportion is simply copied to the modified
(child) population.

e Each child solution, created by the crossover operator, is then perturbed in its vicinity by a mutation operator
with a probability Pm, usually set as 1/n, where n is the number of variables (on average, 1 variable is
mutated per solution). For real-parameter optimization, a simple Gaussian probability distribution with
a predefined variance can be used with its mean at the child variable value.

e The elitism operator combines old with newly created population and chooses to keep the better solutions
from the combined populations. It makes sure that an algorithm has a monotonically non-degrading
performance.

1 o Finally the user of an EO needs to choose some termination criteria.



Crossover Operators

® Generate random u € [0,1)
® Calculate B (n, is the
distribution index)
u)=,  ifu<05

Actually a variety of types of crossovers [1]: Single point crossover, [ILinear crossover, Blend crossover, [

Simulated binary crossover (SBX).

SBX is an efficient crossover for real variables, which mimics the crossover of binary encoded variables.

uses probability density function that simulates the single-point crossover in binary-coded GAs.

SBX Algorithm:
® Select parents x1 and x2

p= 1 c , otherwise
2(1—u)

Compute offspring as:

ﬁW:05m+ﬁkﬁ%L#ﬁ5]

i X = 0-5[(1_ﬂ)x1 +(1+,B)x2]
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Positions of offspring solutions

Large nc tends to generate children closer to the parents
Small nc allows the children to be far from the parents

It



Phases of Evolution

First, the GA exhibits a more
global search by maintaining a
diverse population, discovering
potentially good regions of
interest.

Second, a more local search
takes place by bringing the
population members closer
together.

Toy example: 1 objective, 2 constraints

Initial
_population

| After 40
-. | generations

Xy -

All solutions
L became feasible!
| After5 —
.. | generations

2"

_ After 100
_  generations

>




[1] Kung HT, Luccio F, Preparata FP. On finding the maxima of a set of vectors. Journal of the Association for

N on- d om 1 Na t e d f ron 't Computing Machinery. 1975;22(4):469-476

[2] Jensen, Mikkel T. "Reducing the run-time complexity of multiobjective EAs: The NSGA-II and other
algorithms." IEEE Transactions on Evolutionary Computation 7.5 (2003): 503-515.

This trade-off property between the non-dominated points makes the practitioners interested
in finding a wide variety of them before making a final choice.

The computational effort needed to select the points of the non-domination front from a set of
N points is O(N log N) for 2 and 3 objectives, and O(N (log N)"=2) for M > 3 objectives [1,2].

If the given set of points for the above task contain all points in the search space (assuming a
countable number), the points lying on the non-domination front, by definition, do not get
dominated by any other point in the objective space, hence are Pareto-optimal points
(together they constitute the Pareto-optimal front) and the corresponding pre-images (decision
variable vectors) are called Pareto-optimal set of solutions.

Evolutionary MOO attempts to satisfy the following principles:

1. Find a set of solutions which lie on the Pareto-optimal front
2. Find a set of solutions which are diverse enough to represent the entire range of the
Pareto-optimal front.



Choice of Solution

Since a number of solutions are optimal, the obvious question arises: which of these
optimal solutions must one choose?

Answers this typically involves higher-level information which is often non-technical,
qualitative and experience-driven. One has to evaluate the pros and cons of each of
these solutions.

So in MOO the effort must be made in finding the set of trade-off optimal solutions by
considering all objectives to be important. Then operate a choice.

Therefore Evolutionary Multi-Objective Optimization can be summarized as:

Step 1: Find multiple non-dominated points as close to the Pareto-optimal

front as possible, with a wide trade-off among objectives.

Step 2 Choose one of the obtained points using higher-level information.




Workflow

MOO
Minimize f1
Mhmnheg

1 Minimize f
Subject to constraints

Ideal MOO

Multiple tradeoff
solutions found

.

[1] K. Deb, "Multi-objective optimisation using evolutionary
algorithms: an introduction." Multi-objective evolutionary
optimisation for product design and manufacturing. Springer,
London, 2011. 3-34.

(follows from previous slide)

Step 1: Find multiple non-dominated points as
close to the Pareto-optimal front as possible,

with a wide trade-off among objectives.

Step 2 Choose one of the obtained points using

higher-level information.

Higher-level information

Choose
one solution

o




Single objective(s) VS MOO

In an EMO, multiple Pareto-optimal solutions are attempted

£2 to be found in a single simulation.
Local fronts

yInitial In the Fig., you can imagine instead to have Multiple Criteria
points Decision Making (MCDM), i.e., independent single-objective
optimization which find different Pareto-optimal solutions.

The Pareto front corresponds to several scalarized
objectives (an example of scalarization is the weighted-sum

regions
/ approach f(x) = >w. - f. (x), for a given set of weights).

Infeasible

Pareto-opti . .. . .
front During the optimization task, algorithms must overcome a

number of difficulties, to converge to the global optimum
(e.g., there could be infeasible regions, local optimum
solutions, etc.)

These problems can represent a challenge in computational time. EMO, constitutes an inherent parallel
search, and when a population member overcomes these difficulties and make a progress towards the
Pareto-optimal front, its variable values and their combination reflect this fact, and information get shared
through variable exchange...

i Finding multiple trade-off solutions is a parallelly processed task.



Elitist Non-Dominated Sorting GA (NSGA-IT)

[1] Deb, K., et al. "A fast and elitist multiobjective genetic algorithm: NSGA-IL." Non-domn:.nated C:;:owding
IEEE transactions on evolutionary computation 6.2 (2002): 182-197. sort.'l.ng distance

NSGA-Il is one of the most popular EMO (>34k
citations on google scholar), characterized by:

a
a
a

Use of an elitist principle,
Explicit diversity preserving mechanism
Emphasis in non-dominated solutions.

At any generation t, the offspring population (Q,) is first created from the parent population (P,) with
GA. The two are combined to form a new population (R,) of size 2N.

The population R, is classified into different non-dominated classes. The new population is filled
with points from different non-domination fronts, one at a time

Not all fronts can be accomodated in N slots available for the new population (P, ,). Some fronts

will be deleted, the first ones will be included. The last front to be considered may need to have
some members trimmed.



NSGA-II and Crowding Distance

Instead of arbitrarily discarding some members
from the last front, the points which will make the
diversity of the selected points the highest are
chosen.

The crowded-sorting of the points of the last front
which will not be accommodated fully is achieved
according to the descending order of their
crowding distance values.

f

The crowding distance d, of point
iis a measure of the objective
space around i which is not
occupied by any other solution in
the population.

The crowding distance d; of point / is a measure of the objective space around / which
is not occupied by any other solution in the population. A possible metric is the
perimeter of the cuboid in Figure, formed by using the neighbors in the objective

space as vertices.



Handling Constraints in EMO

e The binary tournament selection can be modified by the constraints. In presence of
constraints, each solution can be either feasible or infeasible.

e There can be three situations:

o Both solutions are feasible
o One is feasible, the other not
o Both are infeasible

A redefinition of the dominion principle is done (called constrained-domination):

Definition 5.1 A solution x¥ is said to ‘constrained-dominate’ a solution xU) (or x(¥ <. x\)), if any
of the following conditions are true:

(i I

1. Solution x) is feasible and solution x'9) is not.

2. Solutions x*) and x\9) are both infeasible, but solution x'*) has a smaller constraint violation, which
can be computed by adding the normalized violation of all constraints:

K

J
= (3;(x)) + )_ abs(hx(x)),

1=1 k=1

3. Solutions x'*) and x'7) are feasible and solution x'*) dominates solution x’ in the usual sense

‘ This implies that the first non-domination front consists of the “best” (that is, non-dominated and feasible) points from the
‘, " population and any feasible point lies on a better non-domination front than an infeasible point



[1] Zitzler E, Thiele L, Laumanns M, Fonseca CM, Fonseca VG. Performance

P e r f O r m a n C e M e a S u r e S assessment of multiobjective optimizers: An analysis and review. IEEE

Transactions on Evolutionary Computation. 2003;7(2):117— 132.

e There are two conflicting goals in an EMO procedure: (i) a good convergence to the Pareto-optimal
front and (ii) good diversity in obtained solutions:

o Metrics evaluating convergence to the known Pareto-optimal front (such as error ratio, distance from
reference set, etc.),

o Metrics evaluating spread of solutions on the known Pareto-optimal front (such as spread, spacing,
etc.), and

o Metrics evaluating certain combinations of convergence and spread of solutions (such as

hypervolume, coverage, R-metrics, etc.).
Objective space

e For Hypervolume (see right) only a Convergence
reference point (r) needs to be
provided. Pymoo uses the same
implementation of DEAP.
https://deap.readthedocs.io

e A study has argued that
convergence and diversity cannot be

Objective space

50 100 150 200 250 300 350 400

i measured by a single metric [1]...

Function Evaluations



[1] K. Deb, "Multi-objective optimisation using evolutionary algorithms: an introduction." Multi-objective

D e C i S i O n M a k i n q evolutionary optimisation for product design and manufacturing. Springer, London, 2011. 3-34.

e Finding a set of representative Pareto-optimal solutions using an EMO procedure is half the
task; choosing a single preferred solution from the obtained set is an equally important task.

e Only the integration of the decision-making procedure with the EMO procedure makes the
multi-objective optimization a complete procedure.

e There are three main directions of developments that we mention here briefly (details in [1]):

o A priori approach:i.e., focus the search effort into a part of the Pareto-optimal front,
instead of the entire frontier (e.g., reference point approach, reference direction
approach, etc.).

o A posteriori approach: preference information used after a set of representative
Pareto optimal solutions are found.

o Interactive approach: the decision maker is called after every T generations
diversified solutions from the non-dominated front are chosen, and DM is asked to rank
them according to preference (utility function). This drives NSGA-II search procedure.



D M - [1] Blank, Julian, and Kalyanmoy Deb. "pymoo: Multi-objective Optimization in
1 n D ym O O Python." IEEE Access 8 (2020): 89497-89509.

e Pymoo for example offers different approaches for DM, after obtaining a set of non-dominated
solutions (in post-processing) [1].

o Compromise Programming: One way of making a decision is to compute value of a
scalarized and aggregated function and select one solution based on minimum or
maximum value of the function.

o Pseudo-Weights: a more intuitive way, where pseudo-weights are defined as:

= TN L~ ™)

Namely, the normalized distance to the worst
M ; : . solution regarding each objective i is calculated.
D o 1 (™ ) [ (2 — f20)




o [1] V. Khare, X. Yao, K. Deb. Performance Scaling of Multi-objective Evolutionary
S O m e P r a C t 1 C a 1 A S D e C t S Algorithms. In: Proceedings of the Second Evolutionary Multi-Criterion Optimization

(EMO-03) Conference (LNCS 2632); 2003. p. 376-390.

EMO is an established successful procedure since many years.
It's well known that problems with many objectives (e.g., O(10)) can present challenges. [1]

o As the number of objectives increases, most members in a randomly created population
become non-dominated to each other. E.g., if N=200, and M=3, ~10% members are
non-dominated; if N=200 and M=10, ~90% are non-dominated. An exponentially large
population size is needed to represent a large-dimensional Pareto optimal front.

o This causes a stagnation in the performance of an EMO algorithm.
Two typical approaches to tackle large objective-problems are:

o Finding only a part of the Pareto-optimal front: there are many means to indicate a
preference information (e.g., distributed computing environment with a unique “cone” for
defining domination) see [1]. This worked well up to ~20 objectives.

o ldentifying and Eliminating Redundant Objectives: objectives causing positively
correlated relationship between each other on the obtained NSGA-II solutions are identified
and declared as redundant using PCA. The EMO-PCA is continued until no further reduction
in the objective space is found. Test studies have been done with O(10?) objectives.
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Abstract

IC) is a cutting-edge accelerator experiment proposed
 that binds the building blocks of the visible matter



EIC Detector Tracker

uRwell 2
uRWELL3 Sagitta ITS3

Vertex ITS3 FST3
CF, K. Suresh, Z. Papandreou et al (ECCE) m EST 3

Al-assisted Optimization of the ECCE
Tracking System at the Electron lon Collider

arXiv:2205.09185
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EIC Detector Tracker

EST  Sagitta ITS3

Sub Detector No Of Technolo Pitch/res Thickness Descriotion
System Layers v [um] [X/X0] P
Monolithic Active Pixel Sensor; EIC R&D eRD111.
Vertex Barrel 3 MAPS-ITS3 10 0.05 High precision tracking.
mRICH
CTTL Vertex ITS3
. Monolithic Active Pixel Sensor; EIC R&D eRD11. L uRwell
Sagitta Barrel 2 MAPS-ITS3 10 0.05 High precision tracking.
) ECCE design (non-projective)
Outer Barrel 3 uRwell 55 0.2 uRwell is a gaseous based t.racker. E.IC R&D ERDS. Design Parameter
Low Cost tracking solution URWELL 1 (Inner) (r) Radius [17.0, 51.0 cm]
MRWELL 2 (Inner) (r) Radius [18.0,51.0 cm]
Low Gain Avalanche Detectors (ACLGAD): EIC R&D EST 4 z position [-110.0, -50.0 cm]
CTTL (TOF) 1 AC-LGAD 30 ~0.1 ERD112. £l Srpos o L sdithion]
High precision tracking and Timing. EST 2 z position [-80.0, -30.0 cm]
EST 1 z position [-50.0, -20.0 cm]
FST 1 z position [20.0, 50.0 cm]
Monolithic Active Pixel Sensor; EIC R&D eRD11. FST2z position [30.0, 80.0 cm]
EST 4 MAPS-ITS3 10 0.3 High precision tracking. FST 3 z position [40.0, 110.0 cm]
FST 4 z position [50.0, 125.0 cm]
Monolithic Active Pixel S . EIC R&D oRDA1 FST 5 z position [60.0, 125.0 cm]
FST 5 MAPS-ITS3 10 0.3 onolithie Acfive Pixel Sensor; EIC R&D eRDIL. ECCE ongoing R&D (projective)
High precision tracking. Ty
Angle (Support Cone) [25.0°, 30.0°]
Low Gain Avalanche Detectors (ACLGAD): EIC R&D HMRWELL 1 (Inner) Radius [25.0,45.0 cm]
ETTL 1 AC-LGAD 30 0.1 ERD112. High precision tracking and timing ETTL z position [-171.0, -161.0 cm]
EST 2 z position [45, 100 cm]
EST 1 z position [35, 50 cm]
- Low Gain Avalanche Detectors (ACLGAD): EIC R&D FST 1 z position [35,50 cm]
FTTL L AC-LGAD 30 0.1 ERD112. High precision tracking and timing FST 2 z position [45, 100 cm]
FST 5 z position [100, 150 cm]

FTTL z postion [156, 183 cm]


https://indico.bnl.gov/category/354/
https://indico.bnl.gov/category/354/
https://wiki.bnl.gov/eic/upload/ERD6_ProgressReport_202103_Final.pdf
https://indico.bnl.gov/category/323/
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Parametrization arXiv:2205.09185

Parametrization of the support structure

- Plateau
— Vertex/Sagitta Support
——Conical Support

Parametrization of disks radii and TTL

0

= g + plateau Implementation of Geometric
Constraints

TuRwell-1 Rk ( RMax and RMin of the disks are then
calculated based on the support
structure.

Sagitta Length fixed and Radius
6 = Support Cone Angle changed based on the cone angle.

Parametrization underlies the Al-assisted design and can explore non-projective as well as projective



Reference VS Projective (R&D)

EST Sagitta ITS3 S EST Sagitta ITS3

CTTL VertexITs3 ML/ I__m/' CTTL Vertex ITS3

MRwell

Parametrization underlies the Al-assisted design and can explore non-projective as well as projective



Reference VS Projective (R&D)

| uRwell2 | g |
SR Sagitta ITS3
= [LDIRC ||_wRWELL3 | [ Sagitta

URWELL3 Sagitta ITS3

T3 | Vertex ITS3 || FST3 E

mRICH

EST 4

FST1 FST5

= | EST1 |
ST2
&, E uRwell 1

Figure 5: Tracking and PID system in the non-projective (left) and the ongoing R&D projective (right) designs: the two figures show the different geometry
and parametrization of the ECCE non-projective design (left) and of the ongoing R&D projective design to optimize the support structure (right). Labels in red
indicate the sub-detector systems that were optimized, while the labels in blue are the sub-detector systems that were kept fixed due to geometrical constraint. The
non-projective geometry (left) is a result of an optimization on the inner tracker layers (labeled in red) while keeping the support structure fixed, The angle made by
the support structure to the IP is fixed at about 36.5°. The projective geometry (right) is the result of an ongoing project R&D to reduce the impact of readout and
services on tracking resolution.




Soft and Hard Constraints,

Overlaps &

Other

min £, (X)
s.t. gj(x) <0,
hy (x) = 0,

X,LSX,'S)CU

1 °?

sub-detector

EST/FST disks
d

i

EST/FST disks

i 277 sqg
sagitta layers i { sagitta
w

constraint

disks | pt i

: {Z Rous — Ry,
min e

Zns1 — 2Zp >= 10.0 cm

27rrmgum
w

Tnsl —Tn >=5.0cm

description

soft constraint: sum of residuals
R _R in sensor coverage for disks;
ol in, sensor dimensions: d = 17.8
d
strong constraint: minimum
distance between 2 consecutive
disks

soft constraint: residual in
sensor coverage for every layer;
sensor strip width: w = 17.8 mm

strong constraint: minimum
distance between pRwell barrel
layers

Like,
Engineering
Constraints.

GEANT4
unstable with

New Design Point

Check Strong
Constraints

GEANT4 model

Overlap Checks

HPC-Cluster

Compute
performance
metric in ‘p’
and ‘7’ bins.
Evaluate Fit

quality

issue.

Start sim with
timeout

Analyse
Performance & Fits

Penalize Heavily

Penalize Heavily

Do not penalize
Omit the design

Rise Alarm
Do not carry to next
call

Compute objectives and pass to optimizer



Integration during the ETIC Detector Proposal

Light/smart optimization pipelines ran during the “explorative”

AETOTRUIT PR ERES G phase of the detector proposal

necessarily mean “fine-tuning”

e We want to use these
algorithms to: (1) steer the
design and suggest
parameters that a
“manual’/brute-force
optimization will likely miss to
identify; (2) further optimize
some particular detector
technology (see d-RICH
paper, e.g., optics properties)

Detector Team
Technology Selection
Baseline Design
Alternative Configurations

Physics Team
Physics Signal Selection
Performance Evaluation

Computing Team
Simulations Campaigns

e Al allows to capture hidden Optimization Pipelines
correlations among the

design parameters.

Solutions from Pareto Front
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e All “steps” (physics, detector)
involved in the Al
optimization, strong interplay
between working groups

New optimization pipelines



https://iopscience.iop.org/article/10.1088/1748-0221/15/05/P05009/meta
https://iopscience.iop.org/article/10.1088/1748-0221/15/05/P05009/meta

Implementation

e Objective functions Average of Weighted
Averages (n_obj = 3)
o Momentum resolution dp/p
o Theta resolution do/0
o Projected d@/@ at PID location.
o Kalman Filtering inefficiency
(improving the tracking reconstruction

ability of the algorithm)

e Validation of the solutions
o Validate by comparing optimal vs
baseline dg resolution, vertex
resolution and reconstruction

efficiency

o
{ 49
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Weighted sum with errors




Implementation

2.5< | <3.5,6.0<p < 8.0GeV/c

Weighted sum with errors

Average

objectivein  Sum in bins of P
an bin 14 bins

Zn ’ CCn R(f) = i (Zl’ Wpap * R(f)/w)
N . Z Zp Wpn

n

=



Computational Resources

{ Design Point 1

Analyze

time taken by GA + sorting

(Thread_1)
(Thread_2)

Initialise Design Population

| ,

Al-assisted design

Design Point 2

|

Design Point 3

| H Design Point 4

Evaluate Design Points @ Expected Pareto (DTLZ1)

Parallelize Evaluations (Thread_M)

\ 4

‘ Multi-objective Optimization

Pymoo

Parallelizer / Scheduler
(2 Level Parallelization)

® NSGA-ll Pareto (DTLZ1)

;| —@— NSGA-Il time (DTLZ1)
0| —@— NSGA-I time (tracker)

3

description

| symbol

value

population size
# objectives
offspring
design size
# calls (tot. budget)

# cores

# charged 7 tracks
#binsinn
# bins in p

100
3
30
11 (9)
200
same as
offspring
120k
5
10

Population;Size

Used a test problem DTLZ1

Verified scaling following MN? and convergence to
true front

~1s/call with 10* size!

For 11 variables and 3 objectives needs ~ 10000
evaluations to converge

~10k CPUhours / pipeline

i _ _New
Ratio = Baseline




"NaViqate" Pa reto Front At each point in the Pareto front

corresponds a design
Can take a snapshot any time
during evaluation

Updated Pareto Front at time t

b
8

A Final Evaluation Point

Hypervolume [arb units]

N of Evaluations

. 5 —oeoe
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KF cfficiency
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Single VS Double Gaussian

—§- single Gaussian Fit

. —§— Double Gaussian Fit

10 <p<125GeV/c
00 < n<05
[los < n<10
[10 < n<15

arb units

sl ey I G
%.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

dp/p

Figure 6: Fit strategy: a double-Gaussian fit function is utilized to extract
the resolutions. Such a fit function provided good reduced y? and more sta-
ble extractions compared to single-Gaussian fits. The resolution is obtained
as an average of the two o’s weighted by the relative areas of the two Gaus-
sians according to Eq. (3). The figure represents the results corresponding to a
particular bin in 7 and p.




Evolution

Black points represent the first
simulation campaign, and a preliminary
detector concept in phase-| optimization
which did not have a developed support
structure;

Blue points represent the fully
developed simulations for the final
ECCE detector proposal concept; red
points the ongoing R&D for the
optimization of the support structure.

Compared to black, there is an
improvement in performance in all n bins
with the exception of the transition
region, an artifact that depends on the
fact that black points do not include a
realistic simulation of the material
budget in the transition region!

In the transition region, it can be also
appreciated the improvement provided
by the projective design

O<hl<1
PWG requirement
—@— T Simulation Campaign
—=@— ECCE Simulation 2021
—=&— ECCE Ongoing R&D

1.5<hi<25
PWG requirement
—@— T Simulation Campaign
—=@— ECCE Simulation 2021
—=&— ECCE Ongoing R&D

1<hli<15
PWG requirement
—@— T Simulation Campaign
—=&— ECCE Simulation 2021
—=&— ECCE Ongoing R&D

1t simulation (black)
not realistic!

25<inl<3.5
PWG requirement
—=@— T Simulation Campaign
—=@— ECCE Simulation 2021
—=&— ECCE Ongoing R&D




Validation N
= Reconstruction Efficiency NV
Performance evaluated after optimization process

Reconstruction Efficiency | § 1 | 35<n<3 | {0} 3<n<-25 (both designs).

. . -1 £ 0 Lo
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+ ECCE Ongoing R&D 2 )); : < ()
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Notice red points are related to an ongoing project
| R&D with a projective support structure for the
25<n<-2 { i ; £l “15<n<-1 ECCE tracker.
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Navigate Pareto front interactively

Select the Method of Optimization

Multi Objective Bayesi ization GEANT4 Visualization of the design

e Visualization of results from
approximated Pareto front

e Exploration in a multiple objective
space

Design Parameters Table

e Facilitate study/comparison of
tradeoff solutions

® Momentum res ® Theta res

e Here MOBO is used using
FinerEvaIua(ionofMomentumresoluﬁonfor'iel\(lecledDesrgn BOTO rCh/ AX (beneflt from Strong
o : community support — Facebook)

K. Suresh (U. of Regina)

‘* ‘l CF, Z. Papandreou, K. Suresh, Designing EIC with the assistance of Al: strategies and perspectives (in progress)


https://ai4eicdetopt.pythonanywhere.com

Other Applications: novel aerogel material

V. Berdnikov, J. Crafts, _E. Cisbani, CF, T. Horn, R. Trotta

~—

e Aerogels with low refractive indices are very e
fragile - tiles break during production and =
handling, and their installation in detectors.

e To improve the mechanical strength of aerogels, —
Scintilex is introducing fibers into the aerogel that ‘
increase mechanical strength, but do not affect =~ 7 N/
the optical properties. ’ y AN /N

e \We are designing the aerogel+fibers optimizing
mechanical stability and resolution.

e Paper in preparation.







