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and its normalization is chosen such that, upon replacing the SU(3) transformations with

an Abelian U(1) transformation, the QED Lagrangian is recovered.2 The CP odd term,

L(CP/ )
gauge = ⌥̄

g
2
Nf

32�2
⇧µ⌦�⇥Tr(G

µ⌦
G

�⇥), (1.7)

is irrelevant for most of QCD phenomenology as the experimental value of its corresponding

strength, characterized by the parameter ⌥̄, is unexpectedly close to zero, ⌥̄ ⇥ 10�9.3 Nf

denotes the number of quark flavors (up, down, strange, etc.), and ⇧µ⌦�⇥ is the fully anti-

symmetric Levi-Civita tensor.

The Lagrange density of QCD, neglecting the CP-odd contribution and taking into

account di⌥erent quark flavor sectors, can be written in the explicit form,
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, (1.8)

where F
i
µ⌦  ⇢µA

i
⌦ � ⇢⌦A

i
µ. The striking feature of this Lagrange density is the self inter-

actions among gluons which makes the vacuum of the theory nontrivial compared to QED.

This is not a surprise as in any non-Abelian gauge theory, the gauge field A
i
µ carries a char-

acteristic charge (color in the case of QCD) corresponding to the internal space of the gauge

group, and must be able to interact with other charged members of the gauge multiplet.

The other feature of the QCD Lagrange density is that the coupling of gauge fields to the

quark fields cannot be arbitrary and is constrained by the Lie algebra of the group to be the

same among quarks with di⌥erent colors and from di⌥erent families, and should match that

of self-gluon couplings. This is again in contrast with QED where, although the interaction

Lagrangian has a universal form, di⌥erent matter fields can couple to the EM field with

di⌥erent strengths, characterized by their distinct electric charges.

The two important properties of QCD, asymptotic freedom and color confinement, can

be deduced from an analytical approach based on perturbation theory. The former, as is a

2This also justifies the factor of 1
ig in the definition of Gµ⌥ as it would result in the usual normalization

of the kinetic term of gluons.

3The convention used for the normalization of this term ensures that, in the absence of massive quarks,

the contribution from such term vanishes upon setting ⌃̄ = 2�, where � is the parameter of the U(1)A
transformation, q � ei�⇤5 , whose current, Jµ

5 ⌅ q̄⇤µ⇤5q, is anomalous.

Gluons kinetic and interaction terms

Quark/gluon interactionsQuark kinetic and mass term

Quantum chromodynamics (QCD) in continuum:

QCD is a SU(3) Yang-Mills theory augmented with several flavors of massive quarks:
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Quark/gluon interactionsQuark kinetic and mass term

Observe that:


i) There are only                input parameters plus QCD coupling. Fix them by a few 
quantities and all strongly-interacting aspects of nuclear physics is predicted (in 
principle)!


ii) QCD is asymptotically free such that:

1 +Nf

Positive constant for Nf  16
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1.1. To parametrize the characteristic scale at which the theory becomes strong, we can

define the scale ⇤QCD such that b0�s(µ) log
µ2

⇤2
QCD

= 1, then one can rewrite Eq. (1.11) as

following

�s(µ
 ) =

1

2b0 log
µ⇧

⇤QCD

. (1.12)

As can be seen, perturbation theory is only valid if µ ✏ ⇤QCD. Experimentally ⇤QCD �

200 MeV which is of the order of the inverse size of the light hadrons. This is consistent

with our realization of hadrons being composed of strongly interacting constituents when

low-energy probes are used. In fact at low energies, these hadrons are the e⌥ective degrees

of freedom of QCD, and the details of their properties and interactions, although sensitive

to the short distance theory of QCD, can be studied in a systematic low-energy expansion.

This requires understanding QCD symmetries and the mechanism for the breaking of some

of these symmetries. We discuss this topic in the next section, Sec. 1.1.2.

1.1.2 QCD at low energies

Although quarks and gluons do not show up as explicit degrees of freedom in the spectrum

at energies of the order of ⇤QCD, the imprint of their interactions can be found in the

spectrum of hadrons. For example, the low-lying spectrum of (negative parity) mesons and

(positive parity) baryons, as illustrated in Fig. 1.2, exhibits several interesting patterns

whose origin can be understood via the fundamental theory of QCD. As is seen, pions are

noticeably lighter than the rest of hadrons and come in an almost degenerate triplet. The

next multiplet of mesons, while remain low in mass compared to baryons, are not as light as

pions. On the other hand, the ⌃ meson that has the same quark content as that of ⌃ in the

quark model is surprisingly heavier than ⌃. Baryons have masses at the order of >� 1 GeV

and like mesons come in various nearly degenerate multiplets. Moreover, the parity partners

of mesons and baryons have been observed to have di⌥erent masses, e.g., the di⌥erence in

the mass of the nucleons � 940 MeV and their negative parity counterpart N(1535) is as

large as 600 MeV.

To understand these features all together, it su⌦ces to study the underlying symmetries

of the QCD Lagrangian. In the limit of zero quark masses (chiral limit), the left-handed and

QCD is a SU(3) Yang-Mills theory augmented with several flavors of massive quarks:
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wavefunction renormalization factors. Then a two-loop calculation shows that

⇥(�s) = �(b0�
2
s + b1�

3
s) +O(�4

s), (1.10)

with b0 = 1
12↵ (33� 2Nf ) and b1 = 1

24↵2 (153� 19Nf ) [58]. For the current discussion let us

ignore the NLO correction to the ⇥-function and solve Eq. (1.10). Explicitly, we want to

know given the coupling constant at scale µ, what the value of the coupling would be at

scale µ
 . It easily follows that

�s(µ
 ) =

�s(µ)

1 + b0�s(µ) log
µ⇧2

µ2

. (1.11)

Given the positive sign of b1 for QCD with Nf = 6, it is evident that �s(µ ) decreases
9. Quantum chromodynamics 33

QCD αs(Mz) = 0.1185 ± 0.0006
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Figure 9.4: Summary of measurements of �s as a function of the energy scale Q.
The respective degree of QCD perturbation theory used in the extraction of �s is
indicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to leading
order; res. NNLO: NNLO matched with resummed next-to-leading logs; N3LO:
next-to-NNLO).
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Figure 1.1: The coupling of QCD as a function of a characteristic energy scale µ = Q, obtained

from matching the QCD perturbative calculation to a given order (as given in brackets) to the

experimental measurements of several quantities. There is also one point which is obtained by

matching to a lattice QCD calculation [58]. Figure is reproduced with the permission of Michael

Barnett on behalf of the Particle Data Group.

as µ increases, indicating the theory tends to become free at asymptotically high energies.

Experimental determinations of �s for a range of energies have resulted in values that lie

on the predicted scale-dependence curve to an extremely well precision, as is shown in Fig.
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Let’s enumerate the steps toward numerically simulating this theory nonperturbatively…

Step II: Generate a large sample of thermalized decorrelated vacuum configurations.

Step III: Form the correlation functions by contracting the quark fields. Need to 
specify the interpolating operators for the state under study.

Step IV: Extract energies and matrix elements from correlation functions.

Step V: Make the connection to physical observables, such as scattering amplitudes, 
decay rates, etc.

See e.g., ZD, arXiv:1409.1966 [hep-lat]

Step I: Discretize the QCD action in both space and time. Consider a finite hypercubic 
lattice. Wick rotate to imaginary times. 



Step I: Discretize the QCD action in both space and time. Consider a finite hypercubic 
lattice. Wick rotate to imaginary times. 
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Figure 1.8: A 2 + 1 dimensional cubic lattice is shown in the left panel. The (trace of) plaquette

and the product of quark, the link variable and the antiquark (right panel) are two examples of

gauge-invariant constituents of the lattice gauge theories in their compact formalism.

where Z =
R

DAµDqDq̄ eiSQCD denotes the QCD partition function, SQCD =
R

d4x LQCD

is the action and LQCD is given in Eq. (1.8). Evaluating this path integral in practice

requires several steps to be followed:

1) A discrete action: The path integral in Eq. (1.49) is only defined rigorously if the

degrees of freedom of the theory are discrete. Numerical evaluations become plausible in

practice, firstly, with a measure that is nonoscillatory. This can be achieved by a Wick

rotation of the coordinates to Euclidean spacetime, t ! i⌧ so that iSQCD ! �S(E)
QCD where

S(E)
(QCD) is purely real. Secondly, the number of degrees of freedom of the integration must

be finite, requiring the spacetime to be truncated to a finite region in both spatial and

temporal directions and to be discretized. Lattices with geometry of a hypercube are the

most convenient choices in LQCD calculations, see Fig. 1.8, although the anisotropic cubic

lattices with lattice spacing in the temporal direction being finer than that of the spatial

direction are being also used. The spacing between two adjacent lattice sites, a, must be

small compared with the hadronic scale, a ⌧ ⇤�1
QCD, while the spatial extent of the volume,

L, must be large compared with the Compton wavelength of the pions which sets the range

of hadronic interactions, L � m�1
⇡ , see Sec. 1.3.

Quark fields are placed on the lattice sites, and a choice for defining the gauge fields, as

Link
Two conditions:
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QCD, while the spatial extent of the volume,

L, must be large compared with the Compton wavelength of the pions which sets the range

of hadronic interactions, L ✏ m
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Quark fields are placed on the lattice sites, and a choice for defining the gauge fields, as

T, L � m�1
⇡

31

plotted in Fig. 1.8, is through the Wilson link variables,

Uµ(n)  e
igAµ(n)

. (1.50)

These are the elements of the SU(3) Lie group and transform under a local gauge transfor-

mation as

Uµ(n)⇣ Uµ(n)
 = V (n)Uµ(n)V

†(n+ µ̂), (1.51)

where V is an element of the Lie group. The use of link variables, which is called the compact

formulation of lattice gauge theories, is a convenient choice as it makes the implementation of

gauge invariance on the lattice straightforward. In fact, the only gauge invariant quantities

are the gauge links starting and ending at the quark fields, and the trace of any closed loop

formed by the gauge links, Fig. 1.8. With these gauge invariant blocks, we can write down

a Lagrangian for QCD interactions on the lattice that recovers the Lagrangian in Eq. (1.8)

once the continuum limit is taken. A common choice of action is the Wilson action [361]

which uses the elementary plaquette, defined as Pµ⌦;n  Uµ(n)U⌦(n + µ̂)U †
µ(n + ↵̂)U †

⌦ (n),

see Fig. 1.8, for gluons and the Wilson fermions formulation for the quarks,

S
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⇥
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(

µ<⌦

⇠Tr[ � Pµ⌦;n]

�
(

n
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(
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(

µ

�
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2
Uµ(n)qn+µ̂ + q̄n

r + ⇤µ
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U
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µ(n� µ̂)qn�µ̂

✏
,

(1.52)

where n runs over all the N3
s ⇤Nt lattice points and ⇥  2Nc

g2 is the lattice coupling constant

with Nc = 3 for QCD. Note that the action is written in terms of dimensionless fields and

parameters. Explicitly, the continuum field q at point na is replaced by a
�3/2

qn and the

continuum bare mass of the quarks m(0) is replaced by a
�1

m
(0). r is the Wilson parameter

whose value is commonly set to 1 in the calculations. The sum over quark flavors is left

implicit.

The gluonic part of the action clearly recovers the continuum action in Eq. (1.6) up

to corrections that scale as a2, and leads to the following lattice propagator in momentum

Plaquette
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formed by the gauge links, Fig. 1.8. With these gauge invariant blocks, we can write down

a Lagrangian for QCD interactions on the lattice that recovers the Lagrangian in Eq. (1.8)

once the continuum limit is taken. A common choice of action is the Wilson action [361]

which uses the elementary plaquette, defined as Pµ⌦;n  Uµ(n)U⌦(n + µ̂)U †
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where n runs over all the N3
s ⇤Nt lattice points and ⇥  2Nc

g2 is the lattice coupling constant

with Nc = 3 for QCD. Note that the action is written in terms of dimensionless fields and

parameters. Explicitly, the continuum field q at point na is replaced by a
�3/2

qn and the

continuum bare mass of the quarks m(0) is replaced by a
�1

m
(0). r is the Wilson parameter

whose value is commonly set to 1 in the calculations. The sum over quark flavors is left

implicit.

The gluonic part of the action clearly recovers the continuum action in Eq. (1.6) up

to corrections that scale as a2, and leads to the following lattice propagator in momentum

31
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where n runs over all the N3
s ⇤Nt lattice points and ⇥  2Nc

g2 is the lattice coupling constant

with Nc = 3 for QCD. Note that the action is written in terms of dimensionless fields and

parameters. Explicitly, the continuum field q at point na is replaced by a
�3/2

qn and the

continuum bare mass of the quarks m(0) is replaced by a
�1

m
(0). r is the Wilson parameter

whose value is commonly set to 1 in the calculations. The sum over quark flavors is left

implicit.

The gluonic part of the action clearly recovers the continuum action in Eq. (1.6) up

to corrections that scale as a2, and leads to the following lattice propagator in momentum

An example of a discretized action by K. Wilson:

Wilson parameter. Gives the naive action if set 
to zero and has doublers problem.

Plaquette

= 2/g2

For discussions of actions consistent with chiral symmetry of continuum see: 
Kaplan, arXiv:0912.2560 [hep-lat].

Step I: Discretize the QCD action in both space and time. Consider a finite hypercubic 
lattice. Wick rotate to imaginary times. 
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cannot simultaneously 1) be a periodic function of momentum and analytic except at p 6= 0,

2) be proportional to �µpµ in the continuum limit, and 3) anticommute with �5. It is clear

that the naive Dirac operator satisfies both 2 and 3 but fails to meet the first condition

given the presence of doublers. The Wilson Dirac operator on the other hand satisfies 1

and 2 but it does not anticommute with �5 signifying its chiral symmetry breaking feature.

Solutions to the lattice fermions’ puzzle include the domain-wall fermions [227] and overlap

fermions [293, 294] that both belong to the category of the Ginsberg-Wilson fermions.16

Ginsberg and Wilson relation [176] redefines the chiral symmetry on the lattice,

{D, �5} = aD�5D, (1.56)

with D being a dimensionful Dirac operator, and therefore breaks the last condition in the

Nielsen-Ninomiya theorem. It however ensures that the chiral features of the continuum

fermions, including the chiral anomaly, are exactly reproduced as long as the operator D

satisfies this relation. Unfortunately, numerical simulations of both domain-wall and overlap

fermions comes with additional cost compared with Wilson fermions.17 Nonetheless, the

use of the chiral lattice fermions in LQCD calculations has become more common as the

computational resources improve. A nice review of fermions and chiral symmetry on the

lattice can be found in Ref. [231].

2) Generate gauge-filed configurations: Now that we have a discrete action with the

desired continuum limit, let us go back to the path intergarl we aim to evaluate,

hÔi =
1

Z

Z
DUµDqDq̄ e�S

(G)
lattice[U ]�S

(F )
lattice[U,q,q̄]

Ô[U, q, q̄], (1.57)

where we have split the action to the purely gauge part and the fermionic part, and have

left the superscripts E for the Euclidean action implicit. This expectation value can be

written as

hÔi =
1

Z

Z
DUµ e�S

(G)
lattice[U ]

ZF [U ] hÔiF , (1.58)

16Domain-wall fermions only satisfy the Ginsberg-Wilson relation in a particular limit, i.e. when the
domain-walls separation is infinite.

17Simulating domain-wall fermions includes adding an extra dimension to the calculation of the quark
propagators while simulating overlap fermions requires inversion of an extra operator beside the overlap
operator, see Refs. [218,231,234] for more details.
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given the presence of doublers. The Wilson Dirac operator on the other hand satisfies 1

and 2 but it does not anticommute with �5 signifying its chiral symmetry breaking feature.
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fermions [293, 294] that both belong to the category of the Ginsberg-Wilson fermions.16
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fermions comes with additional cost compared with Wilson fermions.17 Nonetheless, the

use of the chiral lattice fermions in LQCD calculations has become more common as the
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where we have split the action to the purely gauge part and the fermionic part, and have

left the superscripts E for the Euclidean action implicit. This expectation value can be

written as
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1
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16Domain-wall fermions only satisfy the Ginsberg-Wilson relation in a particular limit, i.e. when the
domain-walls separation is infinite.

17Simulating domain-wall fermions includes adding an extra dimension to the calculation of the quark
propagators while simulating overlap fermions requires inversion of an extra operator beside the overlap
operator, see Refs. [218,231,234] for more details.

Quark part of expectation values
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with D being a dimensionful Dirac operator, and therefore breaks the last condition in the
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fermions comes with additional cost compared with Wilson fermions.17 Nonetheless, the

use of the chiral lattice fermions in LQCD calculations has become more common as the

computational resources improve. A nice review of fermions and chiral symmetry on the

lattice can be found in Ref. [231].

2) Generate gauge-filed configurations: Now that we have a discrete action with the

desired continuum limit, let us go back to the path intergarl we aim to evaluate,

hÔi =
1

Z

Z
DUµDqDq̄ e�S

(G)
lattice[U ]�S

(F )
lattice[U,q,q̄]

Ô[U, q, q̄], (1.57)

where we have split the action to the purely gauge part and the fermionic part, and have

left the superscripts E for the Euclidean action implicit. This expectation value can be

written as

hÔi =
1

Z

Z
DUµ e�S

(G)
lattice[U ]

ZF [U ] hÔiF , (1.58)

16Domain-wall fermions only satisfy the Ginsberg-Wilson relation in a particular limit, i.e. when the
domain-walls separation is infinite.

17Simulating domain-wall fermions includes adding an extra dimension to the calculation of the quark
propagators while simulating overlap fermions requires inversion of an extra operator beside the overlap
operator, see Refs. [218,231,234] for more details.

34

where the path integral over gauge links U are separated from that of the fermionic path

integrals with

,Ô-F =
1

ZF

*
DqDq̄ e

�S
(F )
lattice[U,q,q̄]O[q, q̄, U ], (1.59)

and ZF is the partition function of the fermions which will still depend on the value of the

gauge link. By expressing the fermionic action as S(F )
lattice =

%
n,m q̄nDn,mqm, where Dn,m is

the matrix element of one of the chosen lattice operators discussed above in position space,

the fermionic partition function can be written as

ZF =

*
DqDq̄ e

�S
(F )
lattice[U,q,q̄] =

)

f

detDf , (1.60)

where the product of the determinant of Dirac operator matrix, Df , corresponding to each

dynamical flavor is explicit. Now from Eq. (1.58) it is clear that once the fermionic expec-

tation value ,Ô-F is computed, the full expectation value can be computed using a Monte

Carlo sampling integration with the probability measure 1
Z e

�S
(G)
lattice[U ]&

f detDf . An im-

portant property of the lattice Dirac operators, the ⇤5-hermiticity D
† = ⇤5D⇤5, ensures

that the determinant of the Dirac operator is real, providing a well-defined sampling weight

in the numerical evaluation of the expectation values. LQCD calculations with dynamical

fermions require computing the gauge-field configuration with a distribution that depends

on the fermion determinant – the determinant of the Dirac operator which is a large ma-

trix with dimensionality (12N3
s ⇤ Nt)2 (on each spacetime point on the lattice there are 3

color and 4 spinor degrees of freedom for each flavor of quarks). After each configuration

generation both the gauge part and the determinant part must be updated simultaneously

to generate the next configuration.18

When a large number of almost statistically uncorrelated gauge field configurations, N ,

are generated, the statistical average

,Ô- = 1

N

N(

i

,Ô-F [U (i)], (1.61)

18As a result, early LQCD calculations were limited to the quenched approximation where the fermion

determinant is set to one to reduce the computational cost of the gauge-field configurations. Unfortu-

nately quenching is an uncontrolled approximation and only describes QCD if the quarks were infinitely

heavy. Nowadays, the growth in the computational resources available to LQCD calculations has en-

abled abandoning this approximation and has made the use of dynamical configurations viable in most

calculations.

Define:

Quark part of expectation values
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Carlo sampling integration with the probability measure 1
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portant property of the lattice Dirac operators, the ⇤5-hermiticity D
† = ⇤5D⇤5, ensures

that the determinant of the Dirac operator is real, providing a well-defined sampling weight

in the numerical evaluation of the expectation values. LQCD calculations with dynamical

fermions require computing the gauge-field configuration with a distribution that depends

on the fermion determinant – the determinant of the Dirac operator which is a large ma-

trix with dimensionality (12N3
s ⇤ Nt)2 (on each spacetime point on the lattice there are 3

color and 4 spinor degrees of freedom for each flavor of quarks). After each configuration

generation both the gauge part and the determinant part must be updated simultaneously

to generate the next configuration.18

When a large number of almost statistically uncorrelated gauge field configurations, N ,

are generated, the statistical average

,Ô- = 1
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,Ô-F [U (i)], (1.61)

18As a result, early LQCD calculations were limited to the quenched approximation where the fermion

determinant is set to one to reduce the computational cost of the gauge-field configurations. Unfortu-

nately quenching is an uncontrolled approximation and only describes QCD if the quarks were infinitely

heavy. Nowadays, the growth in the computational resources available to LQCD calculations has en-

abled abandoning this approximation and has made the use of dynamical configurations viable in most

calculations.
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cannot simultaneously 1) be a periodic function of momentum and analytic except at p 6= 0,

2) be proportional to �µpµ in the continuum limit, and 3) anticommute with �5. It is clear

that the naive Dirac operator satisfies both 2 and 3 but fails to meet the first condition

given the presence of doublers. The Wilson Dirac operator on the other hand satisfies 1

and 2 but it does not anticommute with �5 signifying its chiral symmetry breaking feature.

Solutions to the lattice fermions’ puzzle include the domain-wall fermions [227] and overlap

fermions [293, 294] that both belong to the category of the Ginsberg-Wilson fermions.16

Ginsberg and Wilson relation [176] redefines the chiral symmetry on the lattice,

{D, �5} = aD�5D, (1.56)

with D being a dimensionful Dirac operator, and therefore breaks the last condition in the

Nielsen-Ninomiya theorem. It however ensures that the chiral features of the continuum

fermions, including the chiral anomaly, are exactly reproduced as long as the operator D

satisfies this relation. Unfortunately, numerical simulations of both domain-wall and overlap

fermions comes with additional cost compared with Wilson fermions.17 Nonetheless, the

use of the chiral lattice fermions in LQCD calculations has become more common as the

computational resources improve. A nice review of fermions and chiral symmetry on the

lattice can be found in Ref. [231].

2) Generate gauge-filed configurations: Now that we have a discrete action with the

desired continuum limit, let us go back to the path intergarl we aim to evaluate,

hÔi =
1

Z

Z
DUµDqDq̄ e�S

(G)
lattice[U ]�S

(F )
lattice[U,q,q̄]

Ô[U, q, q̄], (1.57)

where we have split the action to the purely gauge part and the fermionic part, and have

left the superscripts E for the Euclidean action implicit. This expectation value can be

written as

hÔi =
1

Z

Z
DUµ e�S

(G)
lattice[U ]

ZF [U ] hÔiF , (1.58)

16Domain-wall fermions only satisfy the Ginsberg-Wilson relation in a particular limit, i.e. when the
domain-walls separation is infinite.

17Simulating domain-wall fermions includes adding an extra dimension to the calculation of the quark
propagators while simulating overlap fermions requires inversion of an extra operator beside the overlap
operator, see Refs. [218,231,234] for more details.
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where the path integral over gauge links U are separated from that of the fermionic path

integrals with
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tation value ,Ô-F is computed, the full expectation value can be computed using a Monte

Carlo sampling integration with the probability measure 1
Z e

�S
(G)
lattice[U ]&

f detDf . An im-

portant property of the lattice Dirac operators, the ⇤5-hermiticity D
† = ⇤5D⇤5, ensures

that the determinant of the Dirac operator is real, providing a well-defined sampling weight

in the numerical evaluation of the expectation values. LQCD calculations with dynamical

fermions require computing the gauge-field configuration with a distribution that depends

on the fermion determinant – the determinant of the Dirac operator which is a large ma-

trix with dimensionality (12N3
s ⇤ Nt)2 (on each spacetime point on the lattice there are 3

color and 4 spinor degrees of freedom for each flavor of quarks). After each configuration

generation both the gauge part and the determinant part must be updated simultaneously

to generate the next configuration.18

When a large number of almost statistically uncorrelated gauge field configurations, N ,

are generated, the statistical average
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cannot simultaneously 1) be a periodic function of momentum and analytic except at p �= 0,

2) be proportional to ⇤µpµ in the continuum limit, and 3) anticommute with ⇤5. It is clear

that the naive Dirac operator satisfies both 2 and 3 but fails to meet the first condition

given the presence of doublers. The Wilson Dirac operator on the other hand satisfies 1

and 2 but it does not anticommute with ⇤5 signifying its chiral symmetry breaking feature.

Solutions to the lattice fermions’ puzzle include the domain-wall fermions [227] and overlap

fermions [293, 294] that both belong to the category of the Ginsberg-Wilson fermions.16

Ginsberg and Wilson relation [176] redefines the chiral symmetry on the lattice,

{D, ⇤5} = aD⇤5D, (1.56)

with D being a dimensionful Dirac operator, and therefore breaks the last condition in the

Nielsen-Ninomiya theorem. It however ensures that the chiral features of the continuum

fermions, including the chiral anomaly, are exactly reproduced as long as the operator D

satisfies this relation. Unfortunately, numerical simulations of both domain-wall and overlap

fermions comes with additional cost compared with Wilson fermions.17 Nonetheless, the

use of the chiral lattice fermions in LQCD calculations has become more common as the

computational resources improve. A nice review of fermions and chiral symmetry on the

lattice can be found in Ref. [231].
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where we have split the action to the purely gauge part and the fermionic part, and have

left the superscripts E for the Euclidean action implicit. This expectation value can be

written as
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16Domain-wall fermions only satisfy the Ginsberg-Wilson relation in a particular limit, i.e. when the

domain-walls separation is infinite.

17Simulating domain-wall fermions includes adding an extra dimension to the calculation of the quark

propagators while simulating overlap fermions requires inversion of an extra operator beside the overlap

operator, see Refs. [218,231,234] for more details.
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s ⇤ Nt)2 (on each spacetime point on the lattice there are 3

color and 4 spinor degrees of freedom for each flavor of quarks). After each configuration
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are generated, the statistical average
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18As a result, early LQCD calculations were limited to the quenched approximation where the fermion

determinant is set to one to reduce the computational cost of the gauge-field configurations. Unfortu-

nately quenching is an uncontrolled approximation and only describes QCD if the quarks were infinitely

heavy. Nowadays, the growth in the computational resources available to LQCD calculations has en-

abled abandoning this approximation and has made the use of dynamical configurations viable in most
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where we have split the action to the purely gauge part and the fermionic part, and have

left the superscripts E for the Euclidean action implicit. This expectation value can be

written as

hÔi =
1

Z

Z
DUµ e�S

(G)
lattice[U ]

ZF [U ] hÔiF , (1.58)

16Domain-wall fermions only satisfy the Ginsberg-Wilson relation in a particular limit, i.e. when the
domain-walls separation is infinite.

17Simulating domain-wall fermions includes adding an extra dimension to the calculation of the quark
propagators while simulating overlap fermions requires inversion of an extra operator beside the overlap
operator, see Refs. [218,231,234] for more details.
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and ZF is the partition function of the fermions which will still depend on the value of the

gauge link. By expressing the fermionic action as S(F )
lattice =

P
n,m q̄nDn,mqm, where Dn,m is

the matrix element of one of the chosen lattice operators discussed above in position space,

the fermionic partition function can be written as

ZF =
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(F )
lattice[U,q,q̄] =

Y

f

det Df , (1.60)

where the product of the determinant of Dirac operator matrix, Df , corresponding to each

dynamical flavor is explicit. Now from Eq. (1.58) it is clear that once the fermionic expec-

tation value hÔiF is computed, the full expectation value can be computed using a Monte

Carlo sampling integration with the probability measure 1
Z e�S

(G)
lattice[U ] Q

f det Df . An im-

portant property of the lattice Dirac operators, the �5-hermiticity D† = �5D�5, ensures

that the determinant of the Dirac operator is real, providing a well-defined sampling weight

in the numerical evaluation of the expectation values. LQCD calculations with dynamical

fermions require computing the gauge-field configuration with a distribution that depends

on the fermion determinant – the determinant of the Dirac operator which is a large ma-

trix with dimensionality (12N3
s ⇥ Nt)2 (on each spacetime point on the lattice there are 3

color and 4 spinor degrees of freedom for each flavor of quarks). After each configuration

generation both the gauge part and the determinant part must be updated simultaneously

to generate the next configuration.18

When a large number of almost statistically uncorrelated gauge field configurations, N ,

are generated, the statistical average

hÔi =
1

N

NX

i

hÔiF [U (i)], (1.61)

18As a result, early LQCD calculations were limited to the quenched approximation where the fermion
determinant is set to one to reduce the computational cost of the gauge-field configurations. Unfortu-
nately quenching is an uncontrolled approximation and only describes QCD if the quarks were infinitely
heavy. Nowadays, the growth in the computational resources available to LQCD calculations has en-
abled abandoning this approximation and has made the use of dynamical configurations viable in most
calculations.
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,Ô-F [U (i)], (1.61)

18As a result, early LQCD calculations were limited to the quenched approximation where the fermion

determinant is set to one to reduce the computational cost of the gauge-field configurations. Unfortu-

nately quenching is an uncontrolled approximation and only describes QCD if the quarks were infinitely

heavy. Nowadays, the growth in the computational resources available to LQCD calculations has en-

abled abandoning this approximation and has made the use of dynamical configurations viable in most

calculations.
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2) Generate gauge-filed configurations: Now that we have a discrete action with the

desired continuum limit, let us go back to the path intergarl we aim to evaluate,
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(G)
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(F )
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where we have split the action to the purely gauge part and the fermionic part, and have

left the superscripts E for the Euclidean action implicit. This expectation value can be

written as
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16Domain-wall fermions only satisfy the Ginsberg-Wilson relation in a particular limit, i.e. when the

domain-walls separation is infinite.

17Simulating domain-wall fermions includes adding an extra dimension to the calculation of the quark

propagators while simulating overlap fermions requires inversion of an extra operator beside the overlap

operator, see Refs. [218,231,234] for more details.
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portant property of the lattice Dirac operators, the �5-hermiticity D† = �5D�5, ensures

that the determinant of the Dirac operator is real, providing a well-defined sampling weight

in the numerical evaluation of the expectation values. LQCD calculations with dynamical

fermions require computing the gauge-field configuration with a distribution that depends

on the fermion determinant – the determinant of the Dirac operator which is a large ma-

trix with dimensionality (12N3
s ⇥ Nt)2 (on each spacetime point on the lattice there are 3

color and 4 spinor degrees of freedom for each flavor of quarks). After each configuration

generation both the gauge part and the determinant part must be updated simultaneously

to generate the next configuration.18

When a large number of almost statistically uncorrelated gauge field configurations, N ,

are generated, the statistical average

hÔi =
1

N

NX
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hÔiF [U (i)], (1.61)

18As a result, early LQCD calculations were limited to the quenched approximation where the fermion
determinant is set to one to reduce the computational cost of the gauge-field configurations. Unfortu-
nately quenching is an uncontrolled approximation and only describes QCD if the quarks were infinitely
heavy. Nowadays, the growth in the computational resources available to LQCD calculations has en-
abled abandoning this approximation and has made the use of dynamical configurations viable in most
calculations.
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18As a result, early LQCD calculations were limited to the quenched approximation where the fermion

determinant is set to one to reduce the computational cost of the gauge-field configurations. Unfortu-

nately quenching is an uncontrolled approximation and only describes QCD if the quarks were infinitely

heavy. Nowadays, the growth in the computational resources available to LQCD calculations has en-

abled abandoning this approximation and has made the use of dynamical configurations viable in most

calculations.

Dirac matrix



Example: Consider a lattice with: L/a = 48, T/a = 256

Sampling SU(3) matrices. Already for one 
sample requires storing

c-numbers in the computer!

Requires tens of thousands of uncorrelated 
samples. Molecular-dynamics-inspired hybrid 
Monte Carlo sampling algorithms often used.

8⇥ 483 ⇥ 256 = 226, 492, 416

Steps II is computationally costly…

Requires calculating determinant of a large matrix.




Step III: Form the correlation functions by contracting the quarks. Need to specify 
the interpolating operators for the state under study.
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heavy. Nowadays, the growth in the computational resources available to LQCD calculations has en-

abled abandoning this approximation and has made the use of dynamical configurations viable in most

calculations.
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,Ô-F =
1

ZF

*
DqDq̄ e

�S
(F )
lattice[U,q,q̄]O[q, q̄, U ], (1.59)

and ZF is the partition function of the fermions which will still depend on the value of the

gauge link. By expressing the fermionic action as S(F )
lattice =

%
n,m q̄nDn,mqm, where Dn,m is

the matrix element of one of the chosen lattice operators discussed above in position space,

the fermionic partition function can be written as

ZF =

*
DqDq̄ e

�S
(F )
lattice[U,q,q̄] =

)

f

detDf , (1.60)

where the product of the determinant of Dirac operator matrix, Df , corresponding to each

dynamical flavor is explicit. Now from Eq. (1.58) it is clear that once the fermionic expec-
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are generated, the statistical average
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18As a result, early LQCD calculations were limited to the quenched approximation where the fermion

determinant is set to one to reduce the computational cost of the gauge-field configurations. Unfortu-

nately quenching is an uncontrolled approximation and only describes QCD if the quarks were infinitely

heavy. Nowadays, the growth in the computational resources available to LQCD calculations has en-

abled abandoning this approximation and has made the use of dynamical configurations viable in most
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Figure 1.10: The Wick contractions in the evaluation of the �
0 two-point correlation functions.

For flavor-singlet quantities, such as �0, there are additional contributions to the corre-

lation functions, namely the disconnected contributions, that put limitations on the calcu-

lation of such quantities with the current computational resources.20 Explicitly for the �
0

correlator with Ô = 1
2
(u⇤5u� d⇤

5
d), we have
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+ {u ⌘ d}, (1.63)

eigenvalues of the Dirac operator causes di⇧culties in numerical evaluations of the inverse matrix given the

limited statistics. This is among the reasons for the numerical limitations faced by the LQCD community

in approaching the physical point.

20Some LQCD collaborations have started including the disconnected diagrams in their calculations, see

Refs. [2, 7, 8, 19, 115,138,352].

Ô = u�5de.g.,
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ū
dd̄

u ūd
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ūd

d̄ u
ū
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u ūd

d̄ u ū
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For flavor-singlet quantities, such as ⇡0, there are additional contributions to the corre-

lation functions, namely the disconnected contributions, that put limitations on the calcu-

lation of such quantities with the current computational resources.20 Explicitly for the ⇡0

correlator with Ô = 1p
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(u�5u � d�5d), we have

hÔ⇡0
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eigenvalues of the Dirac operator causes di�culties in numerical evaluations of the inverse matrix given the
limited statistics. This is among the reasons for the numerical limitations faced by the LQCD community
in approaching the physical point.

20Some LQCD collaborations have started including the disconnected diagrams in their calculations, see
Refs. [2, 7, 8, 19, 115,138,352].
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u ūd

d̄ ūu
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eigenvalues of the Dirac operator causes di�culties in numerical evaluations of the inverse matrix given the
limited statistics. This is among the reasons for the numerical limitations faced by the LQCD community
in approaching the physical point.

20Some LQCD collaborations have started including the disconnected diagrams in their calculations, see
Refs. [2, 7, 8, 19, 115,138,352].
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d
ū
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ū
dd̄

u ūd
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ū
dd̄

u ūd
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uū
dd̄

u ūd
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ūd

d̄ u

ū
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u ūd

d̄ u
ū
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ū
dd̄

u ūd
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ū
dd̄

u ūd
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u ūd

d̄ u
ū
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ū
dd̄

u ūd
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ū
dd̄

u
ūd
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where the path integral over gauge links U are separated from that of the fermionic path

integrals with

,Ô-F =
1

ZF

*
DqDq̄ e

�S
(F )
lattice[U,q,q̄]O[q, q̄, U ], (1.59)

and ZF is the partition function of the fermions which will still depend on the value of the

gauge link. By expressing the fermionic action as S(F )
lattice =

%
n,m q̄nDn,mqm, where Dn,m is

the matrix element of one of the chosen lattice operators discussed above in position space,

the fermionic partition function can be written as

ZF =

*
DqDq̄ e

�S
(F )
lattice[U,q,q̄] =

)

f

detDf , (1.60)

where the product of the determinant of Dirac operator matrix, Df , corresponding to each

dynamical flavor is explicit. Now from Eq. (1.58) it is clear that once the fermionic expec-

tation value ,Ô-F is computed, the full expectation value can be computed using a Monte

Carlo sampling integration with the probability measure 1
Z e

�S
(G)
lattice[U ]&

f detDf . An im-

portant property of the lattice Dirac operators, the ⇤5-hermiticity D
† = ⇤5D⇤5, ensures

that the determinant of the Dirac operator is real, providing a well-defined sampling weight

in the numerical evaluation of the expectation values. LQCD calculations with dynamical

fermions require computing the gauge-field configuration with a distribution that depends

on the fermion determinant – the determinant of the Dirac operator which is a large ma-

trix with dimensionality (12N3
s ⇤ Nt)2 (on each spacetime point on the lattice there are 3

color and 4 spinor degrees of freedom for each flavor of quarks). After each configuration

generation both the gauge part and the determinant part must be updated simultaneously

to generate the next configuration.18

When a large number of almost statistically uncorrelated gauge field configurations, N ,

are generated, the statistical average

,Ô- = 1

N

N(

i

,Ô-F [U (i)], (1.61)

18As a result, early LQCD calculations were limited to the quenched approximation where the fermion

determinant is set to one to reduce the computational cost of the gauge-field configurations. Unfortu-

nately quenching is an uncontrolled approximation and only describes QCD if the quarks were infinitely

heavy. Nowadays, the growth in the computational resources available to LQCD calculations has en-

abled abandoning this approximation and has made the use of dynamical configurations viable in most

calculations.
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ūd

d̄ u
ū
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For flavor-singlet quantities, such as �0, there are additional contributions to the corre-

lation functions, namely the disconnected contributions, that put limitations on the calcu-

lation of such quantities with the current computational resources.20 Explicitly for the �
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eigenvalues of the Dirac operator causes di⇧culties in numerical evaluations of the inverse matrix given the

limited statistics. This is among the reasons for the numerical limitations faced by the LQCD community

in approaching the physical point.

20Some LQCD collaborations have started including the disconnected diagrams in their calculations, see

Refs. [2, 7, 8, 19, 115,138,352].

Ô = u�5de.g.,

Quark disconnected diagrams. Require expensive all-to-all propagators.



Example: Consider a lattice with: L/a = 48, T/a = 256

Dirac 
matrix

Quark 
propagator

Source

Solving

Requires taking determinant and inverting 
a matrix with dimensions:

Lattice QCD:
Solvers and Quark Propagators

light-quark propagator Source

Iterative using Krylov-subspace solvers
CG, BiCGstab

Condition number of  D gets larger as quark mass is reduced toward physical 
- critical slowing down in convergence

Preconditioning used to improve condition number

46

(4⇥ 3⇥ 483 ⇥ 256)2 =
339, 738, 624⇥ 339, 738, 624

Steps III is computationally costly…



Show that for the correlation function of the charged pion:

EXERCISE 1

35

is an estimator of the the expectation value in Eq. (1.58), where U
(i) is the i

th generated

configuration.

3) Form the correlation functions: The next step of the calculation is observable depen-

dent and requires both analytical and numerical evaluation to determine ,Ô-F . Here we are

interested in the n-point correlation functions of (multi) hadrons from which one can extract

masses and the low-lying energies. Let Ô† denote the interpolating operator that creates a

(multi-)hadron states from the vacuum of QCD and Ô be an interpolator that annihilates

the state. With the notation used in Eq. (1.57), Ô  ÔÔ
†. In order for an interpolating

operator to have overlap with a desired state, it must share the same quantum numbers, e.g.

the particle number, flavor, spin, parity, charge conjugation, etc., as that of the state. For

example the �
+ state can be created by a bilinear quark operator O

↵+† = u⇤5d. In order

to calculate the correlation function, we need to perform the fermionic path integral that

appears in the expectation value ,Ô-F which is a usual Grassmann integration. This part

is called the quark Wick contractions and for the case of �+ two-point correlation function

can be performed as following

,Ô↵+
(n)Ô↵+†(0)-F = ,da,�(n)⇤5�⇥ua⇥(n) ub,�⇧(0)⇤5�⇧⇥⇧d

b
⇥⇧(0)-F

= �⇤5�⇥⇤5�⇧⇥⇧ ,db⇥⇧(0)da,�(n)-d ,ua⇥(n)ub,�⇧(0)-u

= �⇤5�⇥⇤5�⇧⇥⇧ (D�1
d )ba,⇥⇧�(0, n)(D

�1
u )ab,⇥�⇧(n, 0)

= �Tr
⇤
⇤
5
D

�1
u (n, 0)⇤5D�1

d (0, n)
⌅

= �Tr
⇤
D

�1
u (n, 0)D�1

d (n, 0)
⌅
, (1.62)

where we have chosen to create the pion at the origin and annihilate it at coordinate n.

The trace is taken over spin and color degrees of freedom and the negative sign has been

resulted from anti-commutation of the Dirac fields in the second line. In the last line the

⇤
5-hermiticity of the Dirac operator has been used. The resulting correlation function has

been pictorially shown in Fig. 1.9. The value of the inverse Dirac operator depends on

the value of the link variable, therefore for each gauge-field configuration generated in the

previous step, the inverse of the Dirac operator must be evaluated.19

19When the value of the light-quark masses that are used are close to their physical values, the small
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interested in the n-point correlation functions of (multi) hadrons from which one can extract
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the state. With the notation used in Eq. (1.57), Ô  ÔÔ
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(n)Ô↵+†(0)-F = ,da,�(n)⇤5�⇥ua⇥(n) ub,�⇧(0)⇤5�⇧⇥⇧d

b
⇥⇧(0)-F

= �⇤5�⇥⇤5�⇧⇥⇧ ,db⇥⇧(0)da,�(n)-d ,ua⇥(n)ub,�⇧(0)-u

= �⇤5�⇥⇤5�⇧⇥⇧ (D�1
d )ba,⇥⇧�(0, n)(D

�1
u )ab,⇥�⇧(n, 0)

= �Tr
⇤
⇤
5
D

�1
u (n, 0)⇤5D�1

d (0, n)
⌅

= �Tr
⇤
D

�1
u (n, 0)D�1

d (n, 0)
⌅
, (1.62)

where we have chosen to create the pion at the origin and annihilate it at coordinate n.

The trace is taken over spin and color degrees of freedom and the negative sign has been

resulted from anti-commutation of the Dirac fields in the second line. In the last line the

⇤
5-hermiticity of the Dirac operator has been used. The resulting correlation function has

been pictorially shown in Fig. 1.9. The value of the inverse Dirac operator depends on

the value of the link variable, therefore for each gauge-field configuration generated in the

previous step, the inverse of the Dirac operator must be evaluated.19

19When the value of the light-quark masses that are used are close to their physical values, the small

where         and          denote the the inverse Dirac matrix (the quark propagator) for the u 
and d quarks, respectively. Trace is over spin and color degrees of freedom.
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previous step, the inverse of the Dirac operator must be evaluated.19

19When the value of the light-quark masses that are used are close to their physical values, the small
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is an estimator of the the expectation value in Eq. (1.58), where U
(i) is the i

th generated

configuration.

3) Form the correlation functions: The next step of the calculation is observable depen-

dent and requires both analytical and numerical evaluation to determine ,Ô-F . Here we are

interested in the n-point correlation functions of (multi) hadrons from which one can extract

masses and the low-lying energies. Let Ô† denote the interpolating operator that creates a

(multi-)hadron states from the vacuum of QCD and Ô be an interpolator that annihilates

the state. With the notation used in Eq. (1.57), Ô  ÔÔ
†. In order for an interpolating

operator to have overlap with a desired state, it must share the same quantum numbers, e.g.

the particle number, flavor, spin, parity, charge conjugation, etc., as that of the state. For

example the �
+ state can be created by a bilinear quark operator O

↵+† = u⇤5d. In order

to calculate the correlation function, we need to perform the fermionic path integral that

appears in the expectation value ,Ô-F which is a usual Grassmann integration. This part

is called the quark Wick contractions and for the case of �+ two-point correlation function

can be performed as following

,Ô↵+
(n)Ô↵+†(0)-F = ,da,�(n)⇤5�⇥ua⇥(n) ub,�⇧(0)⇤5�⇧⇥⇧d

b
⇥⇧(0)-F

= �⇤5�⇥⇤5�⇧⇥⇧ ,db⇥⇧(0)da,�(n)-d ,ua⇥(n)ub,�⇧(0)-u

= �⇤5�⇥⇤5�⇧⇥⇧ (D�1
d )ba,⇥⇧�(0, n)(D

�1
u )ab,⇥�⇧(n, 0)

= �Tr
⇤
⇤
5
D

�1
u (n, 0)⇤5D�1

d (0, n)
⌅

= �Tr
⇤
D

�1
u (n, 0)D�1

d (n, 0)
⌅
, (1.62)

where we have chosen to create the pion at the origin and annihilate it at coordinate n.

The trace is taken over spin and color degrees of freedom and the negative sign has been

resulted from anti-commutation of the Dirac fields in the second line. In the last line the

⇤
5-hermiticity of the Dirac operator has been used. The resulting correlation function has

been pictorially shown in Fig. 1.9. The value of the inverse Dirac operator depends on

the value of the link variable, therefore for each gauge-field configuration generated in the

previous step, the inverse of the Dirac operator must be evaluated.19

19When the value of the light-quark masses that are used are close to their physical values, the small

BONUS EXERCISE 1

Show that for the correlation function of the neutral pion:
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Figure 1.9: The Wick contractions in the evaluation of the �
+ two-point correlation functions.
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u ūd

d̄ ud

d̄

Figure 1.10: The Wick contractions in the evaluation of the �
0 two-point correlation functions.

For flavor-singlet quantities, such as �0, there are additional contributions to the corre-

lation functions, namely the disconnected contributions, that put limitations on the calcu-

lation of such quantities with the current computational resources.20 Explicitly for the �
0

correlator with Ô = 1
2
(u⇤5u� d⇤

5
d), we have

,Ô↵0
(n)Ô↵0†(0)-F = �1

2
Tr

⇤
⇤
5
D

�1
u (n, 0)⇤5D�1

u (0, n)
⌅

+
1

2
Tr

⇤
⇤
5
D

�1
u (n, n)

⌅
Tr

⇤
⇤
5
D

�1
u (0, 0)

⌅

�1

2
Tr

⇤
⇤
5
D

�1
u (n, n)

⌅
Tr

⇤
⇤
5
D

�1
d (0, 0)

⌅
+ {u ⌘ d}, (1.63)

eigenvalues of the Dirac operator causes di⇧culties in numerical evaluations of the inverse matrix given the

limited statistics. This is among the reasons for the numerical limitations faced by the LQCD community

in approaching the physical point.

20Some LQCD collaborations have started including the disconnected diagrams in their calculations, see

Refs. [2, 7, 8, 19, 115,138,352].



Step IV: Extract energies and matrix elements from correlation functions

10

L3
⇥ T � bmq b [fm] L [fm] T [fm] m⇡L m⇡T Ncfg Nsrc

243
⇥ 48 6.1 -0.2450 0.1453(16) 3.4 6.7 14.3 28.5 3822 96

323
⇥ 48 6.1 -0.2450 0.1453(16) 4.5 6.7 19.0 28.5 3050 72

483
⇥ 64 6.1 -0.2450 0.1453(16) 6.7 9 28.5 38.0 1905 54

1

TABLE I: The parameters of the gauge-field ensembles used in this work. See Ref. [20] for more details.

ten Hybrid Monte Carlo evolution trajectories to reduce autocorrelations, with the total number of
configurations used for each ensemble, Ncfg given in Table I. An average of Nsrc measurements are
performed on each configuration. Various other properties of the ensembles are listed in Table I.
Given the large values of T and L relative to the inverse pion mass, both the thermal contamination
and the exponential finite-volume contamination of single-hadron masses and two-baryon energies
from pion propagation through the boundaries are strongly suppressed.

Sources are smeared with a gauge-invariant Gaussian profile with stout-smeared gauge links.
The quark propagators at the sink are either not smeared (smeared-point combination, SP) or
are smeared with the same smearing profile as that of the source operators (smeared-smeared
combination, SS). The plateau regions of the effective mass plots (EMPs) formed out of the SP and
SS correlation functions are found consistent in every case. Propagators are contracted at the sink
in blocks of three quarks to assemble a baryon field with given quantum numbers at the sink. In
particular, the baryon blocks are projected to a fixed three-momentum, enabling the two-baryon
interpolators at the sink to have either zero or non-zero CM momentum, with various possibilities for
the momentum of each baryon. As the next step, a fully-antisymmetrized quark-level wavefunction
with overall quantum numbers of the two-baryon system of interest is formed at the location of
the source. The contraction step is defined by the selection of the appropriate indices from the
baryon blocks at the source, in a way that is dictated by the quark-level wavefunction. More details
regarding the contraction algorithm for a general A-nucleon system are presented in Ref. [86] (with
a similar approach proposed in Refs. [87, 88]). The final products of the contraction step are two-
baryon correlation functions as a function of Euclidean time. These correspond to a definite total
momentum resulting from several (nearly orthogonal) choices of baryon momentum at the sink.

B. Analysis of correlation functions

To maximize confidence in the energy determinations and their uncertainties, five different anal-
ysis procedures were used, and the results obtained from each method were found to be consistent.
The statistical and fitting systematic uncertainties on the final results are taken from one analysis,
with an additional systematic uncertainty added to account for the small variations between the
five analyses.

The correlation function of a single or two-baryon system, projected to the total momentum
2⇡d/L, can be written as

C
Ô,Ô0(⌧ ;d) =

X

x

e2⇡id·x/Lh0|Ô
0(x, ⌧)Ô†(0, 0)|0i = Z

0

0Z
†

0e
�E(0)⌧ + Z

0

1Z
†

1e
�E(1)⌧ + . . . , (15)

Ground state and a tower of excited 
states are, in principle, accessible!
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TABLE I: The parameters of the gauge-field ensembles used in this work. See Ref. [20] for more details.

ten Hybrid Monte Carlo evolution trajectories to reduce autocorrelations, with the total number of
configurations used for each ensemble, Ncfg given in Table I. An average of Nsrc measurements are
performed on each configuration. Various other properties of the ensembles are listed in Table I.
Given the large values of T and L relative to the inverse pion mass, both the thermal contamination
and the exponential finite-volume contamination of single-hadron masses and two-baryon energies
from pion propagation through the boundaries are strongly suppressed.

Sources are smeared with a gauge-invariant Gaussian profile with stout-smeared gauge links.
The quark propagators at the sink are either not smeared (smeared-point combination, SP) or
are smeared with the same smearing profile as that of the source operators (smeared-smeared
combination, SS). The plateau regions of the effective mass plots (EMPs) formed out of the SP and
SS correlation functions are found consistent in every case. Propagators are contracted at the sink
in blocks of three quarks to assemble a baryon field with given quantum numbers at the sink. In
particular, the baryon blocks are projected to a fixed three-momentum, enabling the two-baryon
interpolators at the sink to have either zero or non-zero CM momentum, with various possibilities for
the momentum of each baryon. As the next step, a fully-antisymmetrized quark-level wavefunction
with overall quantum numbers of the two-baryon system of interest is formed at the location of
the source. The contraction step is defined by the selection of the appropriate indices from the
baryon blocks at the source, in a way that is dictated by the quark-level wavefunction. More details
regarding the contraction algorithm for a general A-nucleon system are presented in Ref. [86] (with
a similar approach proposed in Refs. [87, 88]). The final products of the contraction step are two-
baryon correlation functions as a function of Euclidean time. These correspond to a definite total
momentum resulting from several (nearly orthogonal) choices of baryon momentum at the sink.

B. Analysis of correlation functions

To maximize confidence in the energy determinations and their uncertainties, five different anal-
ysis procedures were used, and the results obtained from each method were found to be consistent.
The statistical and fitting systematic uncertainties on the final results are taken from one analysis,
with an additional systematic uncertainty added to account for the small variations between the
five analyses.

The correlation function of a single or two-baryon system, projected to the total momentum
2⇡d/L, can be written as
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Ground state and a tower of excited 
states are, in principle, accessible!
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Example: What should we make of 
the volume dependence?


