

Experimental Neutrino Physics III: Neutrinos as Tools

Diana Parno Carnegie Mellon University National Nuclear Physics Summer School, New Haven, CT 25 June 2018

A Reminder: The Weak Force

Slide: Kate Scholberg

- Hard to detect, but ...
- Neutrinos can escape from dense regions

The Houdini of the particle world?

Outline

Neutrinos for astrophysics

- The Sun
- Supernovae
- Cosmic neutrino background
- Neutrinos for geology
- Neutrinos for nuclear physics

What's Inside the Sun?

- We've seen how solar neutrinos give access to what's happening in the core
- Photons give core information too
- Abundance measurements: Spectroscopic measurements of solar photosphere reveal elemental makeup
 - Need detailed 3D modeling of temperature, density
- Helioseismology: Doppler shifts in spectral reveal oscillations of gas, probing densities in different regions

Recommended review: Alive and well: A short review about standard solar models, Serenelli, EPJA 2016. **52**:78

Solar Abundance Problem

EI.	GS98	AGSS09				
С	8.52	8.43				
Ν	7.92	7.83				
0	8.83	8.69				
Ne	8.08	7.93				
Mg	7.58	7.60				
Si	7.55	7.51				
S	7.33	7.13				
Fe	7.50	7.50				
(Z/ X)□	0.0230	0.0180				
Serenelli, EPJA 52 (2016) 78						

In 2001, new 3D radiation hydrodynamic (3D-RHD) models (plus non-equilibrium models for line formation) yielded dramatic revision in heavy element abundances

 30% reduction in metal abundances relative to hydrogen!

 Spectroscopic abundance measurements no longer agree with helioseismology

 Also known as solar metallicity problem: to astronomers "metals" are any elements heavier than helium

A Need for Neutrinos

- CNO cycle responsible for ~1% of Sun's energy production
- If we know the CNO reaction rate, we also know CNO abundances in the core!
- Independent systematics from photon-based tools

Searching for CNO Neutrinos

background control

Physics

- CNO neutrinos sit under much more numerous pep neutrinos, near ²¹⁰Bi and ¹¹C backgrounds
- No discovery yet
 - ⁷Be, ⁸B v fluxes can't yet distinguish between SSMs

Sidebar: Borexino Precision

- Our solar orbit is an ellipse: Earth-Sun distance oscillates!
- Observing this effect requires precision and stability over multiple years
 50

rnegie Mellon University

Supernova Neutrinos

 A core-collapse supernova loses ~99% of its energy to neutrinos in @(10) s

Who's Watching for Supernova vs?

Detector	Туре	Mass (kt)	Location	Events	Live period
Baksan	C_nH_{2n}	0.33	Caucasus	50	1980–present
LVD	C_nH_{2n}	1	Italy	300	1992–present
Super-Kamiokande	H ₂ O	32	Japan	7,000	1996–present
KamLAND	C_nH_{2n}	1	Japan	300	2002–present
MiniBooNE ^b	C_nH_{2n}	0.7	USA	200	2002–present
Borexino	C_nH_{2n}	0.3	Italy	100	2007–present
IceCube	Long string	0.6/PMT	South Pole	N/A	2007–present
Icarus	Ar	0.6	Italy	60	Near future
HALO	Pb	0.08	Canada	30	Near future
SNO+	C_nH_{2n}	0.8	Canada	300	Near future
MicroBooNE ^b	Ar	0.17	USA	17	Near future
NOvA ^b	C_nH_{2n}	15	USA	4,000	Near future
LBNE liquid argon	Ar	34	USA	3,000	Future
LBNE with water Cherenkov	H ₂ O	200	USA	44,000	Proposed
MEMPHYS	H ₂ O	440	Europe	88,000	Future
Hyper-Kamiokande	H ₂ O	540	Japan	110,000	Future
LENA	C_nH_{2n}	50	Europe	15,000	Future
GLACIER	Ar	100	Europe	9,000	Future

Scholberg, Annu. Rev. Nucl. Part. Sci. **62** (2012) 81 Event estimates assume a supernova at 10 kpc

Very Early Warning System?

- When a very massive star starts carbon fusion, neutrino cooling becomes dominant
 - Cycles of carbon fusion and core contraction
 - Partial decoupling of core and envelope evolution
 - Very fast: 1000 years from C fusion onset to Fe core

Using Betelgeuse* as a likely progenitor, we find that a 3σ detection of pre-SN 2–90 hr before the collapse is possible.

*17-25 M_{solar} 197 ± 45 pc away

11

Pre-collapse Logarithmic time *Model: Odrzywolek & Heger 2010* Post-collapse Linear time *Model:* Nakazato et al. 2013

KamLAND, ApJ 818 (2016) 91

Diffuse Supernova Background

- Are supernova dynamics the same in older and younger populations of stars?
- Are supernova rates constant as the universe evolves?
- We will never observe neutrino bursts from faraway supernovae – but we can extract averaged energy spectra
- Next-generation neutrino-oscillation experiments (DUNE, Hyper-K, JUNO) should see this

Cosmic Neutrino Background

a.k.a. relic neutrinos, CvB

Similar‰%MB%photons,%xcept%eutrinos%show%he%iniverse%it% ~1%second%iÇer%he%Big%Bang.%

negie Mellon Universit

Slide: Dan Dwyer

Why Try to Measure the C_VB ?

Test of physics at very early times / hot temperatures

- CMB: t = 380,000 yrs after Big Bang
- Big Bang nucleosynthesis: t = 1-20 minutes
- ♦ CvB: t = 1 s
- Confirm crucial input to structure formation models
- Fabulous experimental challenge

Indirect Observation

- CMB measurements probe plasma acoustic waves
- Gravitational influence of free-streaming vs gives phase shift

How to Measure the C_VB

 Today, these neutrinos have tiny kinetic energy ~0.5 meV Conventional neutrino detectors will never see them!

One idea: Capture on β decaying nuclei

 $v_{\rho} + {}^{3}H \rightarrow {}^{3}He + \beta$

- Signature: Monoenergetic peak 2 neutrino masses above observed endpoint
- Requires: lots of ³H, excellent energy resolution

Outline

- Neutrinos for astrophysics
- Neutrinos for geology
- Neutrinos for nuclear physics

Neutrinos Beneath Our Feet

- The Earth produces about ~44 TW of geothermal energy. Where does it come from?
 - Residual heat from planetary formation
 - Radioactive decays deep within the Earth

Detecting Geoneutrinos

Combined crust and mantle neutrino signal (simulation)

Nuclear reactor neutrino signal

Images: Ondrej Šrámek, Barbara Ricci via Nature

- Large detector
- Low energy threshold
- Low backgrounds
- Separate geoneutrinos from reactor neutrinos
- Separate crustal neutrinos from mantle neutrinos
 - Need local geological models for crust/mantle boundary
 - Someday: an ocean-based geoneutrino detector?

First Discovery

 KamLAND (now host of KamLAND-Zen 0vββ experiment) in Japan

Early Heat Models!

 More data from both KamLAND and Borexino are beginning to constrain geological models

egie Mellon Universit

 KamLAND* finds ~25-65% of Earth's heat due to radioactive decays

KamLAND, Nat. Geoscience 4 (2011) 647

- Borexino finds ~50-80% of Earth's heat due to radioactive decays
- It looks likely that Earth still retains primordial heat

Recommended review of physics: *Geo-neutrinos*, Bellini et al., Prog. Part. Nucl. Phys. **73** (2013) 1 *(doesn't include most recent data)*

Outline

- Neutrinos for astrophysics
- Neutrinos for geology
- Neutrinos for nuclear physics
 - Reactor antineutrino spectra
 - Nonproliferation

Reactor Antineutrino Deficit

 A few years ago, reactor antineutrino flux predictions were updated ...

negie Mellon Univer

Predicting a Reactor \overline{v} Spectrum

Ab initio summation method

- List all β-decay branches of all fission fragments
- Sum up contributions to v spectrum
- Need comprehensive, correct databases!

Conversion method

- Take measured β spectra from fission reactions (at ILL reactor in 1980s)
- Infer \overline{v} spectrum corresponding to each β spectrum

dume 160B, number 4,5 PHYSIC spect to the well-known intensities of ${}^{14}N(n,\gamma){}^{15}N$ 1] and ${}^{12}C(n, \gamma){}^{13}C$ [12]. Essentially this calibration Õ sulted in a value of 1.074(49) for the ratio of the LL spectrometer efficiency in the range 5.5 to 9 siol eV resident the second se lue is consistent with the ratio of 1.093(48) from S e In-Et capration. Asuning monotonically ineasing efficiency of the spectrometer with energy the all errors and a spectrometer with energy the and Cd measurements, resulting in total uncertains of 2.8% and 3.1% for the absolute rates at 1.3 and 4 MeV, respectively. 10 PER MEV ₹10¹ E_ß (Me\ Parno -- Experimental Neutrino Physics III -- NNPSS 2018 24

Back to Nuclear Physics

- Sterile neutrinos shouldn't prefer one β-decaying isotope over another (as long as both are above threshold)
- Fission isotope fractions in reactor cores evolve over time
 ²³⁹Pu fraction rises during operation; ²³⁵U fraction falls

- Something looks wrong with the predicted antineutrino flux for ²³⁵U
- But ... it could be an error in model fit assumptions
- Daya Bay results don't rule out steriles (but do reduce significance of deficit)
- Stay tuned for results from research reactors

Daya Bay, PRL 118 (2017) 251801

for ²³⁹Pu

yield

BD

IBD yield for ²³⁵U

The 5-MeV "Bump"

 All precision reactor neutrino experiments show a ~10% excess over spectral predictions at 4-6 MeV

Plot: Anna Hayes, Neutrino 2018

Sidebar: The Precision v Era

- "Bump" evokes clear, bright resonances
- This bump appears on a steeply falling distribution – and it looks rather different

Two Lessons

- Modern v oscillation experiments are making discoveries requiring unprecedented statistics and precision!
- Always look at the residuals

RENO, PRL 116 (2016) 211801

The Bump, Revisited

- Ab initio flux calculation (2015), using ENDF/B-VII.1 library, shows bump!
- But ... no bump when you use alternative JEFF-3.1 library
- This inspired a closer look at ENDF in 2016 ...

What Does All This Mean?

Physics

- Measurements of reactor v
 _e spectra revealed significant discrepancies with model
- This could signal exciting new neutrino physics (steriles!)
- But it has also already revealed serious deficiencies with available nuclear data
 - (Maybe not surprising in catalogs compiled over decades...)
- Neutrino results are improving our understanding of nuclear fission

Recommended review: *Reactor Neutrino Spectra*, Hayes and Vogel, Annu. Rev. Nucl. Part. Sci. 2016. 66:219–44

Nuclear Nonproliferation

Nuclear reactors have many uses

- Neutrino sources for physics experiments
- Clean electricity for individuals, industry, hospitals, ...
- Making ²³⁹Pu for nuclear bombs

- The world wants to know about:
 - Secret reactors?
 - Plutonium production at supposedly innocent reactors?
- Inspections require substantial cooperation

Neutrino Reactor Monitoring

- Neutrinos are the perfect informers
 - They come right from the core
 - Rates reveal on/off cycles (the β emitters are short-lived)
 - No power in the 'verse can stop them
- Early work on WATCHMAN
 - kton water-Cerenkov detector with Gd doping (detect inverse β decay)
 - Monitor reactors within ~50 km
- For long-distance monitoring:
 - Larger water-Cerenkov detectors?
 - Small CEvNS detectors?
- Ideal case: A detector network for reactor-neutrino tomography

WATCHMAN conceptual design

To Summarize

- We've already heard how neutrinos are helping us revise and improve the Standard Model
 - See Friday's lectures; Michael Ramsey Musolf's lectures; Michelle Dolinski's seminar
- Neutrinos are also potent tools for answering questions from other areas of physics
 - Astronomy and cosmology
 - Geology
 - Nuclear physics and nonproliferation
- I've left out lots of other neat ideas, from elucidating cosmic-ray sources to measuring nuclear structure
- Maybe you'll add a new idea to this set!

Physics Carnegie Mellon University Thank you for the great questions and discussions!