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A Reminder: The Weak Force
◆ Neutrinos interact 

very, very rarely
◆ Hard to detect, 

but ...
◆ Neutrinos can 

escape from 
dense regions
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Slide: Kate Scholberg

The Houdini of 
the particle 
world?



Outline

◆ Neutrinos for astrophysics
◆ The Sun
◆ Supernovae
◆ Cosmic neutrino background

◆ Neutrinos for geology
◆ Neutrinos for nuclear physics
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What’s Inside the Sun?
◆ We’ve seen how solar neutrinos 

give access to what’s happening 
in the core

◆ Photons give core information too
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◆ Abundance measurements: 
Spectroscopic measurements of 
solar photosphere reveal elemental 
makeup
◆ Need detailed 3D modeling of 

temperature, density
◆ Helioseismology: Doppler shifts in spectral reveal 

oscillations of gas, probing densities in different regions

Recommended review: Alive and well: A short review about standard 
solar models, Serenelli, EPJA 2016. 52:78



Solar Abundance Problem

◆ Also known as solar metallicity problem: to astronomers 
“metals” are any elements heavier than helium
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Serenelli, EPJA 52 (2016) 78

◆ In 2001, new 3D radiation hydrodynamic 
(3D-RHD) models (plus non-equilibrium 
models for line formation) yielded 
dramatic revision in heavy element 
abundances
◆ 30% reduction in metal abundances 

relative to hydrogen!
◆ Spectroscopic abundance 

measurements no longer agree with 
helioseismology



A Need for Neutrinos
◆ CNO cycle responsible for ~1% of Sun’s energy production
◆ If we know the CNO reaction rate, we also know CNO 

abundances in the core! 
◆ Independent systematics from photon-based tools
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Image: Wikipedia

Solar neutrino fluxes



Searching for CNO Neutrinos
◆ CNO neutrinos sit under 

much more numerous pep
neutrinos, near 210Bi and 
11C backgrounds

◆ No discovery yet
◆ 7Be, 8B ν fluxes can’t yet 

distinguish between SSMs
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Cerdeño et al JCAP 04 (2018) 037

Borexino, 
arXiv:1707.09279

◆ Borexino, SNO+, ... could 
distinguish SSMs in 5-10 
years of running – with tight 
background control



Sidebar: Borexino Precision
◆ Our solar orbit is an ellipse: Earth-Sun distance oscillates!
◆ Observing this effect requires precision and stability over 

multiple years
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νe-like events in 30.43-day bins

Borexino, Astropart. Phys. 
92 (2017) 21



Supernova Neutrinos
◆ A core-collapse supernova loses ~99% of its energy to 

neutrinos in O (10) s
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νx (not νe)    
νe
νe

Recommended review: Supernova Neutrino Detection, 
Scholberg, Annu. Rev. Nucl. Part. Sci. 62 (2012) 81

◆ These neutrinos carry 
information about:
◆ Core-collapse physics
◆ r-process 

nucleosynthesis
◆ Neutrino interactions 

in dense 
environments

Collective effects 
(ν-ν interactions!)



Who’s Watching for Supernova νs?
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Scholberg, Annu. Rev. Nucl. Part. Sci. 62 (2012) 81
Event estimates assume a supernova at 10 kpc



Very Early Warning System?
◆ When a very massive star starts carbon fusion, neutrino 

cooling becomes dominant
◆ Cycles of carbon fusion and core contraction
◆ Partial decoupling of core and envelope evolution
◆ Very fast: 1000 years from C fusion onset to Fe core 
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KamLAND, ApJ 818 (2016) 91

Post-collapse
Linear time

Model: 
Nakazato
et al. 2013

Pre-collapse
Logarithmic time

Model: Odrzywolek & Heger 2010

*17-25 Msolar
197 ± 45 pc away

... *



Diffuse Supernova Background
◆ Are supernova 

dynamics the same in 
older and younger 
populations of stars?

◆ Are supernova rates 
constant as the 
universe evolves? 

Parno -- Experimental Neutrino Physics III -- NNPSS 2018 12

Figure: Basudeb Dasgupta, Neutrino 2018

◆ We will never observe neutrino bursts from faraway 
supernovae – but we can extract averaged energy spectra

◆ Next-generation neutrino-oscillation experiments (DUNE, 
Hyper-K, JUNO) should see this



Cosmic Neutrino Background
◆ a.k.a. relic neutrinos, CνB
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Slide: Dan Dwyer



Why Try to Measure the CνB?
◆ Test of physics at very early times / hot temperatures
◆ CMB: t = 380,000 yrs after Big Bang
◆ Big Bang nucleosynthesis: t = 1-20 minutes
◆ CνB: t = 1 s

◆ Confirm crucial input to structure formation models
◆ Fabulous experimental challenge
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Indirect Observation
◆ CMB measurements probe plasma acoustic waves
◆ Gravitational influence of free-streaming νs gives phase shift
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Follin et al., PRL 115 (2015) 091301, using Planck 2013 data

Fix damping scale based on measured He ratios

Fix well-known independent parameters

Normalize oscillation amplitude

Rule out null 
effect (Nν = 0) 
at 4.5σ



How to Measure the CνB
◆ Today, these neutrinos have tiny kinetic energy ~0.5 meV
◆ Conventional neutrino detectors will never see them!
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Lazauskas, Vogel, Volpe, J. Phys. G 35 
(2008) 025001 
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◆ One idea: Capture on β-
decaying nuclei

◆ Signature: Monoenergetic
peak 2 neutrino masses 
above observed endpoint

◆ Requires: lots of 3H, 
excellent energy resolution

νe + 3H  3He + β



Outline

◆ Neutrinos for astrophysics
◆ Neutrinos for geology
◆ Neutrinos for nuclear physics
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Neutrinos Beneath Our Feet
◆ The Earth produces about ~44 TW of geothermal energy. 

Where does it come from?
◆ Residual heat from planetary formation
◆ Radioactive decays deep within the Earth
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Image: Nature

Geoneutrinos

Reactor 
antineutrinos



Detecting Geoneutrinos

◆ Large detector
◆ Low energy threshold
◆ Low backgrounds
◆ Separate geoneutrinos from reactor 

neutrinos
◆ Separate crustal neutrinos from 

mantle neutrinos
◆ Need local geological models for 

crust/mantle boundary
◆ Someday: an ocean-based 

geoneutrino detector?
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Images: Ondrej Šrámek, Barbara 
Ricci via Nature



First Discovery
◆ KamLAND (now host of KamLAND-Zen 0νββ experiment) 

in Japan
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Data

238U geoneutrinos
232Th geoneutrinos

KamLAND, Nature 436 (2005) 499



Early Heat Models!
◆ More data from both KamLAND and Borexino are 

beginning to constrain geological models 
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Recommended review of physics: Geo-neutrinos, Bellini et al., 
Prog. Part. Nucl. Phys. 73 (2013) 1   (doesn’t include most recent data)

Borexino, PRD 92 (2015) 031101(R)

◆ KamLAND* finds ~25-65% 
of Earth’s heat due to 
radioactive decays

◆ Borexino finds ~50-80% of 
Earth’s heat due to 
radioactive decays

◆ It looks likely that Earth still 
retains primordial heat

KamLAND, Nat. Geoscience 4 (2011) 647



Outline

◆ Neutrinos for astrophysics
◆ Neutrinos for geology
◆ Neutrinos for nuclear physics
◆ Reactor antineutrino spectra
◆ Nonproliferation
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Reactor Antineutrino Deficit
◆ A few years ago, reactor antineutrino flux predictions were 

updated ...
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Daya Bay, PRL 116 (2016) 061801
RENO, DoubleChooz confirm

◆ Change reflects:
◆ New data indicating 

more νe from 238U
◆ Predicted Eν increase 

for 235U, 239Pu, 241Pu

???
Sterile neutrinos?Plot: Anna Hayes, Neutrino 2018



Predicting a Reactor ν Spectrum

◆ Ab initio summation method
◆ List all β-decay branches of all fission 

fragments
◆ Sum up contributions to ν spectrum
◆ Need comprehensive, correct databases!

◆ Conversion method
◆ Take measured β spectra from fission 

reactions (at ILL reactor in 1980s)
◆ Infer ν spectrum corresponding to each β

spectrum
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Reactor thermal energy Relative fraction of fissions 
due to each isotope

Thermal energy per fission

Cumulative 
antineutrino 
spectrum (per 
fission)
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et al, PLB 160
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Back to Nuclear Physics
◆ Sterile neutrinos shouldn’t prefer one β-decaying isotope 

over another (as long as both are above threshold)
◆ Fission isotope fractions in reactor cores evolve over time
◆ 239Pu fraction rises during operation; 235U fraction falls
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◆ Something looks wrong with 
the predicted antineutrino 
flux for 235U

◆ But ... it could be an error in 
model fit assumptions

◆ Daya Bay results don’t rule 
out steriles (but do reduce 
significance of deficit)

◆ Stay tuned for results from 
research reactors



The 5-MeV “Bump”
◆ All precision reactor neutrino experiments show a ~10% 

excess over spectral predictions at 4-6 MeV
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Plot: Anna Hayes, Neutrino 2018



Sidebar: The Precision ν Era
◆ “Bump” evokes clear, bright 

resonances
◆ This bump appears on a 

steeply falling distribution –
and it looks rather different

Parno -- Experimental Neutrino Physics III -- NNPSS 2018 27

RENO, PRL 116 (2016) 211801

◆ Modern ν oscillation 
experiments are making 
discoveries requiring 
unprecedented statistics and 
precision!

◆ Always look at the residuals

Two Lessons



The Bump, Revisited
◆ Ab initio flux calculation 

(2015), using ENDF/B-VII.1 
library, shows bump!
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Dwyer and Langford,      
PRL 114 (2015) 012502 ◆ But ... no bump when you use 

alternative JEFF-3.1 library
◆ This inspired a closer look at 

ENDF in 2016 ...

(Ge) 86Ge

87Ge
88Ge

Original ENDF/B

Corrected ENDF/B

JEFFSonzogni et al, 
PRL 116
(2016) 132502 



What Does All This Mean?
◆ Measurements of reactor νe spectra 

revealed significant discrepancies 
with model

◆ This could signal exciting new 
neutrino physics (steriles!)

◆ But it has also already revealed 
serious deficiencies with available 
nuclear data 
◆ (Maybe not surprising in catalogs 

compiled over decades...)
◆ Neutrino results are improving our 

understanding of nuclear fission
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Recommended review: Reactor Neutrino Spectra, Hayes and Vogel, 
Annu. Rev. Nucl. Part. Sci. 2016. 66:219–44 



Nuclear Nonproliferation
◆ Nuclear reactors have many uses
◆ Neutrino sources for physics experiments
◆ Clean electricity for individuals, industry, hospitals, ...
◆ Making 239Pu for nuclear bombs
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◆ The world wants to know 
about:
◆ Secret reactors?
◆ Plutonium production 

at supposedly innocent 
reactors?

◆ Inspections require 
substantial cooperation 



Neutrino Reactor Monitoring
◆ Neutrinos are the perfect informers
◆ They come right from the core
◆ Rates reveal on/off cycles (the β emitters are short-lived)
◆ No power in the ‘verse can stop them
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WATCHMAN conceptual design

◆ Early work on WATCHMAN
◆ kton water-Cerenkov detector with 

Gd doping (detect inverse β decay)
◆ Monitor reactors within ~50 km

◆ For long-distance monitoring:
◆ Larger water-Cerenkov detectors?
◆ Small CEvNS detectors?

◆ Ideal case: A detector network for 
reactor-neutrino tomography 



To Summarize
◆ We’ve already heard how neutrinos are helping us revise 

and improve the Standard Model
◆ See Friday’s lectures; Michael Ramsey Musolf’s

lectures; Michelle Dolinski’s seminar
◆ Neutrinos are also potent tools for answering questions 

from other areas of physics
◆ Astronomy and cosmology
◆ Geology
◆ Nuclear physics and nonproliferation

◆ I’ve left out lots of other neat ideas, from elucidating 
cosmic-ray sources to measuring nuclear structure

◆ Maybe you’ll add a new idea to this set!
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Thank you for the great questions and discussions!
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