Neutrons and Fundamental Symmetries Experimental III: Other Symmetry Tests

Slides from J. Barrow, A. Young, M. Snow, H. Shimizu, M. Hurber, H. Abele, ...

Chen-Yu Liu Indiana University CL21@Indiana.edu

6/20/2018 NNPSS 2018



# Topics I will cover:

#### Lecture 1: beta-decay

- A brief history of the electroweak theory---the precursor to the Standard Model.
- Neutron decay to test the V-A theory & beyond the SM interactions
- Current status with neutron experiments on gA & lifetime
- Physics is Symmetries

Lecture 2: EDM

- CP violation
- Electric Dipole Moments: Highly sensitive low-energy probes of new Physics
- muon-g-2

#### Lecture 3: other symmetry violation measurements/tests

- Baryogenesis & symmetry violations
- Nnbar oscillation: B violation
- Hadronic weak interactions: P violation
- NOPTREX: T violation
- Neutron interferometry: Lorentz symmetry violation

Q: What are the cosmological

consequences of symmetry breaking?





Chen-Yu Liu

# Matter-Antimatter Asymmetry of the Universe (or Baryon Asymmetry of the Universe, BAU)



# The Sakharov Conditions

#### left-handed particle

under C  $\rightarrow$  left-handed antiparticle then P  $\rightarrow$  right-handed antiparticle

#### The <u>baryon asymmetry of the universe</u> motivates three hypotheses put forward by <u>Sakharov in 1967</u>

Any model attempting to explain our universe must satisfy the following:

- **1. CP violation** (& C non-conservation; different interactions of particles and antiparticles)
  - Exists in SM, but the degree of violation might be too small.
- 2. Departure from thermal equilibrium (provided by the expansion of the universe)
  - Demonstrated from astronomical observations
- 3. Baryon number (charge) B violation
  - <u>Still never seen experimentally</u>







# From NNbar to Majorana neutrino via sphalerons



Observe p-decay and nn-bar→Neutrino Majorana



# $n \rightarrow nbar Oscillation$

• Schrödinger equation

$$i\hbar \frac{\partial}{\partial t} \begin{pmatrix} \psi_n \\ \psi_{\bar{n}} \end{pmatrix} = \begin{pmatrix} E_n & \varepsilon \\ \varepsilon & E_{\bar{n}} \end{pmatrix} \begin{pmatrix} \psi_n \\ \psi_{\bar{n}} \end{pmatrix} , \quad \begin{pmatrix} \psi_n(0) \\ \psi_{\bar{n}}(0) \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$|\psi_{\bar{n}}(t)|^2 = \frac{4\varepsilon^2}{\omega^2 + 4\varepsilon^2} \sin^2(\frac{1}{2}\sqrt{\omega^2 + 4\varepsilon^2}t/\hbar)$$
$$\omega = (E_n - E_{\bar{n}}) = (m_n + \frac{p^2}{2m_n} + V_n) - (m_{\bar{n}} + \frac{p^2}{2m_{\bar{n}}} + V_{\bar{n}})$$

Unkown mixing interaction

Transition Probability: (if ωt <<1)</li>

$$P_{n\to\bar{n}}(t) = \psi_{\bar{n}}(t)^2 = \varepsilon^2 \cdot (t/\hbar)^2 = \left(\frac{t}{\tau_{n\bar{n}}}\right)^2 \qquad \tau_{n\bar{n}} = \frac{\hbar}{\varepsilon}$$

### Suppression of $n \rightarrow nbar$ transition

$$|\psi_{\bar{n}}(t)|^{2} = \frac{4\varepsilon^{2}}{\omega^{2} + 4\varepsilon^{2}} \sin^{2}(\frac{1}{2}\sqrt{\omega^{2} + 4\varepsilon^{2}}t/\hbar)$$

• Free neutron in a magnetic field

$$\omega = (E_n - E_{\overline{n}}) = (m_n + \frac{p^2}{2m_n} + V_n) - (m_{\overline{n}} + \frac{p^2}{2m_{\overline{n}}} + V_{\overline{n}}) = 2\mu \cdot B$$

• Under earth field (0.5 gauss), 2μHB=6×10<sup>-12</sup>eV

• 
$$\mathcal{E}_{n\overline{n}} = \frac{n}{\tau_{n\overline{n}}} < 10^{-23} eV$$
 with  $\tau_{\text{free}} > 1.2 \times 10^8 \text{ s}$ 

$$|\psi_{\bar{n}}(t)|^2 = \frac{4\varepsilon^2}{\omega^2} \sin^2(t/\tau_{Larmor}) = 10^{-23} \sin^2(t/2 \times 10^{-4})$$

- To measure  $\tau_{free}$ >1.2×10<sup>8</sup> s, the magnetic field has to be as small as 0.5×10<sup>-11</sup>gauss!
- For the neutron time-in-flight t=0.1s,
  - B < 5 mgauss.

$$\varepsilon_{n\bar{n}} = \frac{\hbar}{\bar{t}} < 10^{-14} eV$$

# **Current Limits**



- Nt<sup>2</sup> = 1.5 10<sup>9</sup>s<sup>2</sup>, P < 1.6 10<sup>-18</sup> (run lasted ~1 year) and  $\tau$  > 0.86 10<sup>8</sup>s
  - Many subtle optimizations to minimize losses and backgrounds
  - CN integrated beam flux was 1.25×10<sup>11</sup> n/s
  - Experiment was background-free
- Bound neutron limits ~3 times better
  - Many considerations make these measurements complementary to free neutron oscillations



#### Stability of matter from Neutron-Antineutron transition search

 $T_A = R * (\tau_{free})^2$ , where R is "nuclear suppression factor" in intranuclear transition



# Bound Neutron Search at the Deep Underground Neutrino Experiment



DUNE international collaboration of 1000+

- Partnership of Fermilab and LBNF
- Will construct world's most intense v beam
- The far detector Will Utilize
   LArTPCs
- Fiducial volume of ~40 kilotons

Single or Dual phase design implementations possible

- LArTPC's superior tracking and PID capabilities enable background reduction
  - Is a background quasi-free/free  $n \rightarrow \bar{n}$  search possible?
    - The *real* question we need to answer!!!



Joshua Barrow

### Atmospheric $\nu$ Backgrounds Impede Intranuclear $n \rightarrow \overline{n}$ Event Identification In Large Underground Experiments



- MicroBooNE with their novel and unique techniques
- Plan to **run/re-run proper signal and background events** on all these platforms **for separability comparisons in the future**





Adapted from

Y. Kamyshkov

# Theoretically Important Probability Parameter Space of $au_{n o \overline{n}}$

- Post-sphaleron baryogenesis can predict the free  $n \rightarrow \overline{n}$  transformation time
  - Blue shows converted limit from intranuclear transformation time
    - DUNE, 10 years,  $\sim$ 13,500x ILL sensitivity
    - Assumes 25% efficiency—more possible?
    - Assumes no background!
  - Red line shows free neutron transformation time
    - ESS, 3 yr, goal of  $\sim 1000 \mathrm{x}$  ILL sensitivity
    - Assuming ILL-like zero background
      - Future work to show this definitively

$$\tau_M = R \cdot \tau_{n \to \overline{n}}^2$$





# **Summary on nnbar experiments**

- Baryon number violation is a requirement for the existence of our universe
- Arguably the best way to look for this is BSM processes such as  $n \rightarrow \overline{n}$  with pure  $\Delta B \neq 0$ 
  - Ability to say something experimentally about this depends on further integration of efforts between the neutron and HEP community
- DUNE has significant reach potential to constrain popular baryogenesis theories
  - Need to take into account zeroth—first-order corrections in nuclear physics models to understand signals and backgrounds properly
    - Transformation/annihilation radius distribution, spectral functions, new  $\nu$  cross section
- Free experiments (NNbar collaboration at ESS, see next talk from Albert) are also possible, and promise a similar reach
- Bound and free searches are *incredibly complementary*, and, if  $n \rightarrow \overline{n}$  is definitively observed, rate differences could hint at further important BSM physics



# A New Limit on Time-Reversal-Invariance Violation in Beta Decay: Results of the emiT-II Experiment

T.E. Chupp, K.P. Coulter & R.L. Cooper *University of Michigan* 

S.J. Freedman & B.K. Fujikawa University of California - Berkeley/ Lawrence Berkeley National Laboratory

G.L. Jones Hamilton College

A. Garcia University of Washington

H.P. Mumm, J.S. Nico, & A.K. Thompson *National Institute of Standards and Technology* 

C. Trull & F.E. Wietfeldt *Tulane University* 

J.F. Wilkerson University of North Carolina













THE UNIVERSITY of NORTH CAROLIN at CHAPEL HILL

NEW RESULT:  $D = [-0.94 \pm 1.89(\text{STAT}) \pm 0.97(\text{SYS})] \times 10^{-4}$  $\varphi_{AV} = 180.012 \pm 0.028$   $\frac{g_A}{g_V} = |\lambda| e^{i\varphi_{AV}}$ 

Work supported in part by NIST and grants from the DOE and NSF

Phys. Rev. C 86, 035505



## emiT: 8-fold symmetry 64 proton SBDs/4 $\beta$ scintillators



# Final emiT Result D=(-0.94±1.89 (stat)±0.97(sys))x10<sup>-4</sup>

 $\phi_{AV} = 180.012^{\circ} \pm 0.028^{\circ}$ 



This is the most sensitive measurement of D in nuclear  $\beta$  decay. The result can be interpreted as a measurement of the phase of the ratio of the axial-vector and vector coupling constants ( $C_A/C_V = |\lambda|e^{i\phi AV}$ ) with  $\phi_{AV} = 180.012 \circ \pm 0.028 \circ$  (68% confidence level). This result can also be used to constrain time-reversal-violating scalar and tensor interactions that arise in certain extensions to the Standard Model such as leptoquarks.



Quantum Chromo Dynamics = gauge theory of the strong interactions

f = u, d, s, c, b, tFritzsch, Gell-Mann & Leutwyler SU<sub>c</sub>(3) gauge group  $\mathcal{L}_{QCD} = \sum \bar{q}_f \left( i D_\mu \gamma^\mu - m_f \right) q_f - \frac{1}{4} F^a_{\mu\nu} F^{a,\mu\nu}$  $q_{f} = \begin{pmatrix} q_{f,r} \\ q_{f,g} \\ q_{f,b} \end{pmatrix} \quad \begin{array}{c} q'_{f,\alpha} = U_{\alpha\beta} \ q_{f,\beta} \\ U \equiv \exp\left(-i \ \theta_{a} \frac{\lambda_{a}}{2}\right), \end{array}$ Eight non-commuting generators  $D_{\mu}q_{f} \equiv (\partial_{\mu} + ig\mathcal{A}_{\mu})q_{f} \qquad \mathcal{A}_{\mu} = \mathcal{A}_{\mu}^{a} \frac{\lambda^{a}}{2}$  $\left[\frac{\lambda_a}{2}, \frac{\lambda_b}{2}\right] = i f^{abc} \frac{\lambda_c}{2}$  $F^a_{\mu\nu} = \partial_\mu \mathcal{A}^a_\nu - \partial_\nu \mathcal{A}^a_\mu - g f^{abc} \mathcal{A}^b_\mu \mathcal{A}^c_\nu$  $\mathcal{A}_{\mu}(x) \to \mathcal{A}_{\mu}(x) - \frac{1}{c} \partial_{\mu} \theta(x)$ (QED)  $\mathcal{A}^{a}_{\mu}(x) \to \mathcal{A}^{a}_{\mu}(x) + \frac{1}{a} \partial_{\mu} \theta^{a}(x) + f^{abc} \mathcal{A}^{c}_{\mu}(x) \theta^{b}(x) \quad (\text{QCD})$ A CONSTRUCTION OF A CONSTRUCTI g



 $Q^2/GeV^2$ 

few masses are supplied

2000

1500

500

lattice.

M[Mev]

#### NN Weak Interaction: use EW parity violation to probe QCD

In the Standard Model, the structure of the quark-quark weak interaction is known from the electroweak sector. However, strong QCD **confines color** and **breaks chiral symmetry**, thereby strongly correlating the quarks in both the *initial* and *final* nucleon ground states.



QCD contains only vector quark-gluon couplings  $\rightarrow$  P is conserved.

Relative strength



Two aspects of qq weak interaction make it useful as **an interesting probe of QCD**:

(1) Since it is weak, it probes the nucleons in their ground states without exciting them.

(2) Since it is short-ranged compared with the size of the nucleon, NN weak amplitudes should be first-order sensitive to **quark-quark correlation effects in the nucleon**.

### Few-Body P-odd NN in progress: n-p, n-<sup>3</sup>He, n-<sup>4</sup>He



# **CP-violation in Low Energy Phenomena**



Pospelov Ritz, Ann Phys 318 (05) 119



P-odd

P-odd T-odd



### **Compound States**



### **Enhanced P-violation in Compound States**



#### **T-violation in Neutron Optics** $f = \underline{A'} + \underline{B'}\boldsymbol{\sigma} \cdot \hat{\boldsymbol{I}} + \underline{C'}\boldsymbol{\sigma} \cdot \hat{\boldsymbol{k}} + \underline{D'}\boldsymbol{\sigma} \cdot (\hat{\boldsymbol{I}} \times \hat{\boldsymbol{k}})$ P-violation Spin Dependent T-violation Spin Independent P-even T-even P-even T-even P-odd T-even P-odd T-odd $U_f$ $U_i$ ${m k}$ T-violating matrix element C' $\Delta \sigma_{\rm CP} = \kappa(J) \frac{W_{\rm T}}{W} \Delta \sigma_{\rm P}$ Gudkov, Phys. Rep. 212 (1992) 77 **P-violation T-violation** angular momentum $\kappa(J) = 0.99^{+0.88}_{-0.07}, \, 4.84^{+5.58}_{-1.69} \quad \left|rac{W_{ m T}}{W} ight| < 3.9 imes 10^{-4}$ factor P-violating matrix element

### **T-violation in Neutron Optics**



# KEK 2018S12 Neutron Optics for Parity and Time Reversal EXperiment

### **NOPTREX Collaboration**



# Neutron Interferometer





Interferogram:  $I_{O} = A \left[ 1 + C * \cos(\phi_{sam,1} + \phi_{sam,2}(d_{eff}) + \phi_{0}) \right]$ 

$$I_{H} = A \left[ \frac{B}{A} - C * \cos(\phi_{sam,1} + \phi_{sam,2}(d_{eff}) + \phi_{0}) \right]$$

The fringe visibility or contrast (C) is an important parameter as  $\delta \phi \propto C^{-1}$  and is used to evaluate an interferometer's quality.

# Phase Shifts



# neutron interferometry is a *diverse* instrument!



#### Nuclear: $\phi_{nuc}$

 $\phi_{\mathrm nuc}{\sim}135\pi$  for I cm of Al

Gravity:  $\phi_{\text{gravity}}$ 

 $\phi_{gravity}{\sim}50\pi~$  for 0.002 m<sup>2</sup> Area

Magnetic:  $\phi_{mag}$ 

 $\phi_{mag}{\sim}15\pi~$  for I cm of I00 G field

Aharonov-Casher:  $\phi_{AC}$ 

 $\phi_{AC} \sim 1 \text{ mrad for } 30 \text{kV field}$ 

Geometric:  $\phi_{geo}$ 

 $\phi_{geo} \sim \pi$ 

Sagnac:  $\phi_{sag}$ 

 $\phi_{sag} \sim \pi$  for 0.002 m<sup>2</sup> Area

# Precision Scattering Lengths

- Tighter constraints for NN and few-nucleon potential models
- Neutron scattering lengths of light nuclei are benchmarks for chiral effective field theories and can be used to calculate low-energy coefficients required by the theory
- <sup>4</sup>He is often utilized in fundamental neutron experiments exploring physics beyond the standard model



$$b = \frac{\varphi_{gas}}{N(T, P)\lambda D(T)}$$

Path Length 
$$D(T) = D_0 [1 + \alpha (T - T_0)]$$
  
Density  $N(T,P) = \frac{P}{k_B T (1 + B_P P + C_P P^2)}$   
Wavelength  $\lambda = 2.709 |3(15) \text{ Å}$ 



# n-<sup>4</sup>He Preliminary Results



b, [fm]

# 10x more precise result and shifts the world average



FEA calculations of the effects of cell deformation when pressurized will shift this result  $\sim 1\sigma$ are pending...



### **Quantum States in the Gravity Potential**



#### Nesvizhevsky et al. 2002: Observation of Bound Quantum States



Neutron mirror: polished glass plate 10 cm long



### **Neutrons test Newton**

$$V(r) = G \frac{m_1 \cdot m_2}{r} (1 + \alpha \cdot e^{-r/\lambda})$$

# **Hypothetical Gravity Like Forces**



**Extra Dimensions:** 

The string and  $D_p$ -brane theories predict the existence of extra space-time dimensions

Infinite-Volume Extra Dimensions: Randall and Sundrum

**Exchange Forces** from new Bosons: a deviation from the ISL can be induced by the exchange of new (pseudo)scalar and (pseudo)vector bosons

Strength α

Range  $\lambda$ 

- Scalar boson. Cosmological consideration
- Bosons from Hidden Supersymmetric Sectors
- Gauge fields in the bulk (ADD, PRD 1999) - -  $\rightarrow$  10<sup>6</sup> <  $\alpha$  < 10<sup>9</sup>

Supersymmetric large Extra Dimensions (B.& C.) - - -  $\rightarrow \alpha < 10^6$ 

### Short range fundamental forces

Ultra cold neutron quantum states / États quantiques des neutrons ultra froids

Short-range fundamental forces

Forces fondamentales à courte portée

I. Antoniadis<sup>a</sup>, S. Baessler<sup>b,c</sup>, M. Büchner<sup>d</sup>, V.V. Fedorov<sup>e</sup>, S. Hoedl<sup>f</sup>, A. Lambrecht<sup>i</sup>, V.V. Nesvizhevsky<sup>g,\*</sup>, G. Pignol<sup>h</sup>, K.V. Protasov<sup>h</sup>, S. Reynaud<sup>i</sup>, Yu. Sobolev<sup>j</sup>

I. Antoniadis et al. / C. R. Physique 12 (2011) 755–778

 $V(r) = G \frac{m_1 \cdot m_2}{(1 + \alpha \cdot e^{-r/\lambda})}$ 



 Quantum interference: sensitivity to fifth forces
 coming from extra dimensions
 string theories (higher dimensional field theories)

- axion fields

#### stroboscopic snapshots

- spatial resolution 1µm
- low background: 1 neutron every 100s

## M. Thalhammer, T. Jenke et al.

Snapshots with spatial resolution detectors ~ 1.5 μm

$$\Psi(z,t) = \sum_{n=0}^{\infty} c_n e^{-iE_n t/\hbar} \psi_n(z)$$
$$\psi_n(z) \sim Ai[\frac{z}{z_0} - \frac{E_n}{E_0}]; c_n = \int_0^{\infty} \Psi(z,0) \psi(z) dz$$









#### Martin Thalhammer, Technische Universität Wien

### **Acoustic Rabi Transitions**



Three regions (marked I, II, III). rough neutron mirror on top (1) the neutron mirror (2) neutron detector (3) All neutron mirrors are mounted on nano-positioning tables (4). An optical system (parts in 5) controls the induced mirror oscillations. A movable system based on highly precise capacitive sensors (6) controls and levels steps between the regions. The experiment is shielded by  $\mu$ -metal against the magnetic field of the Earth. Flux-gate magnetic field sensors (7) log the residual magnetic fields.

### **q**Bounce – Gravity Resonance Spectroscopy





**Answer:** Symmetry violations (at low E-scales) are evidences, pointing to new physics that unifies all forces at high E-scales.

Experimental Approach: Precision measurements on small values of symmetryviolating observables.

# A (Possible) Unified Theory of Everything



# History: Unifications through Symmetries

 $\nabla \times \nabla \times \mathbf{E} = -\nabla^2 \mathbf{E} =$ 

$$= -\mu \frac{\partial}{\partial t} (\nabla \times \mathbf{H})$$
$$= -\mu \frac{\partial}{\partial t} \left( \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J} \right)$$
$$= -\mu \varepsilon \frac{\partial}{\partial t} \left( \frac{\partial \mathbf{E}}{\partial t} \right)$$

- Stern and Gerlach: Intrinsic spin, properties with respect to the rotation operator J doubles the number of electron states
- Dirac: particle/antiparticle, properties with respect to the Lorentz boost generator, K, doubling the number of electron states: electron-positron
- Supersymmetry: introduces a new generator Q doubling the number of states once again: electron and scalar electron (selectron)
   Mike Berger



### Questions?