Heavy Ion Experimental 2 Hard Probes (focus on jets) Megan Connors **NNPSS** June 22, 2018

Hard Probes

- Unlike bulk observables: multiplicity, flow...
- Hard probes penetrate the medium
 - Heavy flavor quarks & high momentum partons
 - Modifications reveal interaction:

gluon radiation

collisional

physics.aps.org/articles/v1/2

Jets are suppressed!

- Initial RHIC results used high p_T hadrons as a proxy for jets
- Suppression of high p_T hadrons observed -> Jet Quenching
- Direct photons do not interact via strong force; give R_{AA}=1
- Di-hadron awayside suppressed compared to pp and dAu

"T-Shirt Plot"

- Suppression also observed at LHC
- Electroweak probes give $R_{AA}=1$

So What?

Questions for Jets in the QGP

Is the fragmentation pp like?

What is the effect of small systems on jets?

Collision System Dependence

 Pion suppression in a variety of collision species compared at similar N_{part}

Energy Dependence

 Suppression effect not present at lower collision energies

7

Energy Density Dependence

- Expect energy loss, ΔE/E to differ between RHIC and LHC
 - R_{AA} is insensitive to variations in energy loss
- Try fractional momentum loss S_{loss}=δp_T/p_T
- S_{loss} scales with energy density not geometry

Pathlength Dependence at RHIC

PHENIX Phys. Rev. C 76, 034904 (2007)

- Suppression of pions has pathlength dependence
- Toward out of plane:
 - Larger L \rightarrow More Eloss

 $R_{AA}(\varphi) = R_{AA}(1 + 2v_2 \cos 2(\varphi - \psi))$

Heavy Flavor Energy Loss

- Constrain models with R_{AA} and pathlength effect via v₂
- High $p_T v_2$ due to pathlength dependent energy loss

Jet Quenching

- R_{AA} for reconstructed jets also less than 1 out to high p_T
- Non-zero v₂ indicates pathlength dependent energy loss

Pop Quiz

- Q. What is a proton?
- A. A particle comprised of valence quarks:
 2 up and 1 down... Mass of ~938 MeV....
 Stable for >10²⁹ years... spin of ½...

the collimated spray of particles that results from the branching of the original hard parton and subsequent hadronization of the fragments

- Q. What is a Jet?
- A. It depends...
 What's your definition?

 $\mathsf{R}_{\mathsf{cone}}$

Hard scattering

olorless states

Jet Definition for QCD

Snowmass Accord: fermilab-conf-90-249

ABSTRACT

In order to reduce uncertainties in the comparison of jet cross section measurements, we are proposing a standard jet definition to be adopted for QCD measurements involving light quarks and gluons. This definition involves the use of a cone in the $\eta - \phi$ metric with a radius of 0.7 units.

Several important properties that should be met by a jet definition are [3]:

- 1. Simple to implement in an experimental analysis;
- 2. Simple to implement in the theoretical calculation;
- 3. Defined at any order of perturbation theory;
- 4. Yields finite cross section at any order of perturbation theory;
- 5. Yields a cross section that is relatively insensitive to hadronization.

Tevetron 1990

How to find jets

How many jets do you see?

How Many Jets are in Heavy Ion Collisions?

Maybe not so Crazy

- Jets boldly stand out of background at LHC
- Modification of di-jet balance visible

Some Jet Finding Algorithms

Cacciari, Salam, Soyez, arXiv:0802.1189

An Important Jet Finding Parameter

Large jet radius

single parton @ LO: jet radius irrelevant

What R is better?

Small jet radius

Large jet radius

perturbative fragmentation: large jet radius better (it captures more)

What R is better?

Small jet radius

Large jet radius

non-perturbative fragmentation: large jet radius better (it captures more)

What R is better?

underlying ev. & pileup "noise": **small jet radius better** (it captures less)

Removing the Background

- Sometimes referred to as "fake jets" in PHENIX
- ALICE & STAR median p subtraction
- Iterative subtraction in η-rings
- Need to account for fluctuating background!

Unfolding

- PYTHIA jets through GEANT of your detector to make a response matrix to map detector jet to truth jet p_T
- Unfolding methods: Bayesian, SVD, χ^2 (bin by bin)

$$y_j^{reco} = \sum_{i=0}^N R_{ij} y_i^{true} \qquad y_i^{true} = \sum_{i=0}^N R_{ij}^{-1} y_j^{reco}.$$

How to Measure Jets

- Measure your particles
- Choose your Algorithm and R
- Run FastJet
- Measure your background and remove it from your jets
- Unfold for detector effects
- Obtain a fully corrected jet spectrum

Di-Jets

• Dijet Asymmetry

$$A_{J} \equiv \frac{E_{T1} - E_{T2}}{E_{T1} + E_{T2}}$$

Jets at the LHC

- Fragmentation functions with modified jets
- $z=p_{Th}/p_{Tjet}$

Photon Tagged Jets

 γ energy \approx jet energy

- Photons do not interact strongly
- $R_{AA} \approx 1$ implies no medium effect
- Fragmentation Function: dN/dz
 - $z=p_h/p_{jet}$

Measurements with Jet Probes

Spectra and R_{AA}

Is AA just a superposition of pp collisions?

Correlations

 Energy deposition as a function of angle

γ -h correlations: Fragmentation Function

$$p_T^{\gamma} pprox p_T^{jet} \qquad z_T = rac{p_T^h}{p_T^{\gamma}} \qquad =$$

- Photon p_T approximates parton/ jet p_T
 - potential imbalance due to \boldsymbol{k}_{T}
- Modified Fragmentation function
- Selects quark jets
 - pp results consistent with TASSO measure of quark FF
- Modified FF in Au+Au

$$D_q(z_T) = \frac{1}{N_{evt}} \frac{dN(z_T)}{dz_T}$$

Compton

γ -h correlations: FF Modification

- I_{AA} quantifies the FF modification
- Suppression at low ξ and enhancement at high ξ
- Qualitative agreement with models
 - Similar conclusion from STAR jet-h results
- More enhancement at wider angles
- LHC can study effect at higher s_{NN} and access higher parton energies

Photon Tagged Jets at the LHC

Exciting to see these measurements achieved

/]

Cold Nuclear Matter Effects on Jets

- MinBias dAu consistent with pp
- Interesting centrality dependence observed

PHENIX PRL 116, 122301 (2016)

Pions in small systems

- Pions in small systems also show similar effect
- Theoretical explanations: shrinking proton and others....not final state energy loss effect

nPDF

 Increased statistical precision of data is providing more powerful constraints on nPDF

Where does the lost energy go? LHC

Shows ennanced particles out to 1 radian

Where does the energy go? RHIC

- Surface bias jet with high p_T constituent & study away-side jet
- Enhanced low momentum particle production
- Width appears broader but large uncertainties

Detector

uncertainty

(GeV/c)

 ΣD ...

(GeV/c)

 i_{2} and i_{2} . Let energy scale

uncertaint

(GeV)

uncertainty

(GeV/c)

LHC vs RHIC Jets

- Similar level of suppression
- Enhancement of low momentum particles at broader angles at LHC
- RHIC more sensitive to surface bias effects

Physics Conclusions

What is the effect of small systems on jets? -Strong suppression is not a CNM effect

Where does the lost energy go? -Low momentum particles at large angles

Does the pathlength effect quenching?

-Yes! Suppression depends on in- or out-of-plane -Beware of surface bias effects

Is the fragmentation pp like?

-No: Modified fragmentation functions measured -Yes: Jet substructure is pp like -Yes: Jet composition is the pp like

What happens to dijet pairs? -Energy imbalance due to different path lengths

> How does temperature effect quenching? -Fractional Eloss depends on energy density -LHC-RHIC complementarity constrains models

Are jets effected by the medium?

-Yes, jets lose energy and appear to be quenched by the medium

LHC and RHIC Jet Complementarity

- LHC has more jets
- RHIC jets are more influenced by the QGP
- Different temperatures of the QGP

LHC and RHIC Jet Complimentarity

• From September 2014 Town Hall meeting

Discovery to Precision

- I believe there are still surprises to be discovered but perhaps in the details
- Currently embarking on an era of photon tagged jets, jet substructure and precise heavy flavor measurements

photon p_T: 79.6-125 GeV

27.4 pb⁻¹ (5.02 TeV pp) + 404 μ b⁻¹ (5.02 Te *Preliminary* $|y^{D}| < 2$ **D**⁰ + jet $|p_{T}^{[et]}| > 60$ Ge $|m_{T}^{[et]}| < 1.6$

PbPb

0.2

0.3

0.4

nn

01

z

Prc

6.5

25

d N_D

10

 10^{-2}

10²

pp 27.39 pb⁻¹ (5.02 TeV)

44

sPHENIX

- Upgrade to PHENIX
- Plan to start taking data in 2023

Quarkonium spectroscopy vary size of probe Jet structure vary momentum/angular scale of probe

 $p_{T,2}$

Schematic

INTT & MVTX

ΜΥΤΧ

P_{T.1}

outer HCal

inner HCal

Design

SPHE

solenoid EMCal

TPC

Over Simplification of Quarkonia Melting

$$r_{q\overline{q}} \sim 1 / E_{binding} > r_D \sim 1 / 7$$

"Thermometer": different states dissociate at different temperatures → *sequential suppression*

	J/ψ	ψ(2S)	Y(1S)	Y(2S)	Y(3S)
E _b (MeV)	~ 640	~ 60	~ 1100	~ 500	~ 200

05/18/2018

1.4

30-60%

Theory Comparisons

- Amount of experimental measurements with the dawn of the LHC is impressive and continually growing (Xe+Xe)
- Models need to describe all stages of the collision to fully explain the increasingly precise data
- Theory Collaborations

http://jet.lbl.gov/documents-1/ report-on-status-of-qhat

JETSCAPE

Put 'EM TOGETHER AND WHAT HAVE DOU GOT

Take home messages

- Jets are a useful probes of the QGP
- Reconstructed Jets are a robust observable
- We have learned a lot about jets in the QGP without reconstructing jets
- Reconstructed jets allow us to study modifications to the substructure of the jets
- Photon tagged jets are a golden probe for studying energy loss in the QGP
- RHIC and LHC are complimentary facilities
 - Run 2 underway at LHC
 - sPHENIX starts data taking in 2023
 - Theory collaborations bridge gap in apples to apples comparisons

Tool Box

• JETSCAPE

www.github.com/JETSCAPE/JETSCAPE

- Jet finding algorithms: FastJet
 - M.Cacciari, G.Salam, G. Soyez (see http://fastjet.fr/)
- Unfolding: RooUnfold

Review of Jet Measurements:
 – Connors et al, arxiv:1705.01974

