
# Partonic Hadron Structure I

Paul E Reimer Physics Division Argonne National Laboratory July 2017

- I. Why do you need hadrons to have internal structure?
  - A. Quark Model
  - B. Feynman's partons
  - C. Electron scattering cross sections
- II. Longitudinal parton distributions
  - A. Extractions
  - B. Assumptions





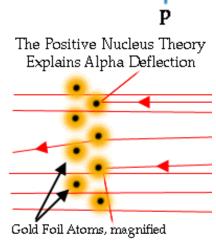


- Chemists started classifying elements by their properties in the 19<sup>th</sup> century
  - Dmitri Mendeleev
    - Realized periodic nature of elements when arranged in order of increasing atomic mass
    - Allowed for gaps in the periodic structure
  - No good explanation for why the periodic structure existed

| 1                         |                                                |                    |                           |                           |                           |                           |                           |                          |                    |                           |                           |                           |                           |                           |                    |                           | 18                        |
|---------------------------|------------------------------------------------|--------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|--------------------------|--------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|--------------------|---------------------------|---------------------------|
| 1<br>H<br>1.008           | 2                                              |                    |                           |                           |                           |                           |                           |                          |                    |                           |                           | 13                        | 14                        | 15                        | 16                 | 17                        | 2<br>He<br>4.0026         |
| 3<br>Li<br>6.94           | 4<br>Be<br>9.0122                              |                    |                           |                           |                           |                           |                           |                          |                    |                           |                           | 5<br>B<br>10.81           | 6<br>C<br>12.011          | 7<br>N<br>14.007          | 8<br>0<br>15.999   | 9<br>F<br>18.998          | 10<br>Ne<br>20.180        |
| 11<br>Na<br>22.990        | 12<br>Mg<br>24.305                             | 3                  | 4                         | 5                         | 6                         | 7                         | 8                         | 9                        | 10                 | 11                        | 12                        | 13<br>Al<br>26.982        | 14<br>Si<br>28.085        | 15<br>P<br>30.974         | 16<br>S<br>32.06   | 17<br>Cl<br>35.45         | 18<br>Ar<br>39.948        |
| 19<br>K<br>39.098         | 20<br>Ca<br>40.078                             | 21<br>Sc<br>44.956 | 22<br>Ti<br>47.867        | 23<br>V<br>50.942         | 24<br>Cr<br>51.996        | 25<br>Mn<br>54.938        | 26<br>Fe<br>55.845        | 27<br>Co<br>58.933       | 28<br>Ni<br>58.693 | 29<br>Cu<br>63.546        | 30<br>Zn<br>65.38         | 31<br>Ga<br>69.723        | 32<br>Ge<br>72.630        | 33<br>As<br>74.922        | 34<br>Se<br>78.97  | 35<br>Br<br>79.904        | 36<br><b>Kr</b><br>83.798 |
| 37<br><b>Rb</b><br>85.468 | 38<br>Sr<br>87.62                              | 39<br>Y<br>88.906  | 40<br>Zr<br>91.224        | 41<br>Nb<br>92.906        | 42<br>Mo<br>95.95         | 43<br>Tc<br>(98)          | 44<br><b>Ru</b><br>101.07 | 45<br>Rh<br>102.91       | 46<br>Pd<br>106.42 | 47<br>Ag<br>107.87        | 48<br>Cd<br>112.41        | 49<br><b>In</b><br>114.82 | 50<br>Sn<br>118.71        | 51<br>Sb<br>121.76        | 52<br>Te<br>127.60 | 53<br>I<br>126.90         | 54<br>Xe<br>131.29        |
| 55<br>Cs<br>132.91        | 56<br>Ba<br>137.33                             | 57-71<br>*         | 72<br>Hf<br>178.49        | 73<br>Ta<br>180.95        | 74<br>W<br>183.84         | 75<br>Re<br>186.21        | 76<br>Os<br>190.23        | 77<br>Ir<br>192.22       | 78<br>Pt<br>195.08 | 79<br>Au<br>196.97        | 80<br>Hg<br>200.59        | 81<br>Tl<br>204.38        | 82<br>Pb<br>207.2         | 83<br>Bi<br>208.98        | 84<br>Po<br>(209)  | 85<br>At<br>(210)         | 86<br><b>Rn</b><br>(222)  |
| 87<br>Fr<br>(223)         | 88<br>Ra<br>(226)                              | 89-103<br>#        | 104<br><b>Rf</b><br>(265) | 105<br><b>Db</b><br>(268) | 106<br>Sg<br>(271)        | 107<br>Bh<br>(270)        | 108<br>Hs<br>(277)        | 109<br>Mt<br>(276)       | 110<br>Ds<br>(281) | 111<br><b>Rg</b><br>(280) | 112<br>Cn<br>(285)        | 113<br>Nh<br>(286)        | 114<br>Fl<br>(289)        | 115<br>Mc<br>(289)        | 116<br>Lv<br>(293) | 117<br>Ts<br>(294)        | 118<br>Og<br>(294)        |
|                           | * Lanthanide<br>series<br># Actinide<br>series |                    |                           | 58<br>Ce<br>140.12        | 59<br><b>Pr</b><br>140.91 | 60<br><b>Nd</b><br>144.24 | 61<br><b>Pm</b><br>(145)  | 62<br>Sm<br>150.36       | 63<br>Eu<br>151.96 | 64<br><b>Gd</b><br>157.25 | 65<br><b>Tb</b><br>158.93 | 66<br>Dy<br>162.50        | 67<br><b>Ho</b><br>164.93 | 68<br>Er<br>167.26        | 69<br>Tm<br>168.93 | 70<br><b>Yb</b><br>173.05 | 71<br>Lu<br>174.97        |
|                           |                                                |                    |                           | 90<br><b>Th</b><br>232.04 | 91<br><b>Pa</b><br>231.04 | 92<br>U<br>238.03         | 93<br>Np<br>(237)         | 94<br><b>Pu</b><br>(244) | 95<br>Am<br>(243)  | 96<br>Cm<br>(247)         | 97<br>Bk<br>(247)         | 98<br>Cf<br>(251)         | 99<br>Es<br>(252)         | 100<br><b>Fm</b><br>(257) | 101<br>Md<br>(258) | 102<br>No<br>(259)        | 103<br>Lr<br>(262)        |

Paul E Reimer Part




- Chemists started classifying elements by their properties in the 19<sup>th</sup> century
  - Dmitri Mendeleev
    - Realized periodic nature of elements when arranged in order of increasing atomic mass
    - Allowed for gaps in the periodic structure
  - No good explanation for why the periodic structure existed
- Physics-beginning to discover the modern picture
- 1874 George Stoney develops a theory of the electron and estimates its mass.
- 1895 Wilhelm Röntgen discovers x rays.
- 1898 Marie and Pierre Curie separate radioactive elements.
- 1898 Joseph Thompson measures the electron; puts forth his "plum-pudding" atomic model
- 1900 Max Planck suggests that radiation is quantized (it comes in discrete amounts.)

Paul E Reimer Partonic Hadron Structure I

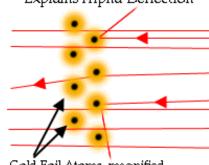


Physics—beginning to discover the modern picture

 1911 Ernest Rutherford infers the nucleus as the result of the alphascattering experiment performed by Hans Geiger and Ernest Marsden.



### Rutherford




Physics—beginning to discover the modern picture

- 1911 Ernest Rutherford infers the nucleus as the result of the alphascattering experiment performed by Hans Geiger and Ernest Marsden.
  - 1913 Henry Mosley analyzed x-ray K lines and observed a periodic pattern in frequency

$$v = v_0(n-a)^2$$


The Positive Nucleus Theory Explains Alpha Deflection



Gold Foil Atoms, magnified

Where n took on different integral values for each element

 1913 Niels Bohr constructs a theory of atomic structure based on quantum ideas



Physics—beginning to discover the modern picture

- 1911 Ernest Rutherford infers the nucleus as the result of the alphascattering experiment performed by Hans Geiger and Ernest Marsden.
  - 1913 Henry Mosley analyzed x-ray K lines and observed a periodic pattern in frequency v = v<sub>0</sub>(n-a)<sup>2</sup>

Where n took on different integral values for each element

- 1913 Niels Bohr constructs a theory of atomic structure based on quantum ideas
- 1919 Ernest Rutherford finds the first evidence for a proton.

$$^{14}N + \alpha \rightarrow ^{17}O + p$$

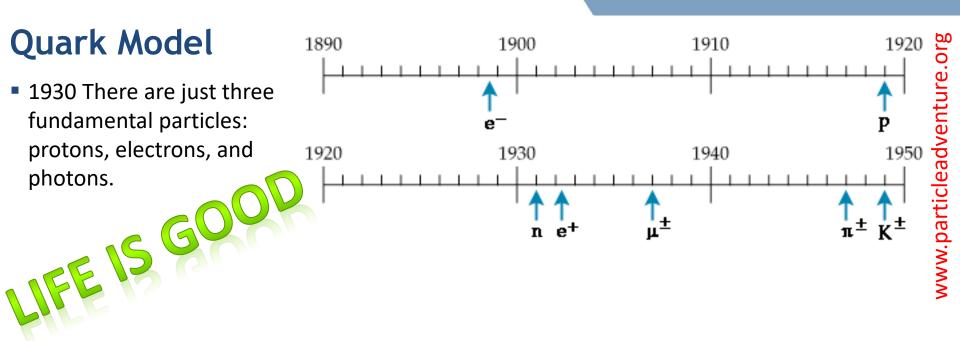


The Positive Nucleus Theory

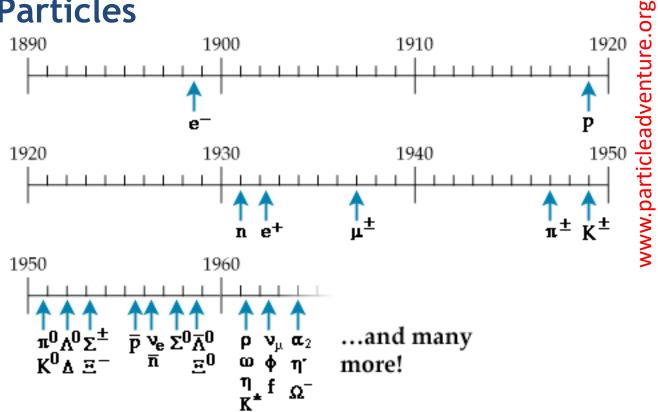
Explains Alpha Deflection

Gold Foil Atoms, magnified

# **Quark Model**


1930 There are just three fundamental particles: protons, electrons, and photons.




www.particleadventure.org

1920

Р



- 1930 Wolfgang Pauli suggests the neutrino to explain the continuous electron spectrum for beta decay.
- 1931 Paul Dirac realizes that the positively-charged particles required by his equation are new objects (he calls them "positrons").
- 1931 James Chadwick discovers the neutron. The mechanisms of nuclear binding and decay become primary problems.
- 1937 muon discovered, although first thought to be Yukawa's predicted pion (takes a decade to realize this).
- 1947 Strongly interacting pion discovered



A title wave of new particles is discovered.

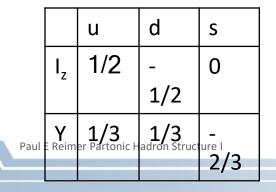
How to classify them—a periodic table of particles?

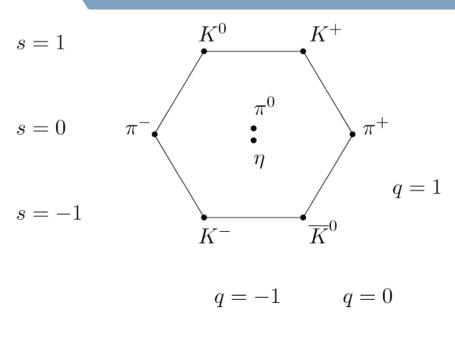
| 1                      |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                           |                    |                    |                    |                    |                    | 18                 |
|------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|---------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| 1<br>H<br>1.008        | 2                  |                    |                    |                    |                    |                    |                    |                    |                    |                    |                           | 13                 | 14                 | 15                 | 16                 | 17                 | 2<br>He<br>4.0026  |
| 3<br>Li<br>6.94        | 4<br>Be<br>9.0122  |                    |                    |                    |                    |                    |                    |                    |                    |                    |                           | 5<br>B<br>10.81    | 6<br>C<br>12.011   | 7<br>N<br>14.007   | 8<br>0<br>15.999   | 9<br>F<br>18.998   | 10<br>Ne<br>20.180 |
| 11<br>Na<br>22.990     | 12<br>Mg<br>24,305 | 3                  | 4                  | 5                  | 6                  | 7                  | 8                  | 9                  | 10                 | 11                 | 12                        | 13<br>Al<br>26:982 | 14<br>Si<br>28.085 | 15<br>P<br>30.974  | 16<br>S<br>32.06   | 17<br>Cl<br>35.45  | 18<br>Ar<br>39.948 |
| 19<br>K<br>39.098      | 20<br>Ca<br>40.078 | 21<br>Sc<br>44.956 | 22<br>Ti<br>47.867 | 23<br>V<br>50.942  | 24<br>Cr<br>51.996 | 25<br>Mn<br>54.938 | 26<br>Fe<br>55.845 | 27<br>Co<br>58.933 | 28<br>Ni<br>58.693 | 29<br>Cu<br>63.546 | 30<br>Zn<br>65.38         | 31<br>Ga<br>69.723 | 32<br>Ge<br>72.630 | 33<br>As<br>74.922 | 34<br>Se<br>78.97  | 35<br>Br<br>79.904 | 36<br>Kr<br>83.798 |
| 37<br>Rb<br>85.468     | 38<br>Sr<br>87.62  | 39<br>Y<br>88.906  | 40<br>Zr<br>91.224 | 41<br>Nb<br>92.906 | 42<br>Mo<br>95.95  | 43<br>Tc<br>(98)   | 44<br>Ru<br>101.07 | 45<br>Rh<br>102.91 | 46<br>Pd<br>106.42 | 47<br>Ag<br>107.87 | 48<br>Cd<br>112.41        | 49<br>In<br>114.82 | 50<br>Sn<br>118.71 | 51<br>Sb<br>121.76 | 52<br>Te<br>127.60 | 53<br>I<br>126.90  | 54<br>Xe<br>131.29 |
| 55<br>Cs<br>132.91     | 56<br>Ba<br>137.33 | \$7-71             | 72<br>Hf<br>178,49 | 73<br>Ta<br>180.95 | 74<br>W<br>183.84  | 75<br>Re<br>186.21 | 76<br>Os<br>190.23 | 77<br>Ir<br>192.22 | 78<br>Pt<br>195.08 | 79<br>Au<br>196.97 | 80<br>Hg<br>200.59        | 81<br>TI<br>204.38 | 82<br>Pb<br>207.2  | 83<br>Bi<br>208.98 | 84<br>Po<br>(209)  | 85<br>At<br>(210)  | 86<br>Rn<br>(222)  |
| 87<br>Fr<br>(223)      | 88<br>Ra<br>(226)  | 89-103<br>#        | 104<br>Rf<br>(265) | 105<br>Db<br>(268) | 106<br>Sg<br>(271) | 107<br>Bh<br>(270) | 108<br>Hs<br>(277) | 109<br>Mt<br>(276) | 110<br>Ds<br>(281) | 111<br>Rg<br>(280) | 112<br>Cn<br>(285)        | 113<br>Nh<br>(286) | 114<br>Fl<br>(289) | 115<br>Mc<br>(289) | 116<br>Lv<br>(293) | 117<br>Ts<br>(294) | 118<br>Og<br>(294) |
| * Lanthanide<br>series |                    |                    | 57<br>La<br>138.91 | 58<br>Ce<br>140.12 | 59<br>Pr<br>140.91 | 60<br>Nd<br>144.24 | 61<br>Pm<br>(145)  | 62<br>Sm<br>150.36 | 63<br>Eu<br>151.96 | 64<br>Gd<br>157.25 | 65<br><b>Tb</b><br>158.93 | 66<br>Dy<br>162.50 | 67<br>Ho<br>164.93 | 68<br>Er<br>167.26 | 69<br>Tm<br>168.93 | 70<br>Yb<br>173.05 | 71<br>Lu<br>174.97 |
| # Actinide<br>series   |                    |                    | 89<br>Ac<br>(227)  | 90<br>Th<br>232.04 | 91<br>Pa<br>231.04 | 92<br>U<br>238.03  | 93<br>Np<br>(237)  | 94<br>Pu<br>(244)  | 95<br>Am<br>(243)  | 96<br>Cm<br>(247)  | 97<br>Bk<br>(247)         | 98<br>Cf<br>(251)  | 99<br>Es<br>(252)  | 100<br>Fm<br>(257) | 101<br>Md<br>(258) | 102<br>No<br>(259) | 103<br>Lr<br>(262) |

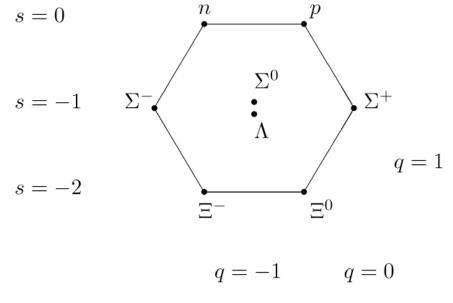


At this point physicists were getting a bit confused by all the particles discovered

Need some type of order or symmetry


# **Eight-fold way**


Gel-Mann


- Three new basic building blocks the quarks (u, d, s)
- Represented by the SU(3) group

$$u = \begin{pmatrix} 1\\0\\0 \end{pmatrix} d = \begin{pmatrix} 0\\1\\0 \end{pmatrix} s = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

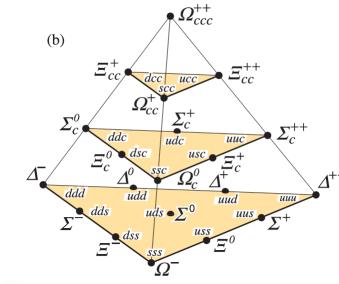
- Rotations in SU(3) space interchanged quarks. Rotations produced mesons and baryons with nearly the same mass because the strong force does not couple to flavor.
- Hypercharge and isospin (z projection)

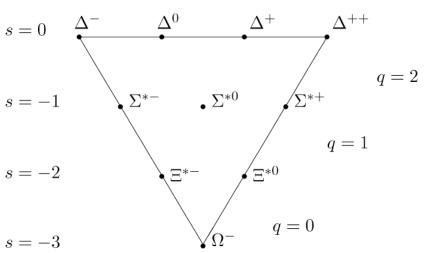






# **Eight-fold way**


# Ω


- Gell-Mann predicted a particle with
  - Strangeness -3, Electric charge -1 s = -2
  - Mass near 1680 MeV/ $c^2$ .
  - Discovered in 1964, at Brookhaven National laboratory
  - Gell-Mann received the 1969 Nobel Prize for the prediction of the  $\Omega^{\bar{}}$

SU(3) could be extended to SU(4) with the discovery of the charm quark

Thanks to PDG for illustrations—see Quark Model

### Paul E Reimer Partonic Hadron Structure I





q = -1

July 2017

### **Becky is now Happy**

Hadronic structure is understood! Or is it?

### The need for partons—Elastic Scattering Cross Sections

Rutherford cross section—scattering of a spinless point particle from a Coulomb field

$$\frac{d\sigma}{d\Omega}_{\text{Ruth.}} = \frac{\alpha^2}{4E^2 \sin^4 \frac{1}{2}\theta}$$

Mott cross section—add the electron's spin

 $\frac{d\sigma}{d\Omega_{\text{Mott}}} = \frac{d\sigma}{d\Omega_{\text{Ruth}}} \cos^2 \frac{1}{2}\theta$  $= \frac{\alpha^2 \cos^2 \frac{1}{2}\theta}{4E^2 \sin^4 \frac{1}{2}\theta}$ 

Include target mass and Dirac spin (½)

$$\frac{d\sigma}{d\Omega_{\text{Dirac}}} = \frac{d\sigma}{d\Omega_{\text{Mott}}} \frac{E'}{E} \left[ 1 - \frac{q^2}{2M^2} \tan^2 \frac{1}{2}\theta \right]$$
$$= \frac{\alpha^2 \cos^2 \frac{1}{2}\theta}{4E^2 \sin^4 \frac{1}{2}\theta} \frac{E'}{E} \left[ 1 - \frac{q^2}{2M^2} \tan^2 \frac{1}{2}\theta \right]$$

Define  $E' = \frac{E}{1 + \frac{2E}{M} \sin^2 \frac{1}{2}\theta}$   $q^2 = -4EE' \sin^2 \frac{1}{2}\theta$ 

### The need for partons—Elastic Scattering Cross Sections

Now, what if the target is not a point charge, but has a distribution of charge?

Modify cross section by introduction of a "form factor"

$$F\left(q^{2}\right) = \int e^{i\mathbf{q}\cdot\mathbf{r}}\rho\left(r\right)d^{3}r$$

Measurement of this form factor at q<sup>2</sup> -> 0 will give you the charge radius of the particle

- There are two distributions of charge to consider
  - Electric  $F_1(q^2)$  Dirac form factor
  - Magnetic  $F_2(q^2)$  Pauli form factor

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega}_{\text{Mott}} \frac{E'}{E} \left[ \left( F_1^2 + \mu \frac{q^2}{2M^2} F_2^2 \right) + \frac{q^2}{2M^2} 2 \left( F_1 + \mu F_2 \right)^2 \tan^2 \frac{1}{2} \theta \right]$$

- Also know as the Rosenbluth cross section.
- If the proton were a point-like Dirac particle then

$$\mu F_2^{\text{elastic}}\left(q^2\right) = 0 \qquad F_1^{\text{elastic}}\left(q^2\right) = 1$$

### Elastic Scattering of 188-Mev Electrons from the Proton and the Alpha Particle\*†‡§||¶

R. W. MCALLISTER AND R. HOFSTADTER

Department of Physics and High-Energy Physics Laboratory, Stanford University, Stanford, California

(Received January 25, 1956)

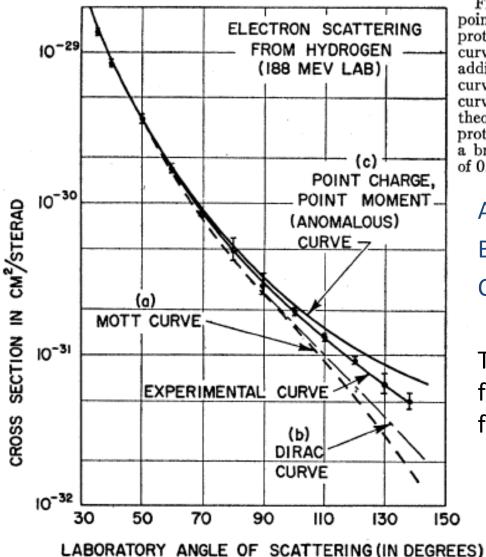



FIG. 5. Curve (a) shows the theoretical Mott curve for a spinless point proton. Curve (b) shows the theoretical curve for a point proton with the Dirac magnetic moment, curve (c) the theoretical curve for a point proton having the anomalous contribution in addition to the Dirac value of magnetic moment. The theoretical curves (b) and (c) are due to Rosenbluth.<sup>8</sup> The experimental curve falls between curves (b) and (c). This deviation from the theoretical curves represents the effect of a form factor for the proton and indicates structure within the proton, or alternatively, a breakdown of the Coulomb law. The best fit indicates a size of  $0.70 \times 10^{-13}$  cm.

- A. Mott curve for spinless point proton
- B. Mott for point proton w/ $\mu_p$ = 2
- C. Mott for point proton w/anomalous  $\mu_p$

The data agree with none of these, forcing a conclusion that the proton has a finite size to its charge distribution

### Elastic Scattering of 188-Mev Electrons from the Proton and the Alpha Particle\*†‡§||¶

R. W. MCALLISTER AND R. HOFSTADTER

Department of Physics and High-Energy Physics Laboratory, Stanford University, Stanford, California

(Received January 25, 1956)

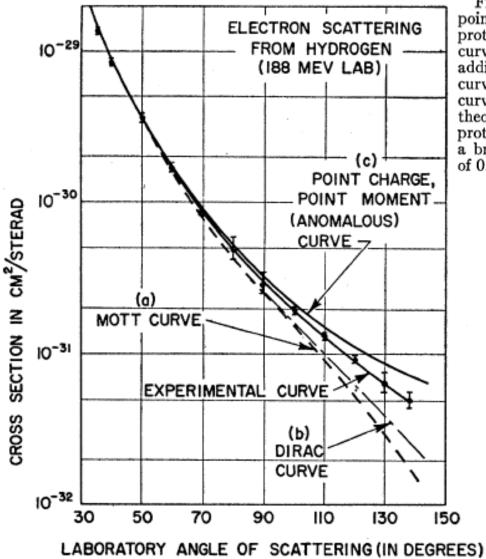



FIG. 5. Curve (a) shows the theoretical Mott curve for a spinless point proton. Curve (b) shows the theoretical curve for a point proton with the Dirac magnetic moment, curve (c) the theoretical curve for a point proton having the anomalous contribution in addition to the Dirac value of magnetic moment. The theoretical curves (b) and (c) are due to Rosenbluth.<sup>8</sup> The experimental curve falls between curves (b) and (c). This deviation from the theoretical curves represents the effect of a form factor for the proton and indicates structure within the proton, or alternatively, a breakdown of the Coulomb law. The best fit indicates a size of  $0.70 \times 10^{-13}$  cm.

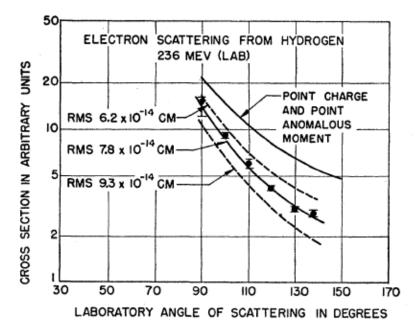



FIG. 6. This figure shows the experimental points at 236 Mev and the attempts to fit the shape of the experimental curve. The best fit lies near  $0.78 \times 10^{-13}$  cm. July 2017

### Aside: Rosenbluth Formula

The Rosenbluth cross section for Elastic Scattering

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega_{\text{Mott}}} \frac{E'}{E} \left[ \left( F_1^2 + \mu \frac{q^2}{2M^2} F_2^2 \right) + \frac{q^2}{2M^2} 2 \left( F_1 + \mu F_2 \right)^2 \tan^2 \frac{1}{2} \theta \right]$$

Is more frequently written as

$$\begin{aligned} \tau &= \frac{Q^2}{4M^2} \\ \frac{d\sigma}{d\Omega} &= \frac{d\sigma}{d\Omega_{\text{Mott}}} \frac{E'}{E} \left[ F_1^{\text{Elas.}} \left(Q^2\right) + \tau \left[ F_2^{\text{Elas.}} \left(Q^2\right) + 2 \left[ F_1^{\text{Elas.}} \left(Q^2\right) + F_2^{\text{Elas.}} \left(Q^2\right) \right]^2 \right] \tan^2 \frac{\theta}{2} \right] \\ &= \frac{d\sigma}{d\Omega_{\text{Mott}}} \frac{E'}{E} \left[ \frac{G_E^2 \left(Q^2\right) + \tau G_M^2 \left(Q^2\right)}{1 + \tau} + 2G_M^2 \left(Q^2\right) \tan^2 \left(\frac{\theta}{2}\right) \right] \end{aligned}$$

Defining the Sachs electric and magnetic form factors:

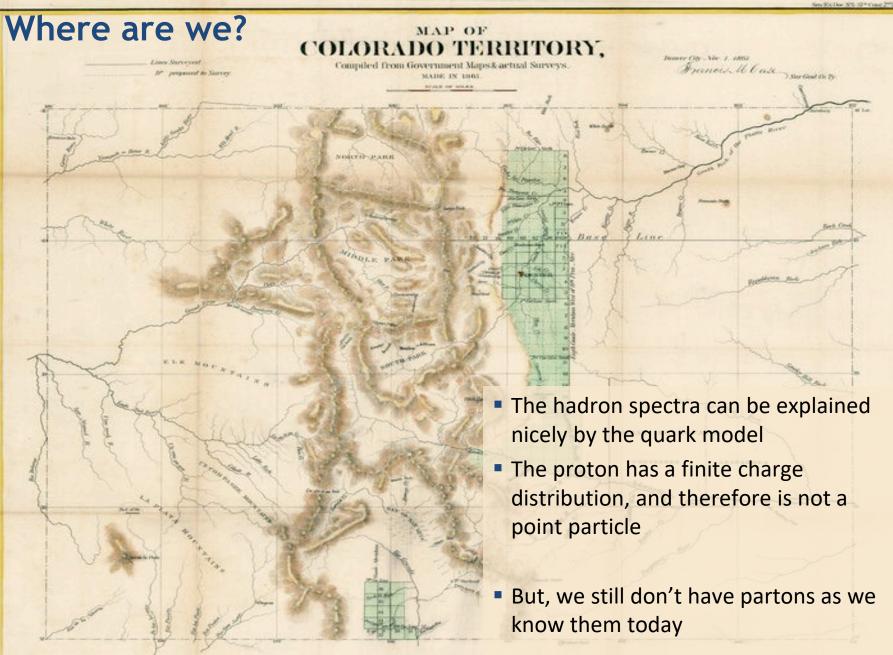
$$\begin{array}{lcl}
G_E(Q^2) &=& F_1^{\text{Elas.}}(Q^2) - \tau F_2^{\text{Elas.}}(Q^2) \\
G_M(Q^2) &=& F_1^{\text{Elas.}}(Q^2) + F_2^{\text{Elas.}}(Q^2)
\end{array}$$

# Aside: The size of the proton

Now, what if the target is not a point charge, but has a distribution of charge?

Modify cross section by introduction of a "form factor"

$$F(q^2) = \int e^{i\mathbf{q}\cdot\mathbf{r}}\rho(r) d^3r$$
  


$$\approx \int \left[1 + i\mathbf{q}\cdot\mathbf{r} - \frac{1}{2} (\mathbf{q}\cdot\mathbf{r})^2 + \cdots\right]\rho(r) d^3r$$
  

$$\approx 1 - \frac{q^2}{6} \langle r^2 \rangle + \cdots$$

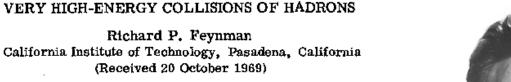
The charge radius of the proton is apparently yet well known as determinations using electron elastic scattering and muonic hydrogen spectroscopy currently disagree!







Paul E Reimer Partonic Hadron Structure I


### Origins of the Parton Model-Richard Feynman

3, NUMBER 24

### PHYSICAL REVIEW LETTERS

15

By The Nobel Foundation



Proposals are made predicting the character of longitudinal-momentum distributions in hadron collisions of extreme energies.

In the introduction Feynman writes:

"... I have difficulty in writing this note because it is not in the nature of a deductive paper, but is the result of an induction. I am more sure of the conclusions than of any single argument which suggested them to me for they have an internal consistency which surprises me and exceeds the consistency of my deductive arguments which hinted at their existence.

"Only the barest indications of the logical bases of these suggestions will be indicated here. Perhaps in a future publication I can be more detailed."

### In the conclusion he says:

"Finally, for those special reactions which are partially exclusive. . . The cross section should vary as 1/s. Of this last conclusion I am less sure than of the others."

Only a very few people could publish in Phys. Rev. Lett. with such a disclaimer. Richard Feynman is one of them.



### Origins of the Parton Model-Richard Feynman

# etions

5, NUMBER 24

### PHYSICAL REVIEW LETTERS

15

### VERY HIGH-ENERGY COLLISIONS OF HADRONS

Richard P. Feynman California Institute of Technology, Pasadena, California (Received 20 October 1969)

Proposals are made predicting the character of longitudinal-momentum distributions in hadron collisions of extreme energies.

Feynman bases his argument on very general considerations

- Pondering about Hadronic collisions
- How the cross sections of inclusive and exclusive reactions scale with W<sup>2</sup>=s/2.
- Considered multiplicities in terms of mom. and quantum numbers

### Origins of the Parton Model-Richard Feynman

### PHYSICAL REVIEW LETTERS

15

VERY HIGH-ENERGY COLLISIONS OF HADRONS

Richard P. Feynman California Institute of Technology, Pasadena, California (Received 20 October 1969)

Proposals are made predicting the character of longitudinal-momentum distributions in hadron collisions of extreme energies.

Feynman bases his argument on very general considerations

Pondering about Hadronic collisions

5, NUMBER 24

- How the cross sections of inclusive and exclusive reactions scale with  $W^2 = s/2$ .
- Considered multiplicities in terms of mom. and quantum numbers
- Concludes that
  - There are collisions of a vast number of point-like particles
  - The point-like particles (partons) each have some fraction, x, of the protons total momentum
  - Probability of finding a parton with momentum between x and x+dx as f(x)dx
  - -f(x)dx is process independent

 $A + B \to C + \text{anything} \quad f(x) \propto (1 - x_C)^{1 - 2\alpha(t)}$ 

Paul E Reimer Partonic Hadron Structure

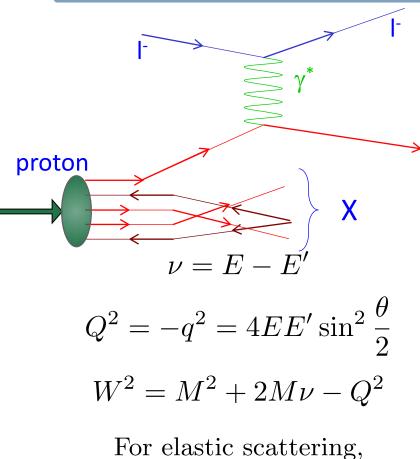


# **Deep Inelastic scattering**

- Consider the situation in which not everything is detected—e.g. only the scattered electron
- Can still write a general cross section formula based on the form factor arguments of elastic scattering

$$\frac{d\sigma}{d\Omega dE'} = \frac{d\sigma}{d\Omega}_{\rm Mott} \left[ W_2 + 2W_1 \tan^2 \frac{\theta}{2} \right]$$

 Since v and Q<sup>2</sup> are no longer independent, the structure functions are now a function of both


 $W_2\left(Q^2,\nu\right)$  and  $W_1\left(Q^2,\nu\right)$ 

Observation of scaling behavior:

 The cross section did not fall with Q<sup>2</sup>, but tended to depend on a single variable

$$\omega = \frac{2M\nu}{Q^2}$$





$$W^2 = M^2$$
 so  
 $2M\nu = Q^2$ 

# **Deep Inelastic == Elastic scattering from points?**

Bjorken

- What if deep inelastic scattering is just scattering off of point particles within the nucleus?
- Consider the Dirac point scattering formula, writing it in a Lorentz invariant form (following) Perkins) Lorentz invariants

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \cos^2 \frac{1}{2}\theta}{4E^2 \sin^4 \frac{1}{2}\theta} \frac{E'}{E} \left[ 1 - \frac{q^2}{2M^2} \tan^2 \frac{1}{2}\theta \right]$$
$$\frac{d\sigma}{dy} = \frac{4\pi\alpha^2 s}{Q^4} \left[ \frac{1}{2} \left[ 1 + (1-y)^2 \right] - \frac{M}{2E}y \right]$$

Now sum over the distributions of the partons:

$$dy \qquad Q^{4} \quad \left[2 \left[1 + (1 - y)^{2}\right] - 2E^{y}\right]$$
Now sum over the distributions of the partons:  

$$\frac{d\sigma}{dy}_{\text{proton}} = \sum_{i \in \{\text{parton}\}} \frac{d\sigma}{dy}_{\text{parton}}$$

$$= \sum_{i \in \{\text{parton}\}} \frac{4\pi\alpha^{2}x_{i}s}{Q^{4}} \left[\frac{1}{2}\left[1 + (1 - y)^{2}\right] - \frac{M}{2E}x_{i}y\right]e_{i}^{2}f_{i}(x)dx$$

Paul F Reimer Partonic Hadron Structure I

 $Q^2 = 2xM\nu$ 

s = 2ME

 $y = \frac{\nu}{F}$ 

### **Deep Inelastic == Elastic scattering from points?**

$$\frac{d\sigma}{dy}_{\text{proton}} = \sum_{i \in \{\text{parton}\}} \frac{d\sigma}{dy}_{\text{parton}}$$
$$= \sum_{i \in \{\text{parton}\}} \frac{4\pi\alpha^2 x_i s}{Q^4} \left[\frac{1}{2}\left[1 + (1-y)^2\right] - \frac{M}{2E}x_i y\right] e_i^2 f_i(x) dx$$

Now identify form factors in terms of partons!

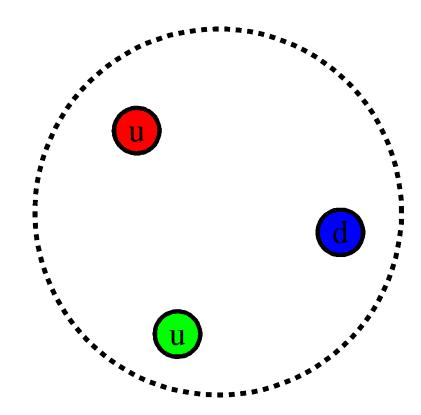
$$F_{1}(x,Q^{2}) = MW_{1} = \frac{1}{2} \sum_{i \in \{\text{partons}\}} e_{i}^{2} f_{i}(x)$$

$$= \frac{1}{2} \left[ \frac{4}{9} u(x) + \frac{1}{9} d(x) + \frac{4}{9} \bar{u}(x) + \frac{1}{9} \bar{d}(x) + \cdots \right]$$

$$F_{2}(x,Q^{2}) = \nu W_{2} = x \sum_{i \in \{\text{partons}\}} e_{i}^{2} f_{i}(x)$$

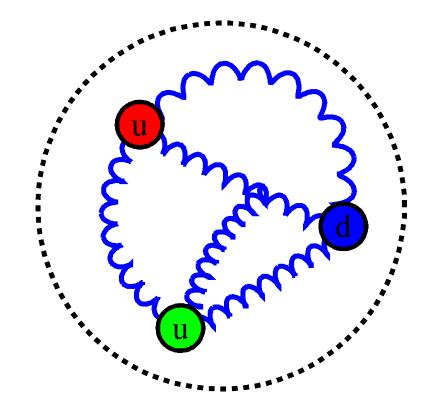
$$= x \left[ \frac{4}{9} u(x) + \frac{1}{9} d(x) + \frac{4}{9} \bar{u}(x) + \frac{1}{9} \bar{d}(x) + \cdots \right]$$

• Note that  $F_1(x,Q^2) = 2xF_2(x,Q^2)$  in this identification. Often called the **Callan-Gross** relation


# Becky is now Happy

Hadronic structure is understood!

# Now that we have partons, how are they distributed in the Proton

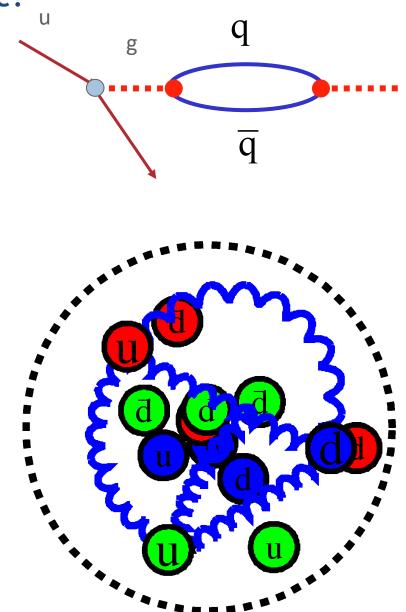

### How do the parton distributions evolve?

- Constituent Quark/Bag Model motivated valence approach
  - Use valence-like (primordial) quark distributions at some very low scale, Q<sup>2</sup>, perhaps a few hundred MeV



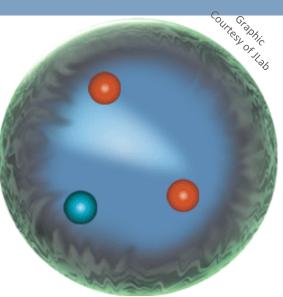
### How do the parton distributions evolve?

- Constituent Quark/Bag Model motivated valence approach
  - Use valence-like (primordial) quark distributions at some very low scale, Q<sup>2</sup>, perhaps a few hundred MeV
  - -Add the binding strong force-glue



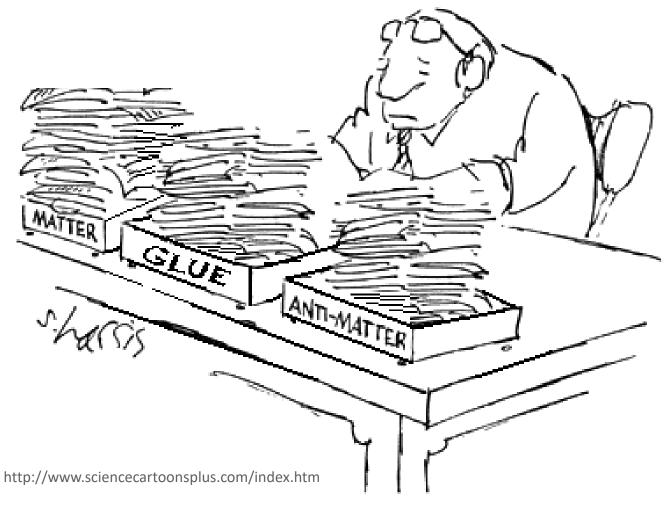

### How do the parton distributions evolve?

- Constituent Quark/Bag Model motivated valence approach
  - Use valence-like (primordial) quark distributions at some very low scale, Q<sup>2</sup>, perhaps a few hundred MeV
  - -Add the binding strong force-glue
  - Radiatively generate sea and glue
- Process known as QCD evolution
  - Solved and understood via DGLAP equations


I'm not going in to these here. They are a black box computer package for solving differential/integral a very specific integral equation

- Important: We can use parton distributions calculated at one energy for another energy.



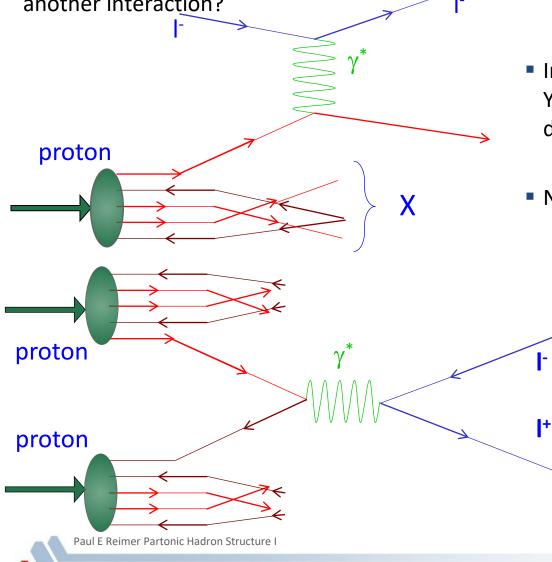

### What's in the proton?





 Just three valence quarks?

### What's in the proton?




Courtes ar

Paul E Reimer Partonic Hadron Structure I

### Are parton distributions process independent?

Can we measure parton distributions in one interaction and expect them to be correct for another interaction?

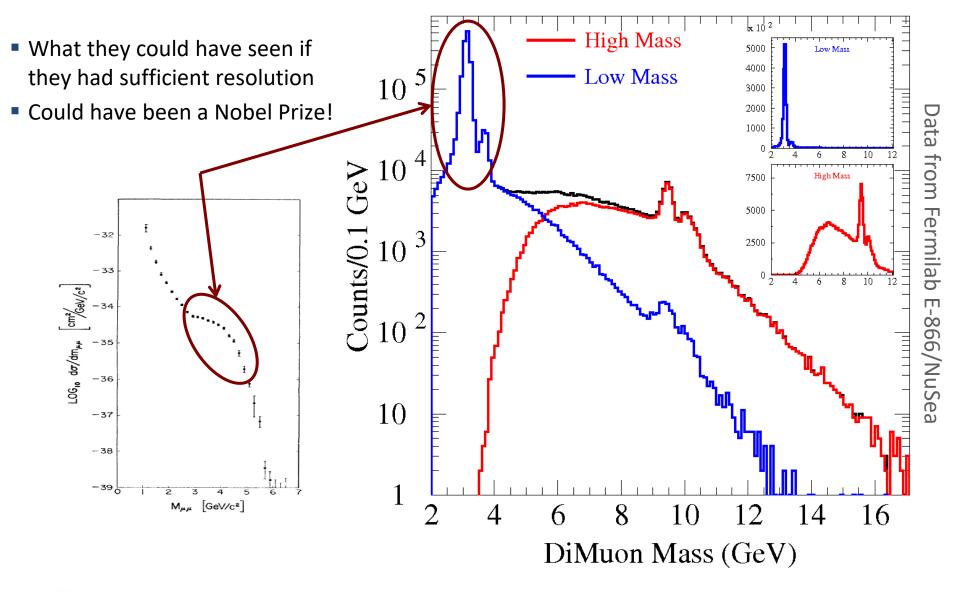


- In particular, can one calculate a Drell-Yan cross section using DIS parton distributions?
- No! Well maybe Yes!

**Early Muon Pair Data** 

PHYSICAL REVIEW LETTERS

### **Observation of Massive Muon Pairs in Hadron Collisions\***

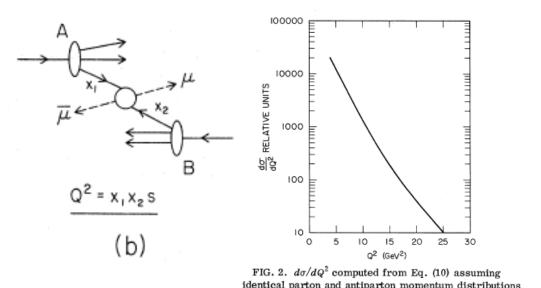

J. H. Christenson, G. S. Hicks, L. M. Lederman, P. J. Limon, and B. G. Pope

Columbia University, New York, New York 10027, and Brookhaven National Laboratory, Upton, New York 11973

and E. Zavattini -32 CERN Laboratory, Geneva, Switzerland (Received 8 September 1970) -33 cm<sup>2</sup>/GeV/c<sup>2</sup> Muon Pairs in the mass range  $1 < m_{\mu\mu} < 6.7 \text{ GeV/c}^2$ have been observed in collisions of high-energy LOG<sub>Io</sub> dơ/ám<sub>##</sub> -35 protons with uranium nuclei. At an incident energy of 29 GeV, the cross section varies smoothly as -36  $d\sigma/dm_{\mu\mu} \approx 10^{-32} / m_{\mu\mu}^{5} \text{ cm}^{2} \text{ (GeV/c)}^{-2} \text{ and exhibits}$ -37 **no resonant structure.** The total cross section increases by a factor of 5 as the proton energy rises -38 from 22 to 29.5 GeV. -39 L

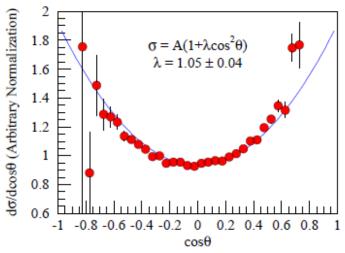
M<sub>µµ</sub> [GeV/c<sup>2</sup>]

# **Drell-Yan Mass Spectra**

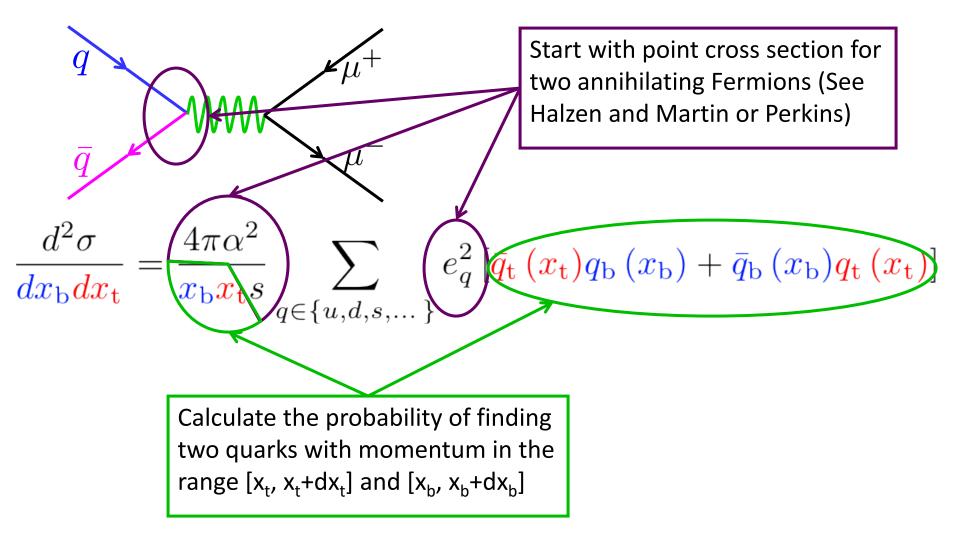



#### MASSIVE LEPTON-PAIR PRODUCTION IN HADRON-HADRON COLLISIONS AT HIGH ENERGIES\*

Sidney D. Drell and Tung-Mow Yan


Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305 (Received 25 May 1970)

On the basis of a parton model studied earlier we consider the production process of large-mass lepton pairs from hadron-hadron inelastic collisions in the limiting region,  $s \rightarrow \infty$ ,  $Q^2/s$  finite,  $Q^2$  and s being the squared invariant masses of the lepton pair and the two initial hadrons, respectively. General scaling properties and connections with deep inelastic electron scattering are discussed. In particular, a rapidly decreasing cross section as  $Q^2/s \rightarrow 1$  is predicted as a consequence of the observed rapid falloff of the inelastic scattering structure function  $\nu W_2$  near threshold.




and with relative normalization.

Also predicted λ(1+cos<sup>2</sup>θ) angular distributions



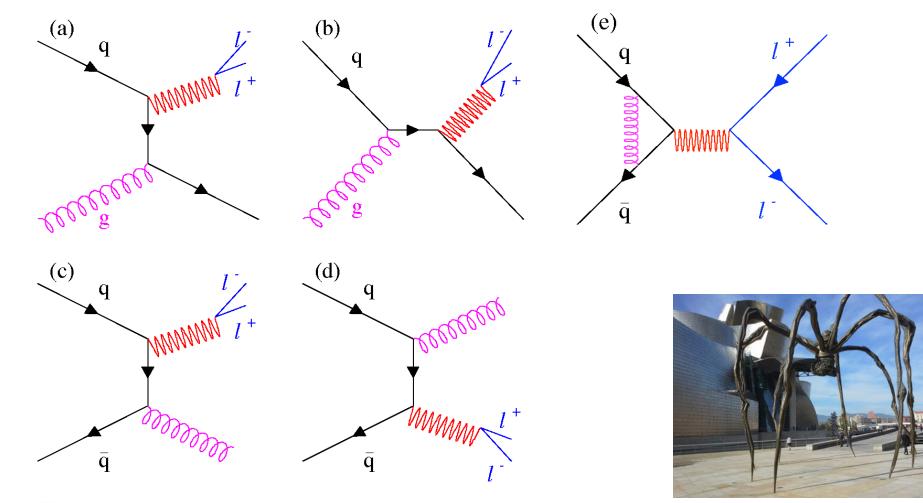
#### The Drell-Yan reaction in leading order



## **Drell-Yan partons**

Calculating the cross section with

$$\frac{d^2\sigma}{dx_{\rm b}dx_{\rm t}} = \frac{4\pi\alpha^2}{x_{\rm b}x_{\rm t}s} \sum_{q\in\{u,d,s,\dots\}}$$


- Yields only half the measured cross section.
- First solution: Introduce a "fudge factor" called the K factor K = 2 and we are done but not satisfied.
- Real solution: Look at other contributions

$$e_q^2 \left[ \bar{q}_{\mathrm{t}} \left( x_{\mathrm{t}} 
ight) q_{\mathrm{b}} \left( x_{\mathrm{b}} 
ight) + \bar{q}_{\mathrm{b}} \left( x_{\mathrm{b}} 
ight) q_{\mathrm{t}} \left( x_{\mathrm{t}} 
ight) 
ight]$$



### Drell-Yan Cross Section–Next-to-leading order $\alpha_s$

- These diagrams are responsible for approximately 50% of the measured cross section
- No artificial K-factor is needed in Next-to-leading order calculations (within expt. uncertainties).



## **Becky is now Happy**

Hadronic structure is understood! And parton distributions are universal—but how do we know what the are?

#### How can we measure the parton distributions?

- Measure hard scattering processes for which cross section calculations can be easily made.
- Deep Inelastic Scattering is the work horse here

$$F_{2}^{\mu p}(x) \propto \sum_{q \in \{u, d, \dots\}} e_{q}^{2} x \left[ q(x, Q^{2}) + \bar{q}(x, Q^{2}) \right]$$

$$F_{2}^{\nu p}(x) + F_{2}^{\nu n} \propto \sum_{q \in \{u, d, \dots\}} x \left[ q(x, Q^{2}) + \bar{q}(x, Q^{2}) \right]$$

$$xF_{3}^{\nu N}(x) \propto \sum_{q \in \{u, d, \dots\}} x \left[ q(x, Q^{2}) - \bar{q}(x, Q^{2}) \right]$$

Compile data from many experiments with different sensitivities and produce a global fit

#### How can we measure the parton distributions?

- Measure hard scattering processes for which cross section calculations can be easily made.
- Other processes

Semi-Inclusive 
$$N^{\pi^{\pm}} \propto \sum_{q \in \{u,d,\dots\}} \left[ q(x,Q^2) D^{\pi^{\pm}} + \bar{q}(x,Q^2) D^{\pi^{\pm}} \right]$$
  
W asymmetry
$$A_W(y) \propto \frac{u(x_1)\bar{d}(x_2) - d(x_1)\bar{u}(x_2)}{u(x_1)\bar{d}(x_2) + d(x_1)\bar{u}(x_2)}$$
Drell-Yan
$$\frac{d\sigma}{dx_1 dx_2} \propto \sum_{q \in \{u,d,\dots\}} e_q^2 \left[ q(x_1)\bar{q}(x_2) + \bar{q}(x_1)q(x_2) \right]$$

Compile data from many experiments with different sensitivities and produce a global fit



## **Global fit constraints**

2 up valence quarks 
$$\int_{0}^{1} \left[ u(x) - \bar{u}(x) \right] dx = 2$$
1 down valence quarks 
$$\int_{0}^{1} \left[ d(x) - \bar{d}(x) \right] dx = 1$$
0 strange valence quarks 
$$\int_{0}^{1} \left[ s(x) - \bar{s}(x) \right] dx = 0$$
Momentum conservation 
$$\int_{0}^{1} x \left[ u(x) + \bar{u}(x) + d(x) + \bar{d}(x) + \cdots \right] dx = 1$$

Adopt a convenient fitting form:

$$xq(x) = Ax^{\alpha}(1-x)^{\beta}(1+\gamma\sqrt{x}+\epsilon x^{2}+\cdots)$$

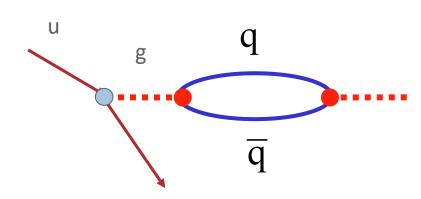
Make other assumptions

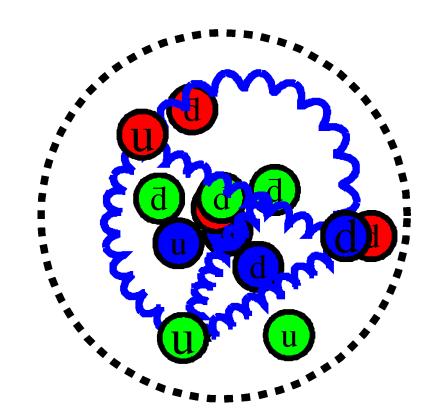
#### **Common initial assumption**

Neutrons and protons are charge symmetric

- In most processes on the proton, there is a e<sup>2</sup> term giving u quarks twice the weight as d quarks
- Considering only protons, you initially have 2x more u quarks than d quarks
- This assumption
  - Allows the use of data with neutrons
  - gives us better access to the d quark distributions
- Some fits have dropped this assumption and found some room for charge symmetry violation, but not much and the χ<sup>2</sup> distributions were basically flat

$$u_p(x) = d_n(x)$$


$$d_p(x) = u_n(x)$$


$$\bar{u}_p(x) = \bar{d}_n(x)$$

$$\bar{d}_p(x) = \bar{u}_n(x)$$

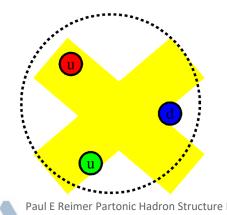
#### **Common initial assumption**

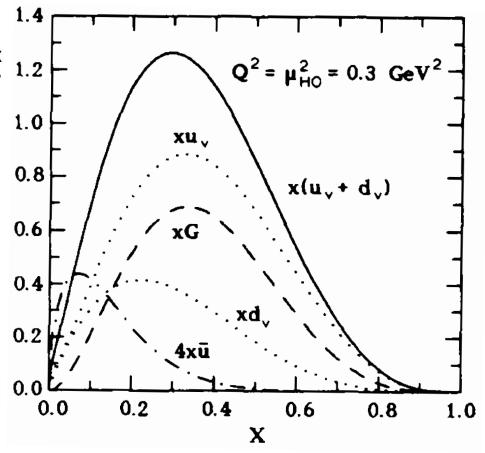
 QCD Evolution is the only process responsible for the generation of sea quarks





#### Sea is a fundamental part of the proton Parton distributions for high energy collisions


Gluck, Reya, Vogt, ZPC 53, 127 (1992)


M. Glück, E. Reya, A. Vogt

Institut für Physik, Universität Dortmund, Postfach 500500, W-4600 Dortmund 50, Federal Republic of Germany

Received 10 June 1991

Abstract. Recent data from deep inelastic scattering experiments at  $x > 10^{-2}$  are used to fix the parton distributions down to  $x = 10^{-4}$  and  $Q^2$  $= 0.3 \ GeV^2$ . The predicted extrapolations are uniquely determined by the requirement of a valence-like structure of all parton distributions at some low resolution scale . . . .





## Next common initial assumption

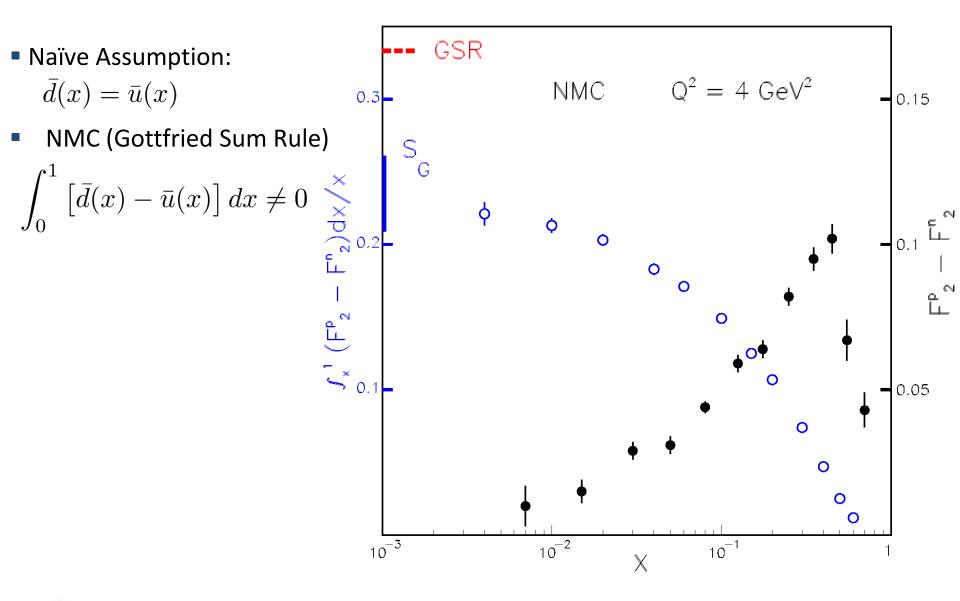
The Sea is flavor symmetric

 $d(x) = \bar{u}(x)$ 

Gottfried sum rule

$$I_{GS} = \int_0^1 \left( F_2^{\mu p} - F_2^{\mu n} \right) \frac{dx}{x}$$

$$F_2^{\mu N}(x) = \sum_i e_i^2 x q_i(x)$$


$$I_{GS} = \int_0^1 \left[ \sum_i e_i^2 \left( q_i^p - q_i^n \right) \right] dx$$

Must assume charge symmetry

$$I_{GS} = \frac{1}{3} \int_0^1 \left[ \left( u^p + \bar{u}^p \right) - \left( d^p + \bar{d}^p \right) \right] dx$$
$$= \frac{1}{3} + \frac{2}{3} \int_0^1 \left( \bar{u}^p - \bar{d}^p \right) dx$$

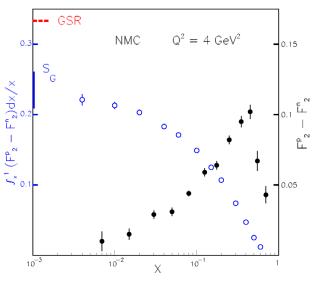
If  $\bar{u}^p = \bar{d}^p$  then  $I_{GS} = rac{1}{3}$  • Finally measured by the EMC at CERN

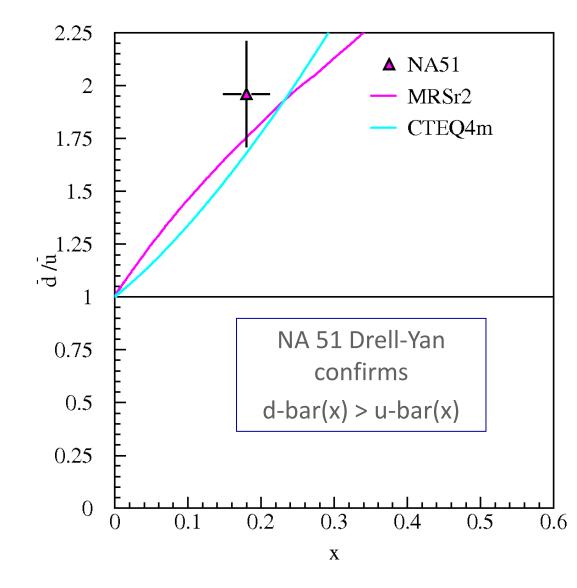
## Light Antiquark Flavor Asymmetry: Brief History

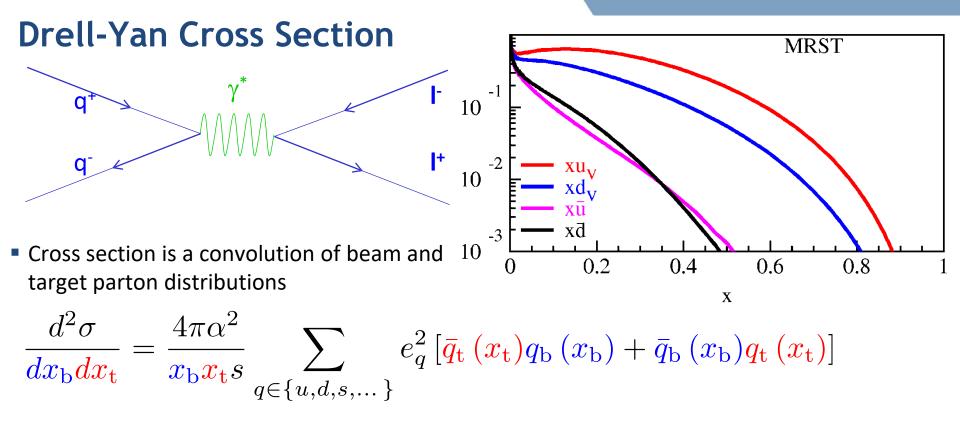


## Light Antiquark Flavor Asymmetry: Brief History

#### Naïve Assumption:


$$\bar{d}(x) = \bar{u}(x)$$

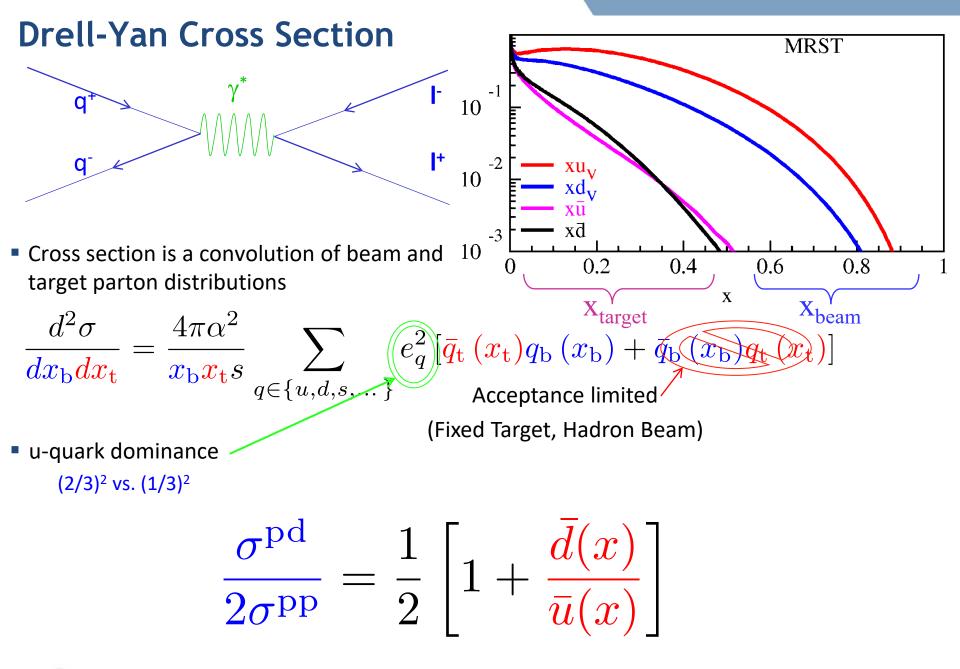

NMC (Gottfried Sum Rule)


$$\int_0^1 \left[ \bar{d}(x) - \bar{u}(x) \right] dx \neq 0$$

NA51 (Drell-Yan)

$$\bar{d} > \bar{u}$$
 at  $x = 0.18$ 







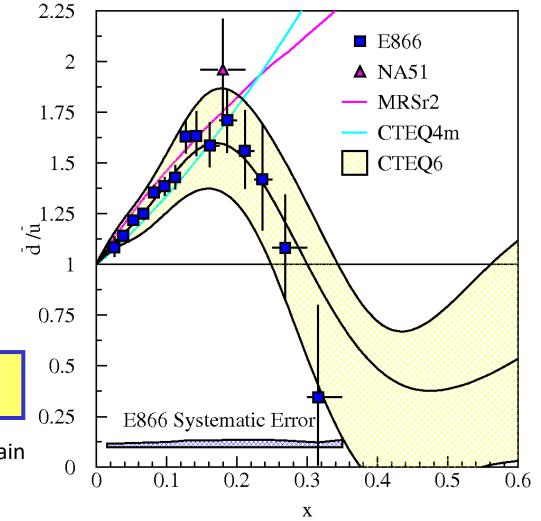



| Drell-Yan Cross Section MRST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                  |                                          |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------|------------------------------------------|--|
| $q^{+}$ $\gamma^{*}$ $r^{-}$ $10^{-1}$ $q^{-1}$ $xu_{v}$ $xd_{v}$ $xd_$ |             |                                  |                                          |  |
| target parton distributions $0 - 0.2 - 0.4$ $0.6 - 0.8 - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                                  |                                          |  |
| $\frac{d^2\sigma}{dx_{\rm b}dx_{\rm t}} = \frac{4\pi\alpha^2}{x_{\rm b}x_{\rm t}s} \sum_{q \in \{u,d,s,\ldots\}} e_q^2 [\bar{q}_{\rm t}(x_{\rm t})q_{\rm b}(x_{\rm b}) + \bar{q}_{\rm b}(x_{\rm b})q_{\rm t}(x_{\rm t})]$ Acceptance limited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                  |                                          |  |
| <ul> <li>U-quark dominance</li> <li>U-quark dominance</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                  |                                          |  |
| $(2/3)^2$ vs. $(1/3)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Beam        | Sensitivity                      | Experiment                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hadron      | Beam quarks<br>target antiquarks | Fermilab, J-PARC<br>RHIC (forward acpt.) |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Anti-Hadron | Beam antiquarks<br>Target quarks | J-PARC, GSI-FAIR<br>Fermilab Collider    |  |
| Paul E Reimer Partonic Hadron Str                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Meson       | Beam antiquarks<br>Target quarks | COMPASS, J-PARC                          |  |

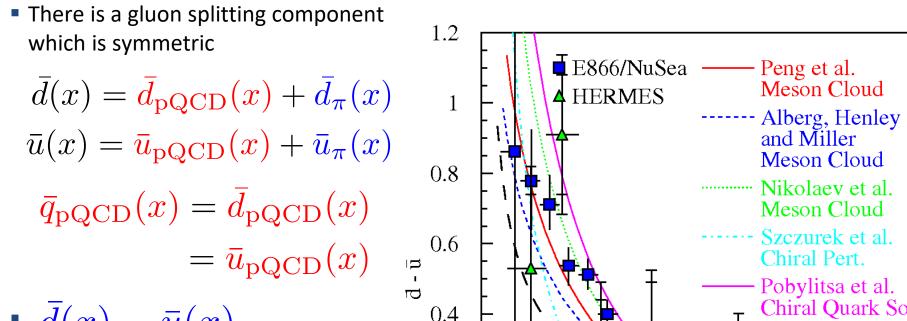
Δ



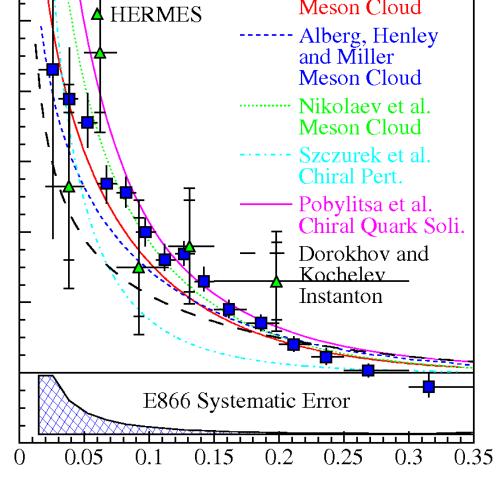
## Light Antiquark Flavor Asymmetry: Brief History


Naïve Assumption:

$$\bar{d}(x) = \bar{u}(x)$$


- NMC (Gottfried Sum Rule)  $\int_0^1 \left[ \bar{d}(x) - \bar{u}(x) \right] dx \neq 0$
- NA51 (Drell-Yan)
- $\bar{d} > \bar{u}$  at x = 0.18
- E866/NuSea (Drell-Yan)

 $\bar{d}(x)/\bar{u}(x)$  for  $0.015 \leq x \leq 0.35$ 


- Knowledge of sea dist. are data driven
  Sea quark distributions are difficult for Lattice QCD
- Non perturbative QCD models can explain excess d-bar quarks, but not return to symmetry or deficit of d-bar quarks



## Proton Structure: By What Process Is the Sea Created?



- $d(x) \overline{u}(x)$ 
  - Symmetric sea via pair production from 0.2 gluons subtracts away
  - No Gluon contribution at 1st order in  $\alpha_{\text{s}}$   $_{0}$
  - Nonperturbative models are motivated by the observed difference -0.2



### Non-perturbative Models: Pion Cloud

11

- Meson Cloud in the nucleon Sullivan process in DIS
- $|p\rangle = |p_0\rangle + \alpha |N\pi\rangle + \beta |\Delta\pi\rangle + \gamma |\Lambda K\rangle + \dots$

In its simplest form, Clebsch-Gordon Coefficients and  $\pi N$ ,  $\pi \Lambda$  couplings

$$\begin{array}{ll} \bullet \ \alpha : \ |N\pi\rangle = \left\{ \begin{array}{ccc} |p,\pi^0\rangle & \frac{u\bar{u}+d\bar{d}}{2} & -\sqrt{\frac{1}{3}} \\ |n,\pi^+\rangle & u\bar{d} & \sqrt{\frac{2}{3}} \end{array} \right. & \text{Predicts} \\ \left. \bar{d} \ge \bar{u} \\ \bullet \ \beta : \ |\Delta\pi\rangle = \left\{ \begin{array}{ccc} |\Delta^{++},\pi^-\rangle & d\bar{u} & \sqrt{\frac{1}{2}} \\ |\Delta^{+},\pi^0\rangle & \frac{u\bar{u}+d\bar{d}}{2} & -\sqrt{\frac{1}{3}} \\ |\Delta^0,\pi^+\rangle & u\bar{d} & \sqrt{\frac{1}{6}} \end{array} \right. & \overline{d} \le \bar{u} \end{array}$$

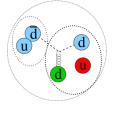
## Models Relate Antiquark Flavor Asymmetry and Spin

Meson Cloud in the nucleon—Sullivan process in DIS

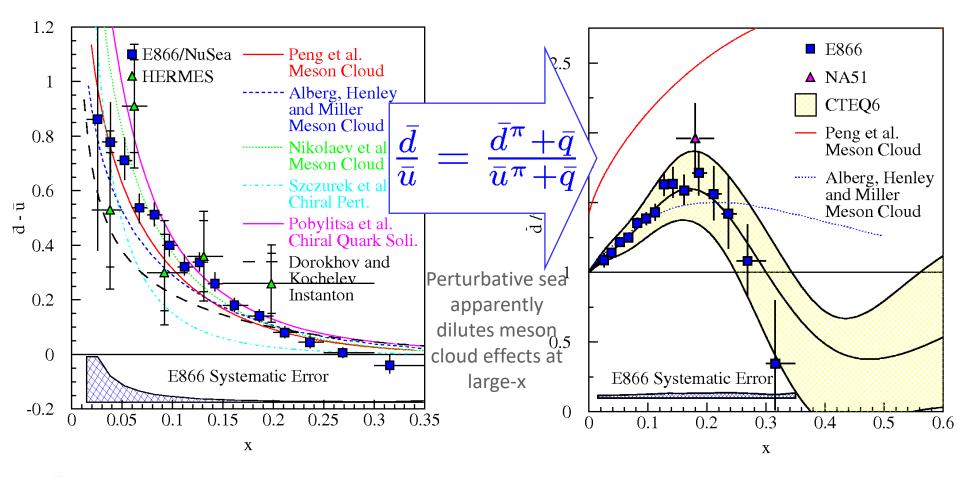
$$|p\rangle = (1 - a - b) |p_0\rangle + a |N\pi\rangle + b |\Delta\pi\rangle$$

Antiquarks in spin 0 object  $\rightarrow$  No net spin

Chiral Quark models—effective Lagrangians

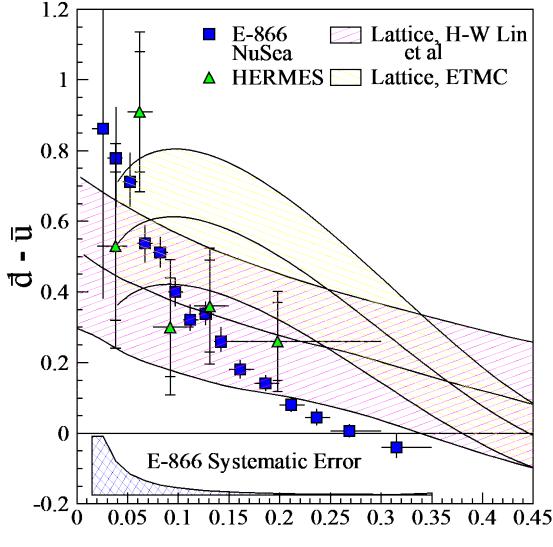

$$\langle q | \bar{q} \rangle = \left[ 1 - \frac{3a}{2} \right] \langle q | \bar{q} \rangle + \frac{3a}{2} \langle q \pi | \bar{q} \pi \rangle$$
$$\int_0^1 \left[ \bar{d}(x) - \bar{u}(x) \right] dx = \frac{2a}{3} \qquad g_A = \int_0^1 \left[ \Delta u(x) - \Delta d(x) \right] dx = \frac{5}{3} 3a$$

Instantons


$$\mathcal{L} \propto \bar{u}_R u_L \bar{d}_R d_L + \bar{u}_L u_R \bar{d}_L d_R \quad \bar{d}_I(x) - \bar{u}_I(x) = \frac{5}{3} \left[ \Delta u_I(x) - \Delta d_I(x) \right]$$

Statistical Parton Distributions

$$\overline{d}(x) - \overline{u}(x) = \Delta \overline{u}(x) - \Delta \overline{d}(x)$$




#### Proton Structure: By What Process Is the Sea Created?



### Proton Structure: By What Process Is the Sea Created?

- Lattice weighs in!!
- Only non perturbative parts



Х

## Conclusions

- 1. Physicists seek organization and order
- 2. The quark model can explain many of the properties of the observed hadronic spectra.
- 3. Elastic scattering shows that the proton is not a point particle



- 4. Richard Feynman was a genius.
  - Hadron-hadron scattering is a collision of many point-like particles (partons)
  - Each parton carries a fraction of the hadron's momentum
  - Parton distributions can be described in terms of a probability distribution of a parton existing with momentum fraction in [x, x+dx]
- 5. Deep Inelastic Scattering cam be described in terms of a summation over point-like scattering from partons.
- 6. Parton distributions may be extracted from hard scattering data.
  - Generally requires data from multiple measurements
  - Care must be taken to avoid false assumptions

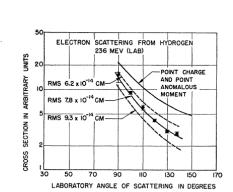



FIG. 6. This figure shows the experimental points at 236 Mev and the attempts to fit the shape of the experimental curve. The best fit lies near  $0.78 \times 10^{-13}$  cm.

$$F_{2}^{\mu\nu}(x) \propto \sum_{q \in \{u, d, \dots\}} e_{q}^{2} x \left[ q(x, Q^{2}) + \bar{q}(x, Q^{2}) \right]$$

$$F_2^{\nu p}(x) + F_2^{\nu n} \propto \sum_{q \in \{u, d, \dots\}} x \left[ q(x, Q^2) + \bar{q}(x, Q^2) \right]$$

$$xF_3^{\nu N}(x) \propto \sum_{q \in \{u,d,\dots\}} x \left[ q(x,Q^2) - \bar{q}(x,Q^2) \right]$$

# Becky is now Happy!

TAN