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Classifications of Particles

= Chemists started classifying elements by their properties in the 19t

century

— Dmitri Mendeleev

e Realized periodic nature of elements when arranged in order of

increasing atomic mass

e Allowed for gaps in the periodic structure

— No good explanation for why the periodic structure existed
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Classifications of Particles
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= Chemists started classifying elements by their properties in the 19t
century

www.particleadventure.org

— Dmitri Mendeleev

e Realized periodic nature of elements when arranged in order of
increasing atomic mass

e Allowed for gaps in the periodic structure
— No good explanation for why the periodic structure existed

Physics—beginning to discover the modern picture

= 1874 George Stoney develops a theory of the electron and
estimates its mass.

1895 Wilhelm Rontgen discovers x rays.

1898 Marie and Pierre Curie separate radioactive elements.

1898 Joseph Thompson measures the electron; puts forth his "plum-pudding" atomic model

1900 Max Planck suggests that radiation is quantized (it comes in discrete amounts.)

Paul E Reimer Partonic Hadron Structure |

S July 2017



Classifications of Particles

1890

1900
T N N T T T A U T N O O O O

1910

f

e

Physics—beginning to discover the modern picture

= 1911 Ernest Rutherford infers the nucleus as the result of the alpha-
scattering experiment performed by Hans Geiger and Ernest
Marsden.
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Physics—beginning to discover the modern picture The Positive Nuclews Theory S
Explains Alpha Deflection
= 1911 Ernest Rutherford infers the nucleus as the result of the alpha- s 2
scattering experiment performed by Hans Geiger and Ernest = _E— —
Marsden. _eawT
= 1913 Henry Mosley analyzed x-ray K lines /4 : -i- ———
and observed a periodic pattern in frequency — e -
V= Vo(n_a)Z Geld Fcilﬁtc:ms,lllmagrd.ﬁsd

Where n took on different integral values for each element

= 1913 Niels Bohr constructs a theory of atomic
structure based on quantum ideas
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Physics—beginning to discover the modern picture The Positive Nuclews Theory S
Explains Alpha Deflection
= 1911 Ernest Rutherford infers the nucleus as the result of the alpha- s 2
scattering experiment performed by Hans Geiger and Ernest = _E— —
Marsden. _eawT
= 1913 Henry Mosley analyzed x-ray K lines /4 : -i- ———
and observed a periodic pattern in frequency — e -
V= Vo(n_a)Z Geld Fcilﬁtc:ms,lllmagrd.ﬁsd

Where n took on different integral values for each element

= 1913 Niels Bohr constructs a theory of atomic
structure based on quantum ideas

= 1919 Ernest Rutherford finds the first evidence
for a proton.
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Quark Model 1890 1900 1910 1920
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= 1930 There are just three | f | | T |
fundamental particles: e~ p
protons, electrons, and
photons.

‘ Paul E Reimer Partonic Hadron Structure |
Qﬁ July 2017

www.particleadventure.org



Quark Model 1890 1900 1910 1920

x%@

20

O

Q

= 1930 There are just three 4 | 4 | E
fundamental particles: e~ P o
protons, electrons, and 1920 1930 1940 1950 -§
photons. I AN TS T N N N B A A B
oV " T £.5) ¢

=

=

=

W\

= 1930 Wolfgang Pauli suggests the neutrino to explain the continuous electron spectrum for
beta decay.

= 1931 Paul Dirac realizes that the positively-charged particles required by his equation are new
objects (he calls them "positrons").

= 1931 James Chadwick discovers the neutron. The mechanisms of nuclear binding and decay
become primary problems.

= 1937 muon discovered, although first thought to be Yukawa’s predicted pion (takes a decade
to realize this).

= 1947 Strongly interacting pion discovered
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Classifications of Particles
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A title wave of new particles is discovered.

||||||

How to classify them—a periodic table of particles?
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At this point physiciSts were |
getting a bit confused by all
the particles discovered

)

k. e

ﬁ .& !_ ‘

o

1]

/

Need some type of g
order or symme/



Eight-fold way s—1 KO K+

Gel-Mann

= Three new basic building blocks
the quarks (u, d, s)

= Represented by the SU(3) group

NENGNG

= Rotations in SU(3) space interchanged quarks.
Rotations produced mesons and baryons with
nearly the same mass because the strong force
does not couple to flavor.

= Hypercharge and isospin (z projection)

u d S s = —9

L |1/2 |- 0
1/2

Y[1/3 [1/3 |-
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Eight-fold way
O

= Gell-Mann predicted a particle with
— Strangeness -3, —Electric charge -1
— Mass near 1680 MeV/c2.

— Discovered in 1964, at Brookhaven National
laboratory

— Gell-Mann received the 1969 Nobel Prize for g=—1
the prediction of the QO

SU(3) could be extended to SU(4) with the discovery
of the charm quark

Thanks to PDG for illustrations—see Quark Model
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The need for partons—Elastic Scattering Cross Sections

= Rutherford cross section—scattering of a spinless point particle from a Coulomb field

do B a?
dQRuth. 4F2sin® %9

= Mott cross section—add the electron’s spin

do do 5 1 9

— = — COS” —

dQ Mott dQ Ruth 2
o2 cos? %6’

4E2 sin® %9

= Include target mass and Dirac spin (%)

Define
B FE
N 1+%Sin2%9

1

E/

do do  E' q> , 1 q> = —4FFE'sin® =0
— = — |1 - tan® —0 2
dS) Dirac df) Mott £ 2M2 2
— o’ cos” 50 B 1 — 7 tan? 19
4E?sin® 10 E 2M? 2
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The need for partons—Elastic Scattering Cross Sections

Now, what if the target is not a point charge, but has a distribution of charge?
= Modify cross section by introduction of a “form factor”

S

Measurement of this form factor at g2 -> 0 will give you the charge radius of the particle
= There are two distributions of charge to consider

— Electric F;(q?) Dirac form factor
— Magnetic F,(q?) Pauli form factor

do do E’ 9 2 q° 5, ol
dQ ~ dQmow B KF +“2M2F>+2z\422(Fl+“Fz) tan” 50

— Also know as the Rosenbluth cross section.
— If the proton were a point-like Dirac particle then

ILLFéalastic (q2) —0 Flelastic (q2) —1
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PHYSICAL REVIEW VOLUME 102, NUMi?»ER 3 MAY 1, 1956

Elastic Scattering of 188-Mev Electrons from the Proton and the Alpha Particle*t1§||

: R. W. McALLISTER AND R. HOFSTADTER
Depariment of Physics and High-Energy Physics Laboratory, Stanford University, Stanford, California

(Received January 25, 1956)
Fr6. 5. Curve (a) shows the theoretical Mott curve for a spinless

| I I ' & -
point proton. Curve (b) shows the theoretical curve for a point
—oal \ | ELECTRON SCATTERING proton with the Dirac magnetic moment, curve (c) the theoretical
10~%e ' FROM HYDROGEN —— curve for a point proton having the anomalous contribution in
(188 MEV LAB) addition to the Dirac value of magnetic moment. The theoretical
curves (b) and (c) are due to Rosenbluth.® The experimental
curve falls between curves (b) and (c). This deviation from the
theoretical curves represents the effect of a form factor for the
proton and indicates structure within the proton, or alternatively,
a breakdown of the Coulomb law. The best fit indicates a size
(c) of 0.70X 1073 cm.
POINT CHARGE,
a 107 POINT MOMENT -] : :
< (ANOMALOUS) A. Mott curve for spinless point proton
Ll .
& CURVE = - B. Mott for point proton w/p,= 2
o
S (o) C. Mott for point proton w/anomalous p,
£ MOTT CURVE -
E H}-ll A .
E NS The data agree with none of these,
w EXPERIMENTAL CURVE "3\ TNy forcing a conclusion that the proton has a
m \ . . . . 0 . .
2 (b) /:i:\ finite size to its charge distribution
& | DIRAC~ \
CURVE \
IG‘EE |

30 50 T0 20 o 130 IS0
LABORATORY ANGLE OF SCATTERING (IN DEGREES) July 2017



PHYSICAL REVIEW VOLUME 102, NUMBER 3 MAY 1, 1956

Elastic Scattering of 188-Mev Electrons from the Proton and the Alpha Particle*t1§||

: R. W. McALLISTER AND R. HOFSTADTER
Depariment of Physics and High-Energy Physics Laboratory, Stanford University, Stanford, California

(Received January 25, 1956)
Fr6. 5. Curve (a) shows the theoretical Mott curve for a spinless

| I I ' & -
point proton. Curve (b) shows the theoretical curve for a point
\ ELECTRON SCATTERING proton with the Dirac magnetic moment, curve (c) the theoretical
10728} FROM HYDROGEN —— curve for a point proton having the anomalous contribution in
(188 MEV LAB) addition to the Dirac value of magnetic moment. The theoretical
curves (b) and (c) are due to Rosenbluth.® The experimental
curve falls between curves (b) and (c). This deviation from the
theoretical curves represents the effect of a form factor for the
proton and indicates structure within the proton, or alternatively,
a breakdown of the Coulomb law. The best fit indicates a size
(c) of 0.70X 1073 cm.
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and the attempts to fit the shape of the experimental curve. The
LABORATORY ANGLE OF SCATTERING (IN DEGREES) best fit lies near 0.78 101 ¢m. July 2017



Aside: Rosenbluth Formula

The Rosenbluth cross section for Elastic Scattering

do

do E’

dS) B dQ Mot £

2 2
q q 2 1

Is more frequently written as

T =

do

ds?

Q2
AM?
do E’

do E’

d_QMott f i

_FlElas. (Q2) 4T |:F2Elas. (QQ) 4+ 2 [FlEla,s. (Q2> + F2Elas. (Q2)}2:|

d_QMott FE

1+7 2

Gp? (Q2) +7Gm” (QQ) 4 2G> (QQ) tan? (g)

Defining the Sachs electric and magnetic form factors:
GE (QQ) _ FlEla,S. (QQ) L TF2ElaS. (QQ)
GM (Q2) _ FlElaS. (QQ) 4 FZEIaS. (Q2)
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Aside: The size of the proton

Now, what if the target is not a point charge, but has a distribution of charge?
= Modify cross section by introduction of a “form factor”

F(i) = [evptds
/{1—|—iq-r—1(q-r)2—|—---]p(fr)d3fr

2 OILSPILLS "
q2 2 o come
L= (%) +-- | fmﬂm\ ~
'_i CHIMPANZEES 1

The charge radius of the proton is apparently yet well
known as determinations using electron elastic scattering
and muonic hydrogen spectroscopy currently disagree!

Q

Q
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Where are we?
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e, nicely by the quark model
- i w - B
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| o ¥ distribution, and therefore is not a
" W s point particle
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- 1 [ P =)
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= But, we still don’t have partons as we
know them today
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Origins of the Parton Model—Richad Feynman

}, NUMBER 24 PHYSICAL REVIEW LETTERS i5

VERY HIGH-ENERGY COLLISIONS OF HADRONS

Richard P. Feynman
California Ingtitute of Technology, Pasadena, California
{Received 20 Qetoher 1960

Proposals are made predieting the character of longitudinal-momentum distributions
in hadreon collisions of exireme energies,

In the introduction Feynman writes:

By The Nobel
Foundation

consistency of my deductive arguments which hinted at their existence.

“Only the barest indications of the logical bases of these suggestions will
be indicated here. Perhaps in a future publication | can be more detailed.”

“. ..l have difficulty in writing this note because it is not in the nature of a
deductive paper, but is the result of an induction. | am more sure of the p—
conclusions than of any single argument which suggested them to me for ;fﬁ
they have an internal consistency which surprises me and exceeds the ﬁ

In the conclusion he says:

“Finally, for those special reactions which are partially exclusive. . . The cross section should vary as 1/s.
Of this last conclusion | am less sure than of the others.”

Only a very few people could publish in Phys. Rev. Lett. with such a disclaimer. Richard Feynman
is one of them.

Paul E Reimer Partonic Hadron Structure |
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N
Origins of the Parton Model—Richard Feynman

}, NUMBER 24 PHYSICAL REVIEW LETTERS i5

VERY HIGH-ENERGY COLLISIONS OF HADRONS

Richard P. Feynman
California Ingtitute of Technology, Pasadena, California
{Received 20 Qetoher 1960

Proposals are made predieting the character of longitudinal-momentum distributions
in hadreon collisions of exireme energies,

By The Nobel
Foundation

Feynman bases his argument on very general considerations
= Pondering about Hadronic collisions

= How the cross sections of inclusive and exclusive reactions scale
with W2=s/2.

= Considered multiplicities in terms of mom. and quantum numbers

Paul E Reimer Partonic Hadron Structure |
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Origins of the Parton Model—Richard Feynman

}, NUMBER 24 PHYSICAL REVIEW LETTERS i5

VERY HIGH-ENERGY COLLISIONS OF HADRONS

Richard P. Feynman
California Ingtitute of Technology, Pasadena, California
{Received 20 Qetoher 1960

Proposals are made predieting the character of longitudinal-momentum distributions
in hadreon collisions of exireme energies,

By The Nobel
Foundation

Feynman bases his argument on very general considerations
= Pondering about Hadronic collisions
= How the cross sections of inclusive and exclusive reactions scale
with W2=s/2.
= Considered multiplicities in terms of mom. and quantum numbers
= Concludes that
— There are collisions of a vast number of point-like particles
— The point-like particles (partons) each have some fraction, x, of the protons total momentum
— Probability of finding a parton with momentum between x and x+dx as f(x)dx

— f(x)dx is process independent

A+ B — C + anything f(z) x (1 — mc)1_2a(t)

Paul E Reimer Partonic Hadron Structure |
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Deep Inelastic scattering 'V/r
= .

= Consider the situation in which not everything is — 7
detected—e.g. only the scattered electron —

= Can still write a general cross section formula based protonﬁ
on the form factor arguments of elastic scattering

@ X

do do v
= = oA Wy + 2W; tan? =
A04E  dQmew [ 201 2] y=E—E
.5 0
= Since v and Q? are no longer independent, the Q2 = —q2 — AEE’ sin® 5

structure functions are now a function of both
W?=M?*+2Mv — Q?
2 2
Ws (Q ’V) and W, (Q ’V) For elastic scattering,
_ . _ W? = M? so
= Observation of scaling behavior: My — Q2

— The cross section did not fall with Q2, but tended to
depend on a single variable
2Mv

Paul E Reimer Partonic Hadron Structure |
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Deep Inelastic == Elastic scattering from points?

Bjorken

= What if deep inelastic scattering is just scattering off of point particles within the nucleus?
= Consider the Dirac point scattering formula, writing it in a Lorentz invariant form (following

Perkins) : :
Lorentz invariants
do a? cos? %(9 E’ q2 5 1 Q? =2zMv
—= = —I T 1— tan® —0 B
df) 4FE2 sin 50 E 2M?2 2 s=2ME
1%
do dra’s [1 M V=%
y -oQ [5[1“1—”2}—@] :
Yy @ 1 —y = cos® 5
= Now sum over the distributions of the partons: dQ) = 2ndcos 0 = 4ndy
T = ¥ 7
dy proton : Y parton
ie{parton}
4ra’x;s [1 9 M 5
- | Z Q4 [5 [1 +(1—-y) } - ﬁﬂfzy] e; fi(x)dx
i€{parton}

Paul E Reimer Partonic Hadron Structure |
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Deep Inelastic == Elastic scattering from points?

do

dy proton

2.

ie{parton}

2.

ie{parton}

do
dyparton
dralzis [1 2 M 5
Z 14+ (1 = — 2 f.
e |5 [T 4= o] - S| Ene

= Now identify form factors in terms of partons!

F1 (56,@2) :MW1 =

% > Efil)

i€{partons}

219 9

vy, efi@)

i€{partons}

4 1 4
T lgu(az) + §d(az) + §u(:1:) + —d(x) + - ]

! Fu(x) +1dz) + %ﬂ(az) +ld@) + - ]

= Note that F,(x,Q?) = 2xF,(x,Q?) in this identification.
Often called the Callan-Gross relation
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latiwerhaverpartons; how are they.
IstributedinstherProton
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How do the parton distributions evolve?

= Constituent Quark/Bag Model motivated
valence approach

—Use valence-like (primordial) quark
distributions at some very low scale, Q?,
perhaps a few hundred MeV

--I'll-..
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How do the parton distributions evolve?

= Constituent Quark/Bag Model motivated
valence approach

—Use valence-like (primordial) quark
distributions at some very low scale, Q?,
perhaps a few hundred MeV

sEE NN
“- ...

—Add the binding strong force—glue

Paul E Reimer Partonic Hadron Structure |
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How do the parton distributions evolve?

= Constituent Quark/Bag Model motivated
valence approach

—Use valence-like (primordial) quark
distributions at some very low scale, Q?,
perhaps a few hundred MeV

—Add the binding strong force—glue
—Radiatively generate sea and glue

= Process known as QCD evolution
—Solved and understood via DGLAP equations

I’m not going in to these here. They are a black
box computer package for solving
differential/integral a very specific integral
equation

—Important: We can use parton distributions
calculated at one energy for another energy.

dron Structure

S July 2017



What’s in the proton?

= Just three valence
quarks?

~ Paul E Reimer Partonic Hadron Structure |
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What’s in the proton?

http://www.sciencecartoonsplus.com/index.htm
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N
Are parton distributions process independent?

= Can we measure parton distributions in one interaction and expect them to be correct for
another interaction? |-

= |n particular, can one calculate a Drell-
Yan cross section using DIS parton
distributions?

= No! Well maybe Yes!

proton

. =
A |
|+
| s
s
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Early Muon Pair Data

VOLUME 25, NUMBER 21 PHYSICAL REVIEW LETTERS 23 NOVEMBER 1970

Observation of Massive Muon Pairs in Hadron Collisions*

J. H. Christenson, G. S. Hicks, L. M. Lederman, P. J. Limon, and B. G. Pope
Columbia University, New York, New York 10027, and Bvookhaven National Labovatory, Upton, New Yovk 11973

and
E. Zavattini U
CERN Labovatory, Geneva, Switzerland :
(Received 8 September 1970) M
—33 1 .
Muon Pairs in the mass range 1 <m,, < 6.7 GeV/ c? 38 7 .
have been observed in collisions of high-energy |
protons with uranium nuclei. At an incident energy & :
° ° -g i
of 29 GeV, the cross section varies smoothly as L —36( .
L ]
do/dm,,, = 10?/ m, > cm? (GeV/c)? and exhibits = | |
. —37
no resonant structure. The total cross section t
increases by a factor of 5 as the proton energy rises a8 |
from 22 to 29.5 GeV. f
e - B 3 s e

Muu [Gevrcz]
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Drell-Yan Mass Spectra

E [T T | [ .\ | T T | 1T T k]ég [ [ l é

= What they could have seen if - — High Mass Y AR
they had sufficient resolution 10 5 Low Mass | a

= Could have been a Nobel Prize! | -
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N
Drell and Yan’s explanation

VoLuMEe 25, NUMBER 5 PHYSICAL REVIEW LETTERS 3 AvGust 1970

MASSIVE LEPTON-PAIR PRODUCTION IN HADRON-HADRON COLLISIONS AT HIGH ENERGIES*

Sidney D. Drell and Tung-Mow Yan

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305
(Received 25 May 1970)

On the basis of a parton model studied earlier we consider the production process of
large-mass lepton pairs from hadron-hadron inelastic collisions in the limiting region,
g ==, 9%s finite, Q3 and s being the squared invariant masses of the lepton pair and the
two initial hadrons, respectively. General scaling properties and connections with deep
inelastic electron scattering are discussed. In particular, a rapidly decreasing cross
section as szs —1] iz predicted as a consequence of the observed rapid falloff of the in-
elastic scattering structure function vW, near threshold.
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N
The Drell-Yan reaction in leading order

Start with point cross section for
two annihilating Fermions (See
Halzen and Martin or Perkins)

dxy, day A Gt (¢)gb (2b) + Gb (-Tb@

Calculate the probability of finding
two quarks with momentum in the
range [x,, x,+dx,] and [x,, x,+dx,]
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Drell-Yan partons

= Calculating the cross section with

d?o Ao ~ _
drpdr,  Tooes Z e 1@ (70)aw (2b) + @b (@0)ge ()]

qE{u,d?S?... }
— Predicts the correct mass and x
dependence, but

—Yields only half the measured
cross section.

= First solution: Introduce a
“fudge factor” called the K
factor K=2 and we are done
but not satisfied.

= Real solution: Look at other
contributions
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\
Drell-Yan Cross Section—Next-to-leading order a,

= These diagrams are responsible for approximately 50% of the measured cross section

= No artificial K-factor is needed in Next-to-leading order calculations (within expt.
uncertainties).

@ O -
l+
g
(©) - (@)
q q
l+
l+
4 g l

Paul E Reimer Partonic Hadron Structure |

& July 2017



N1 - T
— " . % .
-

y : MY i

tructure is nderstood! -And |

o

do we know what the are?

5 T, y 7 AR e T R A

i e (e
oL N




N
How can we measure the parton distributions?

= Measure hard scattering processes for which cross section calculations can be easily made.

= Deep Inelastic Scattering is the work horse here

FiP(z)oc > e2a [q(z, Q%) + qlz, Q)]

qe{u,d,... }
FyP(x)+ F¥" o > @z, Q%) + q(z, Q)]
qe{u,d,... }
eFYN (@) o Y @ [qlx, Q%) — gz, Q%))
q€{u,d,... }

= Compile data from many experiments with different sensitivities and produce a global fit
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N
How can we measure the parton distributions?

= Measure hard scattering processes for which cross section calculations can be easily made.

= Other processes

Semi-Inclusive .]\[Wi X Z [Q(Z‘, Q2)l)7ri e Q_(CC, Qz)DWi}

deep inealstic

scattering qge{u,d,... }
W asymmetry A (y) > u(xl)C?(xZ) o d(x1>a<x2)
v w(zy)d(z2) + d(z1)u(zs)
do ~ _
Drell-Yan dzdis X E{E; }62 [q(71)q(w2) + q(x1)q(22)]
qgE{u,d,...

= Compile data from many experiments with different sensitivities and produce a global fit
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Global fit constraints

1
2 up valence quarks / (u(z) — u(x)] de = 2
0

1
1 down valence quarks / [d(:v) — d(ﬂf)} der =1
0

1
0 strange valence quarks / [S(w) _ E(x)] dr =0
0

1
Momentum conservation / T [u(a;) + ﬂ(x) + d(a;) + d(x) 4+ .. } dr = 1
0

= Adopt a convenient fitting form:

rq(x) = Ax*(1 —517)5(1+7\/5+ea:2 +oe)

= Make other assumptions
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Common initial assumption

Neutrons and protons are charge symmetric

= |n most processes on the proton, there is a e?
term giving u quarks twice the weight as d
quarks

= Considering only protons, you initially have 2x
more u quarks than d quarks

= This assumption
— Allows the use of data with neutrons
— gives us better access to the d quark distributions

= Some fits have dropped this assumption and
found some room for charge symmetry
violation, but not much and the ? distributions
were basically flat
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Common initial assumption

= QCD Evolution is the only process responsible
for the generation of sea quarks
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Sea is a fundamental part of the proton

Parton distributions for high energy collisions Gluck, Reya, Vogt,

ZPC 53,127 (1992)
M. Glick, E. Reya, A. Vogt

Institut fiir Physik, Universitdt Dortmund, Postfach 500500, W-4600 Dortmund 50, Federal Republic of Germany

Received 10 June 1991
1.4 ——

Abstract. Recent data from deep inelastic
scattering experiments at x > 10 are used to fix
the parton distributions down to x = 104 and Q?
= 0.3 GeV?. The predicted extrapolations are

uniquely determined by the requirement
of a valence-like structure of all

parton distributions at some low
resolution scale . . ..
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5
Next common initial assumption

= The Sea is flavor symmetric

d(r) = u(z)
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Gottfried sum rule

1

ny dx

Igs = / (P57 — Fy") —

0 X

F“’N Ze rq;(x
1
losg = / Ze? (qf — q?) dx = Must assume charge symmetry
0 i

~
Q
V)
I
|

1 2 [ _
_ _ -p __ JP
3+3/0 (u d)dx

If @” = dP then lag = %
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= Finally measured by the EMC at CERN
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Light Antiquark Flavor Asymmetryi Brief History

= Naive Assumption:
d(z) = u()
= NMC (Gottfried Sum Rule)

/O [d(z) — a(z)] de £ 0

) (sz - Fﬁz)dx/X
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Light Antiquark Flavor Asymmetry: Brief History

= Naive Assumption:

d(z) = u(x)

B NMC (Gottfried Sum Rule)

/0 [d(z) — a(x)] de £ 0

= NAS51 (Drell-Yan)
d>uatx=0.18

L= GSR
o NMC Q" = 4 GeV*
S
< G
5 °
0. o
[ o $
| © ¢
t:‘ o}
— L]
- ¢°
~ 0.1 °
.
o
¢ ¢
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MR | L
1072 X
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Drell-Yan Cross Section

n

= Cross section is a convolution of beam and 10 )
target parton distributions

d?o 4a? _ -
i = w2 Cald (@) (@) + @ (wo)a (o)

qc{u,d,s,... }
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Drell-Yan Cross Section

n

[
<
T 1 |||||I'|

= Cross section is a convolution of beam and 10 )
target parton distributions

d*c 4ra® Ny _
_— = — e X
drydry  xTpTS Z q | () gp

g€{u,d,s.} Acceptance limited

(Fixed Target, Hadron Beam)
= u-quark dominance

(2/3)2 vs. (1/3)? Beam Sensitivity Experiment
Hadron Beam quarks Fermilab, J-PARC
target antiquarks RHIC (forward acpt.)
Anti-Hadron | Beam antiquarks J-PARC, GSI-FAIR
Target quarks Fermilab Collider
Meson Beam antiquarks COMPASS, J-PARC
Paul E Reimer Partonic Hadron St Ta rget quarks
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Drell-Yan Cross Section

n

3t

= Cross section is a convolution of beam and 10 )
target parton distributions

B0 _ I SN (g (a)a () + Glan)e ()

drndry  TprtS )
g€{u,d,s.} Acceptance limited

(Fixed Target, Hadron Beam)
= u-quark dominance

(2/3)? vs. (1/3)?
oPd 1. d(x)
20PP 2 u(xr)
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Light Antiquark Flavor Asymmetry: Brief History

= Naive Assumption:
d(z) = u(z)
= NMC (Gottfried Sum Rule)

1
/ (d(z) — ()] da # 0
0
= NAS51 (Drell-Yan)
d>uatx=0.18
= E866/NuSea (Drell-Yan)
d(z)/u(z) for 0.015 < x < 0.35

= Knowledge of sea dist. are data driven
— Sea quark distributions are difficult for Lattice QCD

= Non perturbative QCD models can explain
excess d-bar quarks, but not return to
symmetry or deficit of d-bar quarks
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Proton Structure: By What Process Is the Sea Created?

= There is a gluon splitting component

which is symmetric 1.2

d(x) = dpqep (7)) +dr(2) |
(e) = Tpacn () + s (@)
Gpqep (T) = CinCD(x)

= Upqep(z) ="

*d(z) — u(z)

— Symmetric sea via pair production from0.2
gluons subtracts away

— No Gluon contribution at 1*t order in o,

— Nonperturbative models are motivated
by the observed difference 00
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Non-perturbative Models: Pion Cloud

Meson Cloud in the nucleon Sullivan process in DIS

p) = |po) + a|Nm) + 5\A7T> —I— 7|AK>

.......
- .
.......

. .
.......
.........

couplings
= Predicts
d> u

= Cannot have

Vi )
e B: |Am)={ |at,a) wmpad _f1 d<u
JE

s — 5
e a: |Nm) =«

\
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N
Models Relate Antiquark Flavor Asymmetry and Spin

= Meson Cloud in the nucleon—Sullivan process in DIS ’
@
p) = (1 —a—"0)[po) + a|Nm) + b|AT) 3‘

Antiquarks in spin 0 object - No net spin

= Chiral Quark models—effective Lagrangians
3a 3a

ala) = [1- 3] wle) + 2 arlam)

2a

/0 [CZ(QU) — u(x)] dr = 5 ga = /0 [Au(z) — Ad(z)] da = 2305

" |nstantons

_ _ _ 5!
ﬁ X ﬂRuLdeL -+ ﬁLuRdeR d1($) — ’L_LI(QC) = g [AUI(Qf) — Ad](il?)}

= Statistical Parton Distributions
d(z) — u(r) = Au(r) — Ad(2)
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Proton Structure: By What Process "Is the Sea Created?

1.2

I E866/NuSea Peng et al. 5 W E866
1 L HERMES Meson Cloud ' A NA5I
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[y U u™+q [/ LTI\ Alberg, Henley
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Proton Structure: By What Process Is the Sea Created?

= Lattice weighs in!!

= Only non perturbative parts
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Conclusions

Physicists seek organization and order Sy fg‘/_mm
2. The quark model can explain many of the properties of the P ::Z:If,:f:ﬂ%\ T\
observed hadronic spectra. H = )\?ﬁ\(
3. Elastic scattering shows that the proton is not a point particle &, . | | ||
4. Richard Feynman was a genius. e e g e s e, T

— Hadron-hadron scattering is a collision of many point-like particles
(partons)

— Each parton carries a fraction of the hadron’s momentum

— Parton distributions can be described in terms of a probability
distribution of a parton existing with momentum fraction in [x, x+dx]

| 5. Deep Inelastic Scattering cam be described in terms of a
summation over point-like scattering from partons.

6. Parton distributions may be extracted from hard B Y oo @)+ o Q)
scattering data. 9 {ud,..}
vp(, vn ) 2 _ 2
- Generally requires data from multiple measurements Fy?(w) + Fy™ o qe{uzd:...}x 4z, Q%) + a(x, Q)]
—  Care must be taken to avoid false assumptions @ T [ — ()]
ge{u,d,... }
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