
Electron-Ion Collider

July 2017 NNPSS Lectures 2017 1

NNPSS Lectures 2017 (Day 2)  Rik Yoshida, Jefferson Lab



PLAN FOR THE LECTURES
Day 1:
• Prologue
• Some History
• Deep Inelastic Scattering and Parton Distributions (I)
Day 2:
• DIS and PDF (II)
• Beyond parton distributions.
Day 3:
• EIC accelerator and detector realizations
• Other facilities and EIC physics topics.
• EIC and physics topic at other facilities.
• EIC and the future of Nuclear Physics.
• Epilogue
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DEEP INELASTIC SCATTERING AND 
PARTON DISTRIBUTION (II).
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Quarks and Gluons as partons

∫x[u(x)+u(x)+d(x)+d(x)+s(x)+s(x)+….]dx = 1

u(x) :  up quark distribution
u(x) :  up anti-quark distribution
etc.

Momentum has to add up to 1 (“momentum sum rule”)

Quantum numbers of the nucleon has to be right

∫[u(x)-u(x)]dx=2 ∫[d(x)-d(x)]dx=1

∫[s(x)-s(x)+……]dx=0

So for a proton:
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e-p Neutral Current (NC) cross-section:

d2σ 2πα2

dxdQ2 xQ4 [Y+F2(x,Q2)-y2 FL(x,Q2)+Y-xF3(x,Q2)]=

y=Q2/xs 0 ≤ y ≤ 1  “inelasticity”

Y±=1±(1-y)

Has to do with
Z0 exchange:
small for Q<<MZ

Has to do with
long. photon. 
Only large at 
largest y

We’ll come back
to these

d2σ 2πα2

dxdQ2 xQ4
= Y+F2(x,Q2)

So for now:

F2 = x∑(q + q) eq + Z-exchange
quark charge

quark and anti-quark distributions

2
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The partons are point-like and incoherent
then Q2 shouldn’t matter.
 Bjorken scaling: F2 has no Q2 dependence.

IF, proton was made of 3 quarks each with 1/3 of proton’s
momentum:

F2 = x∑(q(x) + q(x)) eq

no anti-quark!

F2

1/3 x

q(x)=δ(x-1/3)

or with some 
smearing 

Let’s look at some data

2
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Proton Structure Function F2

F2

Seems to be…. NOT
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So far:

F2 ~ ∑(q+q) ≈ S (sea quarks) measured directly in 
NC DIS

Scaling violations

dF2/dlnQ2 ~  αs•g Scaling violations gives gluons
(times αs).    DGLAP equations.

What about valence quarks?

∑(q-q)  = uv + dv can we determine them separately?

Can we decouple  αs and g ?

July 2017 NNPSS Lectures 2017



9

Return to Neutral Current (NC) cross-section:

d2σ(e±p)   2πα2

dxdQ2 xQ4 [Y+F2(x,Q2)   Y-xF3(x,Q2)]=

Y±=1±(1-y)

±

Now write out the e+p and e-p separately

xF3 = ∑(q(x,Q2)-q(x,Q2)) xBq ~The valence quarks!

2

χZ=              (          )     Keeps xF3 small if Q<MZ
1          Q2

sin2θW  MZ+Q22

(keep ignoring FL for now..)

Bq = -2eqaqaeχZ+ 4vqaqveaeχZ
2
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Return to Neutral Current (NC) cross-section:

d2σ(e±p)   2πα2

dxdQ2 xQ4 [Y+F2(x,Q2)   Y-xF3(x,Q2)]=

Y±=1±(1-y)

±

Now write out the e+p and e-p separately

xF3 = ∑(q(x,Q2)-q(x,Q2)) xBq ~The valence quarks!

2

(keep ignoring FL for now..)

Bq = -2eqaqaeχZ+ 4vqaqveaeχZ
2

eq: electric charge of a quark
aqvq: axial-vector and vector couplings of a quark
aeve: axial-vector and vector couplings of an electron

γ-Z interference Z-exchange
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Return to Neutral Current (NC) cross-section:

d2σ(e±p)   2πα2

dxdQ2 xQ4 [Y+F2(x,Q2)   Y-xF3(x,Q2)]=

Y±=1±(1-y)

±

Now write out the e+p and e-p separately

xF3 = ∑(q(x,Q2)-q(x,Q2)) xBq ~The valence quarks!

(keep ignoring FL for now..)

Let’s look at the “reduced NC cross-section”

σNC± = F2(x,Q2)   (Y-/Y+)•xF3(x,Q2)

±

Note the change of sign from e+p to e-p
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σNC±

x

Measurements are at relatively high x

Reduced Neutral Current Cross-section
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Final result from HERA

July 2017 NNPSS Lectures 2017



14

Charged Current Cross-Sections

dσCC(e±p)      GF MW
dxdQ2 2πx  MW+Q2=         [           ]2σCC±

2

2 2

Skip a few steps….

σCC+ = x [u + c + (1 - y)2(d + s)]   ~ d

σCC- = x [u + c + (1 – y)2(d + s)]   ~ u

charm
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σCC±

Reduced Charged-Current Cross-Section

x

σCC+ ~ d 

σCC- ~ u

Now let’s look at the valence quarks from the QCD fits 
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Valence PDFs

x

xf

The momenta from valence quarks are producing
gluons and sea quarks at low x
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Jet production in DIS (HERA)

Sensitive to αs

Sensitive to gluon
~10-3 < x < ~10-2Sensitive to quarks

~10-2 < x < ~10-1

complementary
to gluon from F2

Same range as NC and CC

σjet ~ αs•f(x) 
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No ET in Breit Frame

Jet production cross-section used in QCD fit 

Jet measurements in Breit frame
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Gluon distributions

x x

Using only HERA (ZEUS)
data including NC,CC and jets

Using HERA (ZEUS) F2 data
and FNAL, CERN fixed tgt
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Finally…
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Proton Structure Function F2

F2

Now we understand what is happening here.
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Some remarks about DGLAP equations:

But now parton densities must be “evolved” in Q2.

What does this mean? 

The “incoherence” of the original parton model
is preserved. i.e. a parton doesn’t know anything
about its neighbor.

never happens

The “process independent” partons also survive.
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How this works

23

Q2 (or μ2) evolution
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FL=(Q2/4π2α) σL

Longitudinal cross-section
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QCD predicts a relationship
between scaling violations
and FL through the gluon
density.

increasing y July 2017 NNPSS Lectures 2017
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You can determine
FL from a NLO DGLAP
fit to NC cross-section.

x

Indeed, we also only determine
F2 the same way, in principle:

We measure this only 
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A parton at x at Q2 is a source of partons at
x’ < x at Q’2 > Q2.

x

Q2

Q’2

x’

In fact, any parton at
x > x’ at Q2 is a source.

To know the parton density
at x’, Q’2 it’s necessary
(and sufficient) to
know the parton density
in the range: x’ ≤ x ≤ 1
at some lower Q2. 1

measured

known

If you know the partons in range x’ ≤ x ≤ 1 at some Q2,
then you know the partons in the range x’ ≤ x ≤ 1 for all
Q’2 > Q2.
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Some remarks I 
• We’ve just gone through an informal tour of QCD-improved parton model

and its application to data from ep Deep Inelastic Scattering. 
• Some health warnings:

– Most of what I talked about is a leading-order picture.   In practice, 
most things are done at least to next-to-leading order.  At NLO, the 
interpretation of the results are not as straight-forward. 

– Many people worry about whether we are not missing something 
fundamentally with the picture of DGLAP equations.

• Much of the data are at very low x:  DGLAP is a lnQ2

approximation.  Why aren’t ln(1/x) terms important…or are they? 
 BFKL equations.

• The density of the partons, especially that of the gluons is getting 
very high.  When and where should we worry about “shadowing”, 
“gluon recombination” etc. 

• The idea of incoherence of partons may be breaking down in some 
kinematic regions:  phenomenon of “hard diffraction” is difficult 
to understand in terms of partons without correlations to each 
other. 

• We’ll cover some of this in the next section.July 2017 NNPSS Lectures 2017
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Some remarks II
• Thanks to Claire Gwenlan for preparing some of the plots animation for 

me.  
• However, the data used were relatively old.
• Final HERA (combined H1 and ZEUS) structure function data are 

summarized in the publication:   Eur.Phys.J. C75 (2015) no.12, 580
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Final St. Fcn. Results from HERA
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A small portion of the data.
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color
connection
leads to
particles
in “gap”.



DIS Event in the ZEUS Detector
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NEXT
• We learned about parton distribution functions of the 

proton.
• Things are similar for polarized PDFs and Fragmentation 

Functions.
• Did we learn something about the proton?
• What is missing?
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BEYOND PARTON DISTRIBUTIONS
Now we enter areas without too many answers
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Where we are…
• We were interested in how protons and neutrons (nucleons) and hadrons “work”.

– How do they acquire their characteristics.
• Intrinsic characteristics such as mass, spin arise.
• Interactions with other hadrons. 
• Bindint into nuclei.  How does that lead to the characteristics of the nuclei.

• We’ve found out that nucleons (all hadrons) are made of quarks and gluons.
• We’ve extracted proton pdf’s (longitudinal distributions)
• We’ve verified the perturbative QCD describe the evolution of pdf’s.
• It seems like we should be able to answer some of the initial questions in terms of 

quarks, gluons and pQCD… But..
• In the last two lectures, we talked about answers.  Now we talk about questions..

– Part I: Is all really well?  Are we sure the this pQCD+pdf edifice is correct?
– Part II: How do we move ahead beyond pdf’s and start to answer some of those questions.
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PART I: DIFFRACTION, BFKL, 
SATURATION 
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Triumph of perturbative QCD

A part of Wilczek’s comments upon the Nobel Prize announcement

gluon

resolution
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Beyond DGLAP: BFKL and Saturation

• DGLAP is an expansion in αs(ln Q2).  Terms proportional 
to αsln(1/x) are neglected.

• If x < 0.001 then should DGLAP still work? 
• ln (1/x) evolution is called BFKL.
• At some point in small x, shouldn’t saturation set in?
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From 1991 HERA Workshop proceedings

A: Standard pQCD
B: Modified by GLR (saturation)
C: non-perturbative region.
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• In early 1990’s when we started to 
measure the F2 structure function at 
HERA, most of the experimentalists 
thought of gluon saturation as visibly 
changing the behaviour of F2 at low-
x (for a fixed Q2). 

• DGLAP fits achieved excellent fits 
to the data, and precision PDFs 
began to be extracted.

• There seemed to be no “need” for 
low-x theory.  We did not find a 
smoking gun for BFKL, much less 
saturation.

• This remains the view of many 
HERA experimentalists today. 
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Recent HERAPDF0.1 fit

Remarkably good fit to very
precise data using DGLAP
alone.
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The only visible failure of DGLAP 
happens at low-Q2 below 1 
GeV2.

This seems reasonable as a limit 
of perturbation theory.

(Note, however but the failures 
begin at low-x) 

Regge-like

pQCD

July 2017



45

Diffraction
Has the hadronic proton completely vanished
(only manifestation in the parton densities) ?

Look for 
leading 
protons in 
the final 
state 

carries most
of the beam
momentum

Peak!

t is small
If proton carries most
of the beam momentum
and t is small 
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Mass of X, Mx, must be small
with respect to W

X is far away in rapidity from
the proton a rapidity gap

…then

Not

color
connection
leads to
particles
in “gap”.

color singlet

No particles in the proton directionJuly 2017 NNPSS Lectures 2017
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ηmax, the most forward energy deposit

~10% of DIS events are “rapidity gap” events

1993
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In the simplest interpretation 2 gluons in a 
color singlet state are exchanged:

gluon “taken out”

gluon “put back”

small perturbation

Proton stays intact: this
process carries information
about the proton wave 
function.

Here, proton is behaving as a hadron!

This is “diffraction” familiar from hadronic physics: 
however, with some peculiarities
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• Sizable part of F2 even 
at high Q2 (~10% at 30 
GeV2).  High Q2

means interpretable in 
terms of pQCD(?)

• Ratio to total cross 
section is flat with W 
(or x).  How is this 
possible? If 
– σtot ~ gluon density
– σdiff~(gluon 

density)2

(Naively…) 
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At high Mx, 
diffractive DIS is 
not vanishing 
at high Q2.—”leading
twist” in pQCD
language.  
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Proton as a hadron
• In DIS diffraction we have:

– A phenomenon that is clearly related to the hadronic nature of 
the proton—i.e. that of confined color.

– that exists at 10% level at high Q2—where perturbative QCD 
should be usable.

– that does not conform to the expectation from the hadronic
phenomenology.

– that does not conform to the naïve expectation of 2 gluon 
exchange.

• Plenty of mysteries:
– We observe protons as hadrons clearly in the kinematic region 

where asymptotic freedom+partons appears to give a good 
description of data.

– Do we, then, truly understand the evolution of partons in the 
proton—especially at low x?

– Is diffractive DIS the opportunity to finally begin to unravel 
confinement from a perturbative point of view?

A lot of high precision data from HERA existsJuly 2017 NNPSS Lectures 2017
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Diffractive DIS cross-section

Elastic VM production

So far, no true understanding of this phenomenonJuly 2017 NNPSS Lectures 2017



PART II: TOWARDS 3D STRUCTURES 
OF THE NUCLEI AND NUCLEON
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What are we missing?
• We discovered that (nearly) massless quarks and gluons make up 

the nucleon and that QCD governs their interactions.
• We had hoped to find out how quarks and gluons and their 

interactions give rise to the characteristics of the nucleons.
– Spin
– Mass
– Bulk

• We also hoped that we would be able to find out how NN 
interactions work in terms of QCD.
– How nuclear forces arise.
– How nuclear characteristics come about

• We were able to do this kind of things with EM and atoms.
• So far we have failed..
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What longitudinal factorization did
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Function only of x (i.e. longitudinal momentum)
Our quarks and gluons as constituents of the proton only exist longitudinally. 



Limits of Longitudinal Information

56

What we know

Parton frozen transversely.
Framework does not 
incorporate any transverse 
information.   

But this was the only way to 
define quark-gluon structure
of proton in pQCD.

What is the quark and gluon structure of 
the proton?
-orbital motion?
-color charge distribution?
-how does the mass come about?
-origin of nucleon-nucleon interaction?

infinite 
momentum 
frame
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Progress in pQCD Theory (~1980-~2010)

Parton Distribution Functions:
Longitudinal only—
No way to interpret nucleon
partonic structure in rest frame

3D (Transverse) Structure
TMD’s, GPD’s—
Now we know what to measure to
understand the 3D structure of nucleons

Transverse Momentum Dependent Distributions (TMD):  kt
Generalized Parton Distributions (GPD): bt

(Q2)

Factorization II
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3D Imaging of Quarks and Gluons

58

W(x,bT,kT)
∫ d2kT

f(x,bT)f(x,kT)

∫d2bT

Spin-dependent 3D momentum space 
images from semi-inclusive scattering

Quarks

Spin-dependent 2D (transverse 
spatial) +  1D (longitudinal 
momentum) coordinate space images 
from exclusive scattering

Gluons

Momentum
space

Coordinate
space
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3D Imaging of Quarks and Gluons

59

W(x,bT,kT)
∫ d2kT

f(x,bT)f(x,kT)

∫d2bT

Momentum
space

Coordinate
space

Position r  p Orbital Motion of Partons
July 2017 NNPSS Lectures 2017



Some TMD examples
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Courtesy of M. Anselmino



JLab Program on TMDs and GPDs
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JLAB 12



THE NEXT LEAP FORWARD: EIC
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Experimental Challenge of the EIC

On one hand: need high beam energies
to resolve partons in nucleons.
Q2 needs to be up to ~1000 GeV2

On the other: need to resolve
quantities (kt, bt) of order a few
hundred MeV in the proton.  Limits 
proton beam energy. High Lumi needed.

Electron-Ion Collider: Cannot be HERA or LHeC: proton energy (TeV) too high 

Q2=sxy,   s=4EeEp

(Q2)
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Relativistic (Mproton >> Mquark)

Strongly Coupled (QCD)

Quantum Mechanical (Superposition of configurations)

Understanding the Nucleon at the Next Level

Designing EIC  Designing the right probe 

Nucleon: A many-body system with challenging characteristics

• Resolution appropriate for quarks and gluons 
• Ability to project out relevant Q.M. configurations

64

Measure in the Multi-Body regime:
- Region of quantum fluctuation + non-perturbative 

effects  dynamical origin of mass, spin.

For the first time, get (almost?) all relevant 
information about quark-gluon  structure of  the nucleon
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Q2 x

Ability to change x projects out 
different configurations where
different dynamics dominate

Ability to change 
Q2 changes the 
resolution scale

Parameters of the Probe

65

Q2= 400 GeV2 => 1/Q = .01 fm 
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Where EIC Needs to be in x (nucleon)

110-310-4 10-2 10-1

Few-body
Regime

Collective
Regime

Saturation
Regime:
Needs to be
Accessed via Ions
(see later)

X (for proton)

QCD Radiation Dominated
(Studied at HERA) Hadron Structure Dominated

Many-body 
Regime

Main interest for EIC Nucleon/Nuclear Program Spin,TMD, 
GPD…

66July 2017 NNPSS Lectures 2017



Where EIC needs to be in Q2 (Q1
2)

110-1 10 102 103

Transition 
Region

Non-perturbative
Regime Perturbative

Regime

HERMES, COMPASS, JLAB 6 and 12

EIC

[GeV2]Q2

• Include non-perturbative, perturbative and transition regimes
• Provide long evolution length and up to Q2 of ~1000 GeV2  (~.005 fm)
• Overlap with existing measurements 

Disentangle Pert./Non-pert.,  Leading Twist/Higher Twist

X > 10-3,10-2 to 1

HERA high-x

67July 2017 NNPSS Lectures 2017



Measuring kt and bt

68

Pt wrt beam 

Pt wrt scattering plane.
+ particle ID 

~100 MeV ~100 MeV

Q2 up to 1000 GeV2

Pt/Pbeam < 10-3 
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Bjorken x and length scale

0.1 X 

100 10 1

Correlation Length 
in proton rest frame

0.001 0.01

fm

In the proton rest frame, dipole lifetime (x < 0.1) extends far beyond the proton charge radius

Bjorken x

Corresponds to

69

quark-antiquark dipole
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Parameters of the Probe (Nuclei)Q2 x

X > 0.1

X ≈ 0.05

X ≈< 0.005

Nuclear modification of nucleon. (“EMC effect”)

Nucleon-Nucleon Interaction

Multi-nucleon interaction 
(“shadowing” eventually saturation)

70

Probing the 
nucleon 
interaction in the 
nuclei
(note this is 
different from 
correlation 
measurements)

Note: the x range for nuclear exploration is similar to the nucleon exploration

1/Q
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QCD at Extremes: Parton Saturation

HERA discovered a dramatic rise in the number
of gluons carrying a small fractional longitudinal
momentum of the proton (i.e. small-x).

This cannot go on forever as
x becomes smaller and smaller:
parton recombination must
balance parton splitting.
i.e. Saturation—unobserved at 
HERA for a proton.  (expected
at extreme low x)

In nuclei, the interaction probability enhanced by A⅓ Will nuclei saturate faster as color leaks out of nucleons? 
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Luminosity/Polarization Needed

Central mission of EIC (nuclear and nucleon structure) requires high 
luminosity and polarization (>70%).

72

HERA
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EIC Parameters 

• US EIC Machine design aims from the EIC 
Whitepaper

– Highly polarized (~70%) electron and nucleon 
beams.

– Ion beams from deuterons to the heaviest 
nuclei (uranium or lead).

– Variable center of mass energies from ~20 - ~ 
100 GeV, upgradable to ~140 GeV.

– High luminosity: ~10 33-34 cm-2 s-1

– Possibility of having more than one 
interaction region. 

• Two proposed realization plans
– Jefferson Lab: building on the existing 12 GeV 

CEBAF.  JLEIC Design.
– BNL: building on the existing RHIC. eRHIC 

Design.
– Recent review of acc. R&D

• Similar performances, cost according to LRP 
assessment.

• US EIC will likely be down-selected from one 
of these proposals.
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Jefferson Lab

Brookhaven Lab

July 2017

https://arxiv.org/pdf/1212.1701.pdf
https://eic.jlab.org/wiki/index.php/Main_Page
https://www.bnl.gov/cad/eRhic/
https://science.energy.gov/%7E/media/np/pdf/Reports/Report_of_the_Community_Review_of_EIC_Accelerator_RD_for_the_Office_of_Nuclear_Physics_20170214.pdf


END OF DAY 2
Day 3:
• EIC accelerator and detector realizations
• Other facilities and EIC physics topics.
• EIC and physics topic at other facilities.
• EIC and the future of Nuclear Physics.
• Epilogue
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