From Isotopes to Images: Applications in Nuclear Medicine Part 2: Research and New Directions

Suzanne Lapi, PhD Associate Professor of Radiology and Chemistry Director, UAB Cyclotron Facility

Knowledge that will change your world

Radiopharmaceuticals

- Radiopharmaceutical: Targeting compound labeled with a radionuclide for imaging or therapy.
- Structure of the compound determines biological properties (targeting, clearance, receptor interactions).
- Radioactive label determine the imaging or therapeutic properties.

Positron Emission Tomography

PET imaging is a very sensitive tool capable of providing quantitative information about biochemical and physiological processes in a non-invasive manner.

FDG: 59 year old woman with T-cell lymphoma

4 months later, after chemotherapy

Why develop new imaging agents?

- Imaging more than detection of cancer.
- Imaging can provide more information: detection, prediction of treatment response, receptor status, oxygenation, microenvironment......

Knowledge that will change your world

Different information can be obtained using different tracers

[¹⁸F]FDG

[⁶⁸Ga]DOTATOC

Clinical Nuclear Medicine. 38(4):283-284, April 2013.

How to pick a radioisotope?

- Chemistry
- Half-life
- Decay Properties
- Availability
- Purity

Snowledge that will change your world

"Standard" PET Isotopes

¹⁴N(p, α)¹¹C $t_{\frac{1}{2}} = 20.3 \text{ min}$ ¹⁸O(p,n)¹⁸F $t_{\frac{1}{2}} = 109.7 \text{ min}$ ¹⁶O(p, α)¹³N $t_{\frac{1}{2}} = 9.97 \text{ min}$ ¹⁴N(d,n)¹⁵O $t_{\frac{1}{2}} = 2.0 \text{ min}$

Knowledge that will change your world

Radiometals

- Often have longer half-lives to probe longer biological processes.
- Variety of half-lives and decay characteristics available (can be used for imaging or therapy).
- Co-ordination chemistry varies, thus stable chelates are the key.

Knowledge that will change your world

Toolbox: Chart of the Nuclides

HE UNIVERSITY OF LABAMA AT BIRMINGHAM

will change your world

Radiometals?

First row:

_								
z	62Ga 116.12 MS	63Ga 32.4 S	64Ga 2.627 M	65Ga 15.2 M	66Ga 9.49 H	67 Ga 3.2617 D	68Ga 67.71 M	69Ga STABLE 60.108%
	€: 100.00%	e: 100.00%	e: 100.00%	e: 100.00%	€: 100.00%	€: 100.00%	€: 100.00%	00.100/0
	61Zn 89.1 S	62Zn 9.186 H	63Zn 38.47 M	64Zn STABLE	65Zn 243.66 D	66Zn STABLE	67Zn STABLE	68Zn STABLE
30	e: 100.00%	e: 100.00%	e: 100.00%	48.63%	e: 100.00%	27.90%	4.10%	18.75%
	60Cu 23.7 M	61Cu 3.333 H	62Cu 9.673 M	63Cu STABLE	64Cu 12.701 H	65Cu STABLE	66Cu 5.120 M	67Cu 61.83 H
29	e: 100.00%	€: 100.00%	€: 100.00%	69.17%	€: 61.50%	30.83%	β-: 100.00%	β-: 100.00%
					β-: 38.50%			
	59Ni 7.6E+4 Y	60Ni STABLE	61Ni STABLE	62Ni STABLE	63Ni 100.1 Y	64Ni STABLE	65Ni 2.5172 H	66Ni 54.6 H
78		26.223%	1.140%	3.634%		0.926%		
20	ε: 100.00%				β-: 100.00%		β-: 100.00%	β-: 100.00%
	58Co	59Co	60Co	61Co	62Co	63Co	64Co	65Co
	70.00 D	100%	1925.20 D	1.650 H	1.50 M	27.4.5	0.50 5	1.20 \$
27	e: 100.00%	100/	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%

Radiometals?

First row:

z	54Ni 114.2 MS 8: 100.00%	55Ni 204.7 MS 8: 100.00%	56Ni 6.075 D 8: 100.00%	57Ni 35.60 H 8: 100.00%	58Ni STABLE 68.077%	59Ni 7.6E+4 Y 8: 100.00%	60Ni STABLE 26.223%
27	53Co 240 MS 8: 100.00%	54Co 193 MS 8: 100.00%	55Co 17.53 H 8: 100.00%	56Co 77.236 D 8: 100.00%	57Co 271.74 D 8: 100.00%	58Co 70.86 D 8: 100.00%	59Co STABLE 100%
28	52Fe 8.725 H 8: 100.00%	53Fe 8.51 M 8: 100.00%	5.845%	55Fe 2.744 Y 8: 100.00%	56Fe STABLE 91.754%	57Pe STABLE 2.119%	58Pe STABLE 0.282%
25	51 Mn 46.2 M 8: 100.00%	52Mn 5.591 D 8: 100.00%	53Mn 3.74E+6 Y 8: 100.00%	54Mn 312.20 D ε: 100.00% β-: 9.3E-5%	55Mn STABLE 100%	56Mn 2.5789 H β-: 100.00%	57Mn 85.4 S β-: 100.00%
24	50Cr >1.3E+18 Y 4.345% 28	51Cr 27.7025 D 8: 100.00%	52Cr STABLE 83.789%	53Cr STABLE 9.501%	54Cr STABLE 2.365%	55Cr 3.497 Μ β-: 100.00%	56Cr 5.94 Μ β-: 100.00%
	26	27	28	29	30	31	32

Radiometals?

Second row:

	86Nb 88 S	87Nb 3.75 M	88Nb 14.55 M	89Nb 2.03 H	90Nb 14.60 Н	91Nb 6.8E+2 Y	92Nb 3.47E+7 Y
41	e: 100.00%	€: 100.00%	€: 100.00%	e: 100.00%	e: 100.00%	€: 100.00%	ε: 100.00% β− < 0.05%
	852r 7.86 M	86Zr 165H	872r 1.68 H	88Zr 834 D	89Zr 78 41 H	90Zr STABLE	91Zr STABLE
40	e: 100.00%	e: 100.00%	e: 100.00%	€: 100.00%	€: 100.00%	51.45%	11.22%
	847	857	867	87Y	88Y	89Y	90Y
	4.6 5	2.68 H	14.74 H	79.8 H	106.626 D	STABLE 100%	64.053 H
59	€: 100.00%	e: 100.00%	e: 100.00%	e: 100.00%	e: 100.00%		β-: 100.00%
	83Sr	84Sr	85Sr	86Sr	87Sr	88Sr	89Sr
50	32.41 H	0.56%	64.84 D	51ABLE 9.86%	7.00%	51ABLE 82.58%	50.53 D
20	e: 100.00%		€: 100.00%				β-: 100.00%
	45	46	47	48	49	50	51

The UAB Cyclotron Facility Current Production and Research Activities

- Isotope production and separation chemistry
- Radiochemistry for new imaging agents
- Characterization of new radiopharmaceuticals
- Translation into clinical trials
- Support of ongoing existing clinical trials

Spowledge that will change your world

UAB Cyclotron Facility

The UAB Cyclotron Facility enables a broad scope of research and cutting-edge patient care through initiatives ranging from novel isotope production to developing and supplying state-of-the-art molecular imaging agents for clinical trials and routine patient care.

UAB Cyclotron and Advanced Imaging Facilities GE Signa 3-T PET/MRI Two GE 710 TOF PET/CTs Shell space Cyclotron control room TR-24 cyclotron Preclinical radiochemistry Human use QC cGMP production

Radiopharmacy

GMP Space

- 6 minicells
- 4 large hotcells
- 6 chemistry modue
- Shielded laminar flow hood
- Dose drawing area
- Clinical QC Area
 - 2 RadioHPLC
 - 2 GCs (residual solvents)
 - 2 TLCs
 - Additional equipment for sterility testing etc

Research Space (adjacent to facility, non-GMP)

- 4 minicells with acid resistant coating
- 1 large hotcell
- Shielded fume hood
- Analytical equipment

Additional Research Space (3rd and 6th floor WTI and 1st floor LHL)

- 2 minicells , 1 large hotcell
- 4 shielded fumehoods
- Fumehoods for organic chemistry
- Analytical equipment (HPLC, TLC, QTOP, ICP-MS)
- Cell culture and animal imaging facilities

UAB Cyclotron Facility Research Achievements

- First patient scanned with an imaging agent produced at the UAB cyclotron facility
 - January 5th, 2016
- Renovation to enhance research space and ensure compliance with FDA regulations is complete
- Isotopes produced to date:
 - ¹⁸F, ¹¹C, ¹⁵O, ¹³N, ⁸⁹Zr, ⁵²Mn, ⁵⁵Co, ⁶⁴Cu, ⁴⁴Sc, ⁴⁸V, ⁴⁵Ti
- Auxiliary chemistry equipment
 - ICP-MS and QTOF

[¹⁸F]FLT PET/MRI of a Glioblastoma patient UAB Cyclotron and Advanced Imaging Facilities

UAB Cyclotron Facility: Status of Radiotracers for Human Use

Radiopharmaceutical	Use	Status
[¹⁸ F]FPEB	mGluR5	IND approved
[¹⁸ F]FLT	Proliferation	IND approved
[¹³ N]NH ₃	Cardiac blood flow	IND approved
[⁶⁸ Ga]DOTATATE	SSTR status	FDA approved
[¹⁸ F]THK5351	Tau	IND approved
[¹⁸ F]FMISO	Нурохіа	IND submitted
[⁸⁹ Zr]Trastuzumab	HER2 status (breast cancer)	IRB submitted
[⁶⁸ Ga]PSMA-11	PSMA status (prostate cancer)	IRB in progress
[¹⁸ F]FET	Amino acid transport	Chemistry initiated
[¹¹ C]PiB	Amyloid	Chemistry initiated
[¹⁸ F]DPA-714	TSPO	Chemistry initiated

UAB Cyclotron Facility: Southeast Center and Nationwide supply

Multi-state pharmacist, pharmacy and manufacturing licenses to allow dispensing and distribution of radiopharmaceuticals into adjoining states.

DOT certified shipping containers and internal training to distribute ⁸⁹Zr, ⁵²Mn, ⁶⁴Cu and other isotopes to other research facilities throughout the country and potentially internationally.

Scans at UAB started June 2017

Journal of Medical Imaging and Radiation Oncology Volume 56, Issue 1, pages 40-47, 17 2012

Knowledge that will change your world

59 year old woman with metastatic neuroendocrine tumors arising from the small bowel She is being treated with Sandostatin for carcinoid syndrome She has undergone multiple transarterial hepatic chemoembolization (TACE) procedures

y of Birmingham

IGHAM

UAB Cyclotron Facility : [¹³N]NH₃

Y OF SIRMINGHAM

Clinical FDG-PET/MRI for recurrent cholangiocarcinoma

[¹⁸F]FLT-PET in a patient with recurrent glioblastoma

Clinical fluciclovine-PET/MRI for recurrent prostate cancer

FPEB-PET for mGluR5 with auto-segmentation

UAB Cyclotron Facility Highlights: Preclinical Imaging

- ¹⁸F agents for oncology imaging
 - Preclinical PET Imaging of a Breast Cancer Selective Phosphodiesterase (PDE10A) as a Means to Monitor Anticancer Drug Response
- ¹⁸F amino acids for neuro-oncology imaging
 - PET Tumor and Proliferation Imaging via Cationic Amino Acid Transport
 - [¹⁸F]MeFAMP for oncologic imaging via system A amino acid transport
- ⁸⁹Zr, ⁵⁵Co and ⁵²Mn agents for lung and oncology imaging
 - Lung fibrosis imaging
 - PSMA imaging in prostate cancer
 - Imaging of LAT1 in prostate cancer
 - Development of targeted radiolabeled antibodies for ablation therapy

The UAB TR24 Cyclotron

TR 24

Advanced Cyclotron Systems, Inc. (ACSI)

15-24 MeV protons;

variable energy

300 µA (total)

2 extraction ports

Solid, liquid, and gas targets

4 beamlines

UAB Cyclotron Facility: Radioisotopes (beyond ¹⁸F, ¹¹C, ¹³N, ¹⁵O)

lsotope	Half-Life	Target Material	Status
⁴⁴ Sc	3.9 h	^{Nat} Ti	Chemistry development
⁴⁵ Ti	3.1 h	^{Nat} Sc	Chemistry development
⁴⁸ V	16 d	^{Nat} Ti	Chemistry development
⁵² Mn	5.6 d	^{Nat/52} Cr	Routine production for preclinical use
⁵⁵ Co	17.5 h	⁵⁸ Ni	Routine production for preclinical use
⁶⁴ Cu	12.7 h	⁶⁴ Ni	Production ramping up
^{76,77} Br	14.7 h	^{76.77} Se (Kr)	Targets in design phase
⁸⁹ Zr	3.27 d	⁸⁹ Y	Routine production for preclinical and soon to be human use

Knowledge that will change your world

The UAB TR24 Cyclotron

TR 24

Advanced Cyclotron Systems, Inc. (ACSI)

15-24 MeV protons; variable energy

300 µA (total)

2 extraction ports

Solid, liquid, and gas targets

4 beamlines

Snowledge that will change your world

Targetry systems (ACSI) High power station (~300 μA)

Targetry Systems In House Design and Construction

- Collaborative engineering and machining in house
- Brainstorming and student involvement
- Collaborations with other institutions –
 PSI, Bern, Wisc, Penn

S. Ferran

C.S. Loveless

D. Long (UAB Machine Shop)

Targetry systems (ACSI)

Knowledge that will change your world

Zirconium-89

- Half-life of 3.27 d well suited for study of pharmacokinetics of antibodies (achieve optimal biodistribution ~4-5 d)
- Scouting in preparation for immunotherapy, confirming tumor targeting, and estimating dosimetry
- Generally inert to biological systems
 - Decay properties
 - EC = 76.6%
 - $\beta^{+} = 22.3\%$
 - R_{ave.}(β⁺)= 1.18 mm

Zr-89 production and purification

• ⁸⁹Y(*p,n*)⁸⁹Zr

Zr-89 production

• ⁸⁹Y(*p*,*n*)⁸⁹Zr

872r	882r	89Zr	90Zr	91Zr	92Zr	932r
1.68 H	83.4 D	78.41 H	STABLE	STABLE	STABLE	1.53E+6 Υ
€ 100.00%	€: 100.00%	€: 100.00%	51.45%	11.22%	17.15%	β-: 100.00%
86¥	87¥	88¥	89Y	90Υ	91Υ	92Υ
14.74 H	79.8 H	106.626 D	STABLE	64.053 H	58.51 D	3.54 H
€ 100.00%	€: 100.00%	€: 100.00%	100%	β-: 100.00%	β-: 100.00%	β-: 100.00%

⁸⁹Zr purification

- Purified by hydroxamate resin
 - Modified Accell Plus resin (Waters)
 - Weak cation exchange resin

Verel et al J Nuc Med 2003

⁸⁹Zr New Targets, Scale Up and Automated Separation

Dissolved in 4mL of heated 2M HCl Dissolution time: 15-30 minutes Yttrium eluted in 20mL of 2M HCl Zr-89 eluted in <500µL 1M Oxalic acid

Typical run:

2 hour bombardment, 40 uA, 13 MeV 30 mCi in hand

Imaging with Antibodies:

Specificity

Sensitivity

Why Antibodies?

- Antibodies (and/or fragments) are very selective targeting agents.
- A wide variety of antibody based therapeutics have been developed in the last 2 decades.
- Antibody imaging offers the potential of:
 - Stratifying patients that may benefit from antibody therapy
 - Monitoring the course of therapy
 - Paving the way for next generation targeted radiotherapeutics

Imaging of L-type amino acid transporter-1 (LAT1)

- A system L transporter
- Transmembrane glycoprotein that selectively transports large and neutral amino acids such as leucine, isoleucine, valine, phenylalanine, tyrosine, tryptophan, methionine and histidine
- Only amino acid transporter that plays a role in cell proliferation
- Increased expression and transport activity observed in many cancer cells

Masuko, T., Ohno, Y., Masuko, K., Yagi, H., Uejima, S., Takechi, M., and Hashimoto, Y. (2011) Cancer science 102, 25-35

LAT-1 Amino Acid Substrates

• Responsible for the transport of ¹⁸F labeled aromatic amino acids

[18F]-FDOPA 3,4-dihydroxy-6-18F-fluoro-L-phenylalanine

[18F]-FET O-(2-[18F]fluoroethyl)-L-tyrosine

[18F]-FMT (3-[18F] fluoro)-methyl-L-phenylalanine

- Substrates for system L transport
- Have shown promise as tumor imaging agents

LAT-1 Amino Acid Substrates

• One of the major limitation of ¹⁸F labeled system L substrates is the relatively low tumor to normal tissue ratios due to bidirectional transport

Τu

Lee, T.S., Ahn, S.H., Moon, B.S. et al Nucl. Med. Bio., 2009, 36(6), 681-686

Can the LAT-1 transporter be directly imaged?

- Use of anti-LAT-1 antibodies may allow for measuring of LAT1 protein expression profile in normal and cancerous cells
- Masuko et al. have developed three rat monoclonal antibodies against LAT-1, Ab2-LAT-1, Sol 22 and Sol 131
 Masuko et al. Cancer Sci. 2008 99, 1000-1007

THE UNIVERSITY OF ALABAMA AT BIRMINGHAM e that will change your world

⁸⁹Zr: Conjugation and Labeling

(a) mAb conjugation to DFO-Bz-NCS

(b) Radiolabeling of DFO-Bz-NCS-Trastuzumab

THE UNIVERSITY OF ALABAMA AT BIRMINGHAM

Ikotun et al. PLOS ONE 2013

Ikotun et al. PLOS ONE 2013

[¹⁸F]-FET Imaging

Ikotun et al. PLOS ONE 2013

Tumor

Imaging of LAT1

- Anti-LAT-1 antibodies can be radiolabeled with ⁸⁹Zr
- ⁸⁹Zr radiolabeled anti-LAT-1 antibody shows specific binding to LAT-1 transporter
- Improved tumor to non-target organ uptake is observed with antibody based PET agent compared to currently available radiolabeled amino acids
- Imaging with novel ¹⁸F amino acids may show provide complementary information

Human Epidermal Growth Factor Receptor 2 (HER2)

- Transmembrane receptor
- No known natural ligands
- Amplified in approximately 20 % of invasive breast cancers
- Associated with increased tumor aggressiveness, resistance to therapies, and increased mortality

Anti-HER2 Antibodies

Trastuzumab

- Binds to domain IV
- Suppresses HER2 signaling activity

Pertuzumab

- Binds to domain II
- Inhibit HER2 dimerization by sterically preventing HER2 pairing with other growth factor receptors

Marks tumor cells for immunological attack through antibody-dependent cell-mediated cytotoxicity

http://www.onclive.com/publications/contemporaryoncology/2014/February-2014/Antibody-Drug-Conjugates-and-T-DM1

⁸⁹Zr-DFO-Trastuzumab

Her2+

96 h

Chang et al, Pharmaceuticals, 2012

Her2-

⁸⁹Zr-DFO-Trastuzumab Imaging Metastasis

Bioluminescent Imaging

17=4.6255e

Axial

Chang et al, Pharmaceuticals, 2012

⁸⁹Zr-DFO-Trastuzumab Washington University Clinical Trial

Assessment of HER2 Receptors in Breast Carcinoma by Positron Emission Tomography (PET) Using ⁸⁹ Zr-Trastuzumab PI: Farrokh Dehdashti

Arms

Experimental: Cohort 1 ⁸⁹Zr-Trastuzumab Human Dosimetry and Safety

Assigned Interventions

Drug: ⁸⁹Zr-Trastuzumab Human Dosimetry and Safety PET Imaging following administration of ⁸⁹Zr labeled Trastuzumab for calculation of human dosimetry and overall safety Drug: HER2 Positive Lesion Detection and Safety Detection of HER2 Positive Breast Cancer with ⁸⁹Zr Labeled Trastuzumab and PET imaging

Experimental: Cohort 2: Lesion Detection and Safety HER2 Positive Lesion Detection and Safety

Drug: ⁸⁹Zr-Trastuzumab Human Dosimetry and Safety PET Imaging following administration of ⁸⁹Zr labeled Trastuzumab for calculation of human dosimetry and overall safety
Drug: HER2 Positive Lesion Detection and Safety Detection of HER2 Positive Breast Cancer with ⁸⁹Zr Labeled Trastuzumab and PET imaging

⁸⁹Zr-Trastuzumab Clinical Trial: Day 2

Lafo Imag

⁸⁹Zr-Trastuzumab Clinical Trial: Day 5

Metastatic Setting: ER+/PR-/HER2+ Metastatic Breast Cancer

Neoadjuvant setting: ER+/PR-/HER2+

Multicentric Primary Breast Cancers

⁸⁹Zr-Trastuzumab Future Directions (UAB)

• Soon to be starting a new trial investigating the ⁸⁹Zr-Trastuzumab uptake and correlations with response to targeted HER2 therapy.

- Perfluoroalkyl compounds are persistent environmental pollutants (POPs) with bioaccumulation potential, toxicity possibility in biological organics and have long range transport potential.
 - Very slow break down in the environment
 - High thermal stability
- Widely used to make everyday products more resistant to stains, grease and water, such as non stick cookware, stain resistance in carpets and furniture, waterproofing clothes and mattresses, some food packaging and firefighting materials.
- Fortunately, PFOS is no longer manufactured in the US and PFOA should be phased out soon, however there are many other derivatives that could still do harm.

- PFAS found in water supplies, from long term contamination from firefighting foam, fast food wrappers and other materials.
- Known to bioaccumulate but many long term health effects unknown.
- Environmental contamination from spills:

- Routes of bioaccumulation and biological kinetics?
- Radiotracers could be useful tools
- Goal: Radiolabel PFAS with ¹⁸F

nowledge that will change your world

Burkemper et al. Environ Sci Tech Lett 2017

¹⁸F separation

Drying Process

- Trap ¹⁸F on QMA cartridge
- Release with 2-3 mg K₂CO₃ in H₂O into 1 mL of MeCN + 4-5 mg K222
- Dry down in 110°C oil bath and gentle Ar flow
- Azeotropic distillation with 3 x 1 mL additions of MeCN
- Add compound in ~0.5 mL of desired solvent

Radiolabeling

 Heat reaction in oil bath at specified temperature for 10-20 min

Burkemper et al. Environ Sci Tech Lett 2017

Healthy mice were injected with 100 µCi of tracer in 100 µL of solution

Mice were humanely sacrificed at 4 h post injection (n = 4 per tracer)

Burkemper et al. Environ Sci Tech Lett 2017

- New tool to study biological distribution of PFAS.
- Could be used to study families of PFAS structures.
- Use in environmental remediation studies?

What's Next? Expanding the Toolbox.

Development of Novel Radionuclides Examples: ⁵²Mn

- PET analogue for Mn MRI agents.
- Biological roles in plants and animals
- Mechanism of Manganese toxicity (manganism)

⁵²Mn Characteristics

						Gamma
		Proc	Juction	Positron Emission		Radiation
		Most	Target	Weighted		
	Half-	Common	Natural	Average	Total	Gamma
	Life	Target	Abundance	Energy	Intensity	Factor
						(R·cm ² ·
				(keV)		mCi⁻¹⋅h⁻¹)
^{52g} Mn	5.6 d	⁵² Cr(<i>p</i> , <i>n</i>) (S)	83.8%	242	29.6%	18.4
¹²⁴	4.2 d	¹²⁴ Te(<i>p</i> , <i>n</i>) (S)	4.7%	820	22.7%	6.6
⁸⁹ Zr	3.3 d	$^{nat}Y(p,n)$ (S)	100.0%	396	22.7%	6.6
⁸⁶ Y	14.7 h	⁸⁶ Sr(<i>p</i> , <i>n</i>) (S)	9.9%	660	31.9%	18.9
⁶⁴ Cu	12.7 h	⁶⁴ Ni(<i>p</i> , <i>n</i>) (S)	0.9%	278	17.6%	1.1
¹⁸ F	110 m	¹⁸ O(<i>p</i> , <i>n</i>) (L)	0.2%	250	96.7%	5.7
⁶⁶ Ga	9.5 h	⁶⁶ Zn(<i>p</i> , <i>n</i>) (S)	69.2%	1750	57%	11.6
⁶⁸ Ga	68 m	⁶⁸ Ge (Gen)	-	830	88.9%	5.4
¹¹ C	20 m	¹⁴ N(<i>p</i> , <i>α</i>) (G)	99.6%	386	99.8%	5.9

Targets: (S)=solid; (L)=liquid; (G)=gas; (Gen)=generator.

Data in table take from or accessed via: BNL/NNDC; IAEA; Smith, D.S.; Stabin, M.G. Health Phys. 2012.

⁵²Mn Production (UAB)

- Produced via ⁵²Cr(p,n)⁵²Mn reaction
- Targetry using natural composition and enriched Cr electroplated targets

Molar ratio CrO₃:H₂SO₄

Conditions Coin: copper Rod: platinum Time: 24 h

Y OF BIRMINGHAM

⁵²Mn Targets, Bombardment and Purification

- Cross section and yield measurements using thin foils
- Separation via ion chromatography

Wooten et al. Appl Rad Isot 2015
⁵²Mn Characterization

Imaging characteristics and preliminary animal studies

Snowledge that will change your world

Wooten et al. PLoS ONE 2017

Other Isotopes?

MA AT BIRMINGHAN

ange your world

Production of Radionuclides by Heavy Ion Fragmentation

Beryllium Target

Incoming Beam

Assortment of isotopes formed from the break up of atoms in the incoming beam

nowledge that will change your world

Potential Isotopes of Interest

Isotope	Decay Mode	Half-life	Application
³² Si	β-, 221keV no γ	162y	Tracer; geology, botany
⁴⁴ Ti	ε, γ-78.3, 67.8keV	59.2y	Medicine, astrophysics, Nuclear Structure
⁴⁸ V	β+, 694keV γ-983.5, 1312.1keV	15.98d	Stockpile Stewardship, Medicine
⁶⁷ Cu	β-, 390, 480, 580keV γ-184.6keV	2.6d	Medicine
⁸⁵ Kr	β-, 687keV γ-514.0keV	10.76у	Astrophysics, Stockpile Stewardship
Eu*		24d-37y	Stockpile Stewardship
²¹¹ Rn	γ-674.1, 1363.0, 678.4keV α-5.784,5.851MeV	14.6h	Medicine
²²⁵ Ra	β-, 320keV γ-40.3keV	14.9d	Medicine, Electric Dipole Moment
²²⁵ Ac	α-5.829, 5.793, 5.731MeV	10.0d	Medicine

*A range of Eu isotopes are of interest, A~147 – 154.

National Superconducting Cyclotron Laboratory (NSCL)

Located at Michigan State University

Knowledge that will change your world

Upgrade of NSCL to FRIB

(Facility for Rare Isotope Beams)

ARSITY OF A AT BIRMINGHAM

ange your world

Schematic of Proposed Secondary Beam Separator and Beam Dump at FRIB

Why is Isotope Harvesting Important?

Preliminary experiments performed at the national superconducting cyclotron laboratory (NSCL)

- End station that serves as a mock beam dump
- Effectively collect isotopes to show that we can collect beam in our end station
- Chemistry!

Pen, A., Mastren, T., et al, NIM A, 2014

End Station Design (Hope College)

Knowledge that will change your world

Pen, A., et al, NIM A, 2014

⁷⁶Ge Beam Fragmentation Products without Wedge

1 IA 11A		2.6	5%	67	С		adia '	Tabla	of the	Elan							18 VIIIA 8A
Hydrogen 1.008	2 11A 2A	_	,,,	, 		en en	buic	able	orthe	e Cleii	ients	13 IIIA 3A	14 IVA 4A	15 VA 5A	16 VIA 6A	17 VIIA 7A	Helium 4.003
3 Li Lithium 6.941	4 Be Beryllium 9.012											5 B Boron 10.811	6 C Carbon 12.011	7 N Nitrogen 14.007	8 Oxygen 15.999	9 Fluorine 18.998	10 Ne 20.180
11 Na	12 Mg Magnesium	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8	9 VIII	10	11 IB	12 IIB	13 Aluminum	14 Si	15 P Phosphorus 30.974	16 S Sulfur 32.066	17 Cl Chlorine 35.453	18 Ar Argon 39.948
19 K Potassium 39.098	20 Ca calcium 40.078	21 Sc Scandium 44.956	22 Ti Titanium 47.88	23 V Vanadium 50.942	4 Cr 51.996	25 Mn Manganese 54.938	26 Fe Iron 55.933	27 Co Cobalt 58.933	28 Ni Nickel 58.693	29 Cu Copper 63.546	30 Zn 2inc 65.39	31 Ga Galliuri 69.732	32 Germanium 72.61	3 \S senic 4.922	34 Se selenium 78.09	35 Br Bromine 79.904	36 Kr Krypton 84.80
Rubidium 84.468	Strontium 87.62	Yttrium 88.906	10 Zr Zirconium 91.224	Niobium 92.906	Mo Iolybdenum 95.94	TC TC Technetium 98.907	Ruthenium 101.07	Rhodium 102.906	Palladium 106.42	Ag Silver 107.868	Cadmium 112.411	10 In Indium 114.818	Tin 118.71	Sb Antimony 121.760	52 Te Tellurium 127.6	53 Iodine 126.904	54 Xe Xenon 131.29
55 Cs Cesium 132.905	56 Ba Barium 137.327	57-71	72 Hf Hafnium 178.49	73 Ta Tantalum 180.948	4 W Tungsten 183.85	75 Re Rhenium 186.207	76 Os ^{0smium} 190.23	77 Ir Iridium 192.22	78 Pt Platinum 195.08	79 Au Gold 196.967	80 Hg Mercury 200.59	81 TI Thallium 204.383	82 Pb Lead 207.2	83 Bi Bismuth 208.980	Polonium [208.982]	85 At Astatine 209.987	86 Rn Radon 222.018
87 Fr Francium 223.020	88 Ra Radium 226.025	89-103	104 Rf Rutherfordium [261]	105 Db Dubnium [262]	06 Sg eaborgium [266]	107 Bh Bohrium [264]	108 Hs Hassium [269]	109 Mt Meitnerium [268]	110 Ds Darmstadtiun [269]	111 Rg Roentgenium [272]	112 Cn Copernicium [277]	113 Uut Ununtrium unknown	114 Fl Flerovium [289]	115 Uununpentium unknown	116 Lv Livermorium [298]	117 Uus Ununseptium unknown	118 Uuo ^{Ununoctium} unknown
	Lanth Ser	anide ies Lani	_a C	e Pi Praseody	• N	Id Prom	m Sa	Sm E	Eu Gade	ad T	bium ⁶⁶ Dysp	by Fosium		Er Th	m Y	'b ⁷¹ bium Lut	.U
	Acti Ser	nide ies	8.906 140 90 1 90 T Tho 232	140.90 91 Protactir 231.02	144 92 144 92 144 92 144 92 144 92 144 92 144 92 144 92 144 92 144 92 144 92 144 92 144 92 144 92 144 92 144 92 144 92	4.24 144 93 93 Nept 1.029 23	4.913 1 94 10 10 10 10 10 10 10 10 10 10 10 10 10	50.36 15 Pu tonium 44.064 243	1.966 15 96 96 0 0 0 0 0 0 0 24	7.25 158 97 Fm ritum 7.070 247	3.925 16 98 98 Califi 251	2.50 16 99 Cf Einst 1.080 [2	4.930 16 ES teinium 254] Fer 257	7.26 168 m mium 7.095 Mend 25	8.934 17 102 102 102 Nob 58.1 259	3.04 174 103 103 103 Lawn 103 103 103 103 103 103 103 103	_ 1 enclum (62]

© 2013 Todd Helmenstine sciencenotes.org

showledge that will change your world

Separation Schematic

Mastren et al, Scientific Reports, 2014

nowledge that will change your world

HPGe Spectra of Different Points Throughout the Separation

Mastren et al, Scientific Reports, 2014

Separation Results

Contaminating Element	Identifying Isotopes	Initial Contaminant to ⁶⁷ Cu Ratio	Final Contaminant to ⁶⁷ Cu Ratio
Ge	⁶⁹ Ge	30	0
As	⁷⁴ As	24	0
Ga	⁷² Ga	5.48	0.1096
Zn	^{69m} Zn	5.48	0
Ni	⁵⁷ Ni	3.55	0
Fe	⁵⁹ Fe	2.58	0
Cu	⁶⁷ Cu	1.87	1.87
Cr	⁵¹ Cr	1.13	0
К	⁴³ K	0.81	0
Са	⁴⁷ Ca	0.81	0
V	⁴⁸ V	0.42	0
Sc	⁴⁶ Sc, ⁴⁷ Sc, ⁴⁸ Sc	0.39	0.0078
Mn	⁵² Mn	0.32	0
Se	⁷⁵ Se	0.13	0
Со	⁵⁸ Co	0.06	0.018

74 ± 4% of the ⁶⁷Cu was obtained in the 2.5M fractions with a radiochemical purity of >99%. The other contaminants present in the ⁶⁷Cu fractions measured by HPGe for 12 hours and decay corrected to end of bombardment were ⁵⁸Co (0.07%), ⁴⁸Sc (0.06%), ⁴⁷Sc (0.06%), and ⁷²Ga (0.30%).

Biodistribution of ⁶⁷Cu-NOTA-Bz-Panitumumab

Mastren et al, Scientific Reports, 2014

Knowledge that will change your world

Next Up: ⁴⁸V

 \diamond t_{1/2} = 15.97 d, β^+_{avg} = 290 keV (49.9%)

- Goal: Harvest bulk quantity of ⁴⁸V (mg) from the beam dump at FRIB allowing for production of a ⁴⁸V target for an in-beam measurement of the ⁴⁸V(n,p)⁴⁸Ti reaction³
- Alternate production routes

Accelerator: ^{nat}Ti(d,xn)⁴⁸V, ^{nat}Ti(p,n)⁴⁸V¹

- Nuclear data from such a measurement will help better our understanding of nuclear reaction networks important to the mission of the Stockpile Stewardship Program⁴
- ⁴⁸V will be the fourth isotope harvested in a series of a proof-of-principle experiments (including ²⁴Na, ⁶⁷Cu, and ⁸⁵Kr)

THE UNIVERSITY OF ALABAMA AT BIRMINGHAM

¹Cohen, I. M.; Siri, S.; Iljadica, M. C. F. *Adv. Chem. Engineer. Sci.* **2014**, *4*, 300-307 ²Siri, S.; Cohen, I. M. *Radiochim. Acta*. **2009**. 97, 543–546 ³Mark Stoyer, personal communication, May **2016** ⁴NSAC Rare-Isotope Beam (RIB) Task Force Report. **2007**.

⁴⁸V - Modeling

- ♦ ⁵⁸Ni (160 MeV/u) on ⁹Be (0.5 mm) stopped in a 100 mL water cell (~300 isotopes)
- Fragmentation products corrected for decay and ingrowth of daughters at 72 h after end of beam (~40 isotopes)

Со	1.03E+12	36.5	+2, +3	CI	4.42E+10	1.6	-1, +1, +3-7
Fe	4.47E+11	15.8	+2, +3	S	4.65E+10	1.6	-2, +2, +4, +6
Cr	2.41E+11	8.5	+2, +3, +6	Si	3.18E+10	1.1	-4, +4
Mn	2.62E+11	8.0	+2-4, +5, +6	Р	2.40E+10	0.8	-3, +3, +5
V	1.55E+11	5.5	+2-4, +5	AI	1.33E+10	0.5	+3
Ca	1.97E+11	6.9	+2	Mg	1.36E+10	0.5	+2
Ti	1.52E+11	5.4	+2, +3, +4	Na	7.83E+09	0.3	+1
К	7.16E+10	2.5	+1	С	1.37E+09	0.04	-4, +2, +4
Sc	5.10E+10	1.8	+3	Ni	4.84E+07	0.002	+2

ALABAMA AT BIRMINGHAM

Knowledge that will change your world

¹Predicted fragmentation products simulated using LISE++ (http://lise.nscl.msu.edu/)

⁴⁸V – Separation Chemistry

100 mL	Separation Chemistry
dH ₂ O	 Isotopic "Zoo" Selectively target vanadium Adjust sample to 0.01 M H₂SO₄ Mixture of di-, tri-, and tetravalent
	cations

nowledge that will change your world

⁴⁸V – Separation Chemistry

- At H⁺ concentrations above 0.01 M, vanadium(V) in low concentrations exists only as the VO₂⁺ cation¹
- \diamond The VO₂⁺ cation reacted with H₂O₂ forms a mono- and diperoxoyvanadate shown below

 $VO_2^+ + H_2O_2 \iff V(O_2)O^+ + H_2O$ (K₁) $VO_3^+ + 2H_2O_2 \iff VO_5^- + 2H_2O$ (K₂)

 \diamond Equilibrium constants have been reported in the literature (*I* = 1.0 M, t = 25.0°C)

		Ohranovic, M. &
Secco, F. (1979) ²	Dean, G. A. (1961) ³	Wilkins, R. G. (1967) ⁴
K_1 = 3.7 \pm 0.4 \times 10^4 M^{1}	$K^{}_1$ = 8.2 $\pm ~0.0 \times 10^4 ~M^{1}$	$K^{}_1$ = 3.5 $\pm ~0.0 \times 10^4 ~M^{1}$
$K_2 = 0.6 \pm 0.1 M$	$K_2 = 2.2 \pm 0.2 M$	$K_2 = 1.3 \pm 0.0 M$

¹Fritz, S. J.; Abbink, J. E. *Anal. Chem.* **1962**, 34, 9 ²Secco, F. *Inorganic Chemistry.* **1980**, 19, pp 2722-2726 ³Dean, G. A. *Can. J. Chem.* **1961**, 39, pp. 1174-1183 ⁴Orhanovic, M.; Wilkins, R. G. *J. Am. Chem. Soc.* **1967**, 89(2), pp 278-282

⁴⁸V – Cyclotron Production

- ♦ 127 micron ^{nat}Ti foil target (0.005")
- dE/dx = 2.3 MeV (SRIM/TRIM 2013)
- 361-381 mb (IAEA recommended data set, CSISRS)

Target

Reflux Digestion

Knowledge that will change your world

¹Khandaker, M. U. et al. Appl. Radiat. Isot. 2009, 67, 1348-1354 ²Wooten, A. L. et al. Appl. Radiat. Isot. 2015, 96, pp. 154-161

⁴⁸V – Separation Chemistry

Cation exchange method adapted from Fritz & Abbink¹

¹Fritz, S. J.; Abbink, J. E. Anal. Chem. **1962**, 34, 9

nowledge that will change your world

⁴⁸V – Separation Chemistry (cold)

R	ecovery	
Element	Mass	%
Al	189.7	95
Ca	198.1	99
Со	194.9	97
Cr	188.2	94
Fe	197.6	99
K	207.7	104
Mg	220.1	110
Mn	200.2	100
Na	217.3	109
Sc	89.3	45
Si	13.3	7
Ti	214.4	107
V	205.4	103
^a Initial Mass	$s = 200 \ \mu g$	

Knowledge that will change your world

⁴⁸V – Separation Chemistry (tracer)

Percent Recovery for ⁴⁸ V (n=5)								
Column	1	2	3	4	5			
Initial (μCi)	6	6	18	18	19			
Final (μCi)	6	6	19	20	18			
Recovery (%)	100	100	106	111	95			

nowledge that will change your world

⁴⁸V – ⁵⁸Ni Fragmentation run

♦ Identified ⁴⁸V, ⁴⁴Sc, ⁵²Mn,

Separation chemistry and many gamma spectra under analysis

Summary

- Radioisotopes continue to play an important role in medicine.
- Complementary techniques can produce a wide variety of half-lives, imaging characteristics and chemistries leading to a unique toolbox for the development of new nuclear medicine imaging and therapeutic agents.
- Development and increased use of these agents will require collaborations between chemists, physicists, biologists and physicians.

Knowledge that will change your world

Acknowledgments and Funding

Collaborators:

Farrokh Dehdashti, Adel Tabchy, Ron Bose and Reiko Oyama, WUSM

Graham Peaslee (Notre Dame), Dave Morrissey, Greg Severin (MSU)

Financial Support from UAB, Department of Energy and the NIH

Email: lapi@uab.edu

Lapi Lab members and Cyclotron Facility Group, UAB

Denise Jeffers, Harvey Doane, Jason Rider, Brian Brooks, Jennifer Burkemper, Brian Wright, Tolu Aweda, Adriana Massicano, Lauren Radford, Stacy Queern, Shaun Loveless, Sam Ferran, Ivis Chaple, Nick Clanton, Ian Super, Retta El Sayad, Bryant Crenshaw, Jinda Fan, Rebecca Beacham, Ashlea Franco