

Nuclear Physics at Jefferson Lab - III

Thia Keppel National Nuclear Physics Summer School

University of Colorado at Boulder July 2017

Lecture Scheme

DAYS 1 - 2

- History and Basics of Electron Scattering
 - Form Factors
 - Structure Functions
 - Parton Distribution Functions
- ✓ Jefferson Lab
- 1D Nucleon Structure

DAYS 2 - 3

- Nucleons in the Nuclear Medium
- 3D Nucleon Structure
- Other topics
 - Polarization
 - Meson Photoproduction
 - Parity Violating Electron Scattering

Electron Scattering – historical example

-J<mark>S</mark>A

Jefferson Lab

The Classic A(e,e'p)A-1 Problem

Independent-Particle Shell-Model is based upon the assumption that each nucleon moves

moves independently in an average potential (mean field) induced by the surrounding nucleons

The (e,e'p) data for knockout of valence and deeply bound orbits in nuclei gives spectroscopic factors that are 60 – 70% of the mean field prediction.

Possible Answer: *Short-Range Correlations*

Nucleons are made up of Quarks, so does NOT violate Pauli exclusion principle

If Correct Raises More Questions

- What fraction of the momentum distribution is due to 2N-SRC?
- What is the relative momentum between the nucleons in the pair?
- What is the ratio of pp to pn pairs?
- Are these nucleons different from free nucleons (e.g. size)?

Benhar et al., Phys. Lett. B 177 (1986) 135.

Coincidence (e,e'pN) Measurement

Study nucleon pairs and the fraction that contribute to momentum tail.

$$p_{m} = E_{e} - E_{e'} - p = q - p$$

$$E_{m} = \omega - T_{p} - T_{A-1} = E_{sep} + E_{exc}$$

$$F_{m} = \omega - T_{p} - T_{A-1} = E_{sep} + E_{exc}$$

x > 1, $Q^2 = 1.5$ [GeV/c]² and missing momentum of 500 MeV/c

BigBite and Neutron Detector in Hall A

First step along the way to many successful high luminosity, large acceptance measurements.

High p_m (e,e'p) events have recoiling neutrons.

R. Subedi et al., Science 320 (2008) 1476.

2nd Generation ⁴He(e,e'pN) Results

I. Korover et al., Phys. Rev. Lett. 113 (2014) 022501.

Proton-Neutron Pairing In All Nuclei

Or Hen et al. (Jefferson Lab CLAS Collaboration) Science 346 (2014) 614.

Precision (e,e') x>1 Cross Sections

N. Fomin et al., Phys. Rev. Lett. 105 (2010) 212502 – JLab Hall C

- Electron-nucleus scattering allows for F₂ structure functions above x = 1
- Nucleons are close together and interact via the (poorly-constrained) repulsive core of the N–N interaction, yielding high momentum nucleons.
- Deuteron limited to x < 2, etc.
- Deep inelastic probe of very high momentum "superfast" quarks

two nucleons

Q² dependence described by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations

Increasing Q²:

- High x decrease
- Low x increase

Allows extraction of **Parton Distribution** Functions $f(x,Q^2)$ through Q² evolution From high x, low Q to high Q, low x

Precision (e,e') x>1 Cross Section Ratios

N. Fomin et al., Phys. Rev. Lett. 108 (2012) 092502.

The Deep Inelastic EMC Effect

- The EMC effect is the observation that the ratio of nuclear DIS cross sections to deuterium is not one
 - EMC paper: J.J. Aubert et al.
 PLB 123 (1983) 275
 - Simple Parton Counting Expects One
 - <u>MANY Explanations, multiple</u>
 <u>experiments</u>
- Behavior
 - Q²-independent
 - Universal x-dependence (shape)
 - Magnitude varies with A a density effect?....

Jefferson Lab EMC Effect Data

J. Seely et al., Phys, Rev. Lett. 103 (2009) 202301.

X

Jefferson Lab EMC Effect Data

J. Seely et al., Phys, Rev. Lett. 103 (2009) 202301.

- Plot shows slope of ratio σ_A/σ_D at EMC region.
- EMC effect correlated with **local density** not average density.

Holistic View of inclusive EMC & SRC Data

S. Malace, D. Gaskell, D.H., I. Cloet, Int. J. Mod. Phys. E 23 (2014) 1430013

- Scaling plateaus are likely due to proton-nucleon local density correlations
- So could the EMC slopes (x_B<0.7) and SRC plateaus (x_B>1.5) correlated?!

x>1 Ratios and EMC Slope Correlation

L. Weinstein, E. Piasetzky, DH, J. Gomez, O. Hen, and R. Shneor, Phys. Rev. Lett. 106 (2011) 052301.

Origin of the EMC effect? Not a smoking gun, but highly suggestive....

EMC. x>1 experiments to run in Jlab Hall C this Fall!

Hmmm... nuclear medium modifications are interesting...

But, let's check out polarized partons....

Collinear Parton Distribution Functions

In DIS nucleon structure is described by three collinear PDFs:

Momentum distribution – $q(x, Q^2)$

Helicity distribution $- \Delta q(x, Q^2)$

Transversity distribution - $h(x, Q^2)$

• The helicity dependent parton distributions ("spin-dependent PDFs") describe the number density of partons with given longitudinal momentum x and given polarization in a hadron polarized longitudinally with respect to its motion.

• The transverse momentum distributions ("TMDs") describe the number density of partons with given transverse momentum x in a hadron. *We'll come back to this....*

Polarized DIS

- Consider the case when the beam electron and target nucleon are both polarized along the scattering axis....
- Helicity conservation the virtual γ inherits some of the incident lepton helicity
- The electromagnetic interaction will conserve helicity. So...
- A + (-) helicity quark can only absorb a + (-) helicity photon.
- Study the difference under reversal of electron/photon helicity (or equivalently reversing the target spin)....
- Determine the probability that the struck quark has the same helicity as the incident lepton for a fixed spin orientation of the proton.

23

The Polarized Structure Functions

Polarized Parton Distributions

- Mesurement of Γ₁^p, Γ₁ⁿ
- Constraint based on neutron and hyperon beta decay lifetimes
- Assumption of SU(3) flavor symmetry
- Global fit with DGLAP Q² evolution

ŏ. ∎Ģ≣

0.02

Only small fraction of the proton spin is carried by the quarks & antiquarks!!

25

Gluon Helicity

12 GeV Era Polarized Structure Functions

REQUIRES:

1.2

1

0.8

0.4

0.2

0

0

 $\mathbf{\tilde{A}}^{-0.6}$

- High beam polarization
- High electron current
- High target polarization

 $Q^2 = 1 - 2 \text{ GeV}^2$

Q² = 2-5 GeV²
 Q² = 5-9 GeV²
 Q² > 9 GeV²

0.2

0.4

Х

0.6

• Large solid angle spectromete

(from A_1^{3He}) HMS+SHMS, DIS, 636 hours HMS+SHMS, RES, 48 hours SLAC E142 0 SLAC E154 HERMES ٥ JLab Hall A E99117 ★ 0.5 pQCD SU(6). 0 0.25 0.5 0.75 0 Х

Hall C: A₁ⁿ

Hall B: A₁^p

(and A_1^d)

0.8

12 GeV Era Polarized PDFs

 $\mathbf{28}$

The Incomplete Nucleon: Spin Puzzle

<u>Note:</u>

The constituent quarks considered in the quark models of the nucleon are massive ($\sim M_P/3$) objects with the same spin, charge, and magnetic properties of the massless objects that we observe in deep inelastic scattering. While these quark model objects might be related to the degrees of freedom observed in deep inelastic scattering, they are not identical and this confuses the "proton spin crisis".

The Incomplete Nucleon: Spin Puzzle

- Proton has spin-1/2
- Proton is a composite system consisting of spin-1/2 quarks and spin-1 gluons

This implies that the sum of angular momentum of quarks and
gluons together must amount to 1/2. Can be due to:
Quark spinQuark spinQuark orbital momentum
Gluon spinGluon spinGluon orbital momentum

Classical: ~ r × p

Needs a cross-product or something three-dimensional....

New Observable Reveals Interesting Behavior of Quarks

Also 1st measurements of ³He (neutron) single-spin asymmetries X. Qian *et al.*, PRL 107, 072003 (2011)

9 June 1975

PHYSICS LETTERS

Volume 57B, number 1

SPIN EFFECTS IN THE INCLUSIVE REACTIONS $\pi^{\pm} + p(\uparrow) \rightarrow \pi^{\pm} + ANYTHING AT 8 \text{ GeV}/c$

L. DICK, A. GONIDEC, A. GSPONER and M. WERLEN CERN, Geneva, Switzerland

Transverse SSA

C. CAVERZASIO, K. KURODA, A. MICHALOWICZ an IPN, Orsay, France

and

D. ASCHMAN, K. GREEN, P. PHIZACKLEA and G. Oxford University, Oxford, England

The asymmetry in inclusive reactions of the type $a + p(\dagger) \rightarrow a + anything at 8$ measured at the CERN Proton Synchrotron using a polarized proton target. In th range of p_T (0.17 $\leq p_T \leq 0.36$) GeV/c the results indicate i) an asymmetry for x symmetric for the π^+ and π^- reactions; ii) an asymmetry compatible with zero fo

Phys. Lett. B 57, 93 (1975)

Fig. 3. Asymmetry data from this experiment. (•): $\pi^+ p \rightarrow \pi^+$; (•): $\pi^- p \rightarrow \pi^-$; (•) and (•) "elastic points" in π^+ , π^- .

Jefferson Lab

Transverse SSA in Proton-Proton Reactions

$$A_N = \frac{1}{P_{\text{beam}}} \frac{N_{\text{left}}^{\pi} - N_{\text{right}}^{\pi}}{N_{\text{left}}^{\pi} + N_{\text{right}}^{\pi}}$$

In collinear picture, the QCD predict small SSAs with transversely polarized protons colliding at high energies $A_N\sim \alpha_s m_q/P_{h\perp}$

C. Aidala et al., Rev. Mod. Phys. 85, 655

New Observable Reveals Interesting Behavior of Quarks

Also 1st measurements of ³He (neutron) single-spin asymmetries X. Qian *et al.*, PRL 107, 072003 (2011)

- transverse to neutron spin direction Indicative of quark orbital motion
- Foundation for future mapping in four kinematic dimensions (x, Q^2 , z, p_T) of transverse-momentum dependent parton distributions

What? Multidimensional parton distributions? Let's check it out....

- In general, parton distributions are 6 dimensional (*Wigner distributions*)
- 3D structure = GPDs in impact parameter space
- 3 dim. in coordinate space (GPDs) 3 dim. in momentum space (TMDs)
- X. Ji, PRL 91 (03)
- Collins, Rogers, Stasto, PRD77 (08)

New Paradigm for Nucleon Structure

36

Jefferson Lab

Nucleon Structure: the 3D World

Generalized Parton Distributions: form factors of only those quarks in the nucleon carrying a certain fixed momentum fraction x

Deeply Virtual Compton Scattering (DVCS):

 \rightarrow GPDs -- amplitude for "kicking out" a parton of the fast moving nucleon by the virtual photon and "putting it back" with a different momentum after radiating a real photon

 \rightarrow 4 GPDs defined through matrix elements of quark and gluon operators:

 $H(x,\xi,t) \quad E(x,\xi,t) \quad \widetilde{H}(x,\xi,t) \quad \widetilde{E}(x,\xi,t)$

→ Pauli, Dirac form factors lowest x-moments of H and E: $F_1 = \int dx H(x,\xi,t) F_2 = \int dx E(x,\xi,t)$

→ In the limit of $\mathbf{p} = \mathbf{p}'$ H become the usual PDF: $H_q(x, \xi = 0, t = 0) = q(x) = \frac{1}{2} (\mathbf{q} \uparrow (\mathbf{x}) + \mathbf{q} \downarrow (\mathbf{x}))$ $\widetilde{H}_q(x, \xi = 0, t = 0) = \Delta q(x) = \frac{1}{2} (\mathbf{q} \uparrow (\mathbf{x}) - \mathbf{q} \downarrow (\mathbf{x}))$

Hard Exclusive Processes \rightarrow GPDs

Goal 1: Transverse Imaging of Nucleon

Goal 2: Orbital Angular Momentum

Ji's Sum Rule for $J^q = \frac{1}{2}\Delta\Sigma + L^q$

$$J^{q} = \frac{1}{2} \int_{-1}^{1} x \, dx \left[H^{q}(x,\xi,t=0) + E^{q}(x,\xi,t=0) \right]$$

The proton's transverse profile as function of the impact parameter b

CLAS12 with help from Halls A & C

DVCS-I and G_M^p: Concurrent Experiments in Hall A at 11 GeV

E12-06-114 DVCS/Hall A Experiment at 11 GeV

High impact experiment for nucleon 3D imaging program

- High precision scaling tests of the DVCS cross section at constant x_B
- CEBAF12 will allow to explore for the first time the high x_B region

Excellent coincident time resolution: 250 MHz beam structure

Analysis path:

- Jun'17: Report at JLab Summer Meeting.
- Jan'18: Preliminary results on π^0 at $x_B = 0.36$
- Apr'18: Preliminary results on DVCS
- Jul'18 : Short paper submitted to PRL on π^0
- Jan'19: Letter to PRL on DVCS
- Jul'19: Long paper to PRC (DVCS & pi0)

Transverse Momentum Structure of Nucleon – TMDs

program with π/K to access quark TMDs

TMDs Accessible through Semi-Inclusive Physics

Features of 3D Distributions/TMDs

ENERGY

Science

 $\sigma = \sum e_q^2 f(x) \otimes D(z)$ $f^{a}(x, k_{T}^{2}; Q^{2})$

- transverse position and momentum of partons are correlated with the spin orientations of the parent hadron and the spin of the parton itself
- transverse position and momentum of partons depend on their flavor
- transverse position and momentum of partons are correlated with their longitudinal momentum
- spin and momentum of struck quarks are correlated with remnant
- quark-gluon interaction play a crucial role in kinematical distributions of final state hadrons, both in semi-inclusive and exclusive processes

Together stronger: SIDIS Studies with 12 GeV

 CLAS12 in Hall B General survey, medium lumi

SHMS, HMS, NPS in Hall C

L-T studies, precise $\pi^+/\pi^-/\pi^0$ ratios

- SBS in Hall A High x, High Q^2 , 2-3D
- SOLID in Hall A

U.S. DEPARTMENT OF Office of Science

High lumi and acceptance – 4D

Hall C SIDIS Program (typ. x/Q² ~ constant)

HMS + SHMS (or NPS) Accessible Phase Space for SIDIS; w. typical z range 0.3-0.65

Jefferson Lab

SIDIS π/K on unpolarized protons/deuterons

CLAS12: K_T Helicity Dependence

- Higher probability to find a quark antialigned with proton spin at large k_T
- Important to have q⁺ and q⁻ k_T dependent distribution separately
- q⁻ sensitive to orbital motion: $q_{L=1}^{-} \sim (1-x)^{5} log^{2}(1-x)$

- Double spin asymmetries from CLAS@JLab consistent with wider k_T distributions for f₁ than for g₁
- Wider range in P_T from CLAS12 is crucial !

Measurements of the P_T -dependence of $A_{LL} (\propto g_1/f_1)$ provide access to transverse momentum distributions of quarks antialigned with the proton spin.

H. Avakian et al. PRL 99 (2007) 082001

Transversity with CLAS12

U.S. DEPARTMENT OF Office of Science

Spin2014, October 23 2014

Jefferson Lab

TMD Program in Hall A with SoLID & SBS

(match large acceptance devices at high luminosity to anticipated polarized 3He target performance)

Office of

Science

ENERGY

SoLID projection extraction by A. Prokudin using **only** statistical errors and based on:

- a set of data with a limited range of x values
- the assumption of a negligible contribution from sea quarks
- assumption on Q² evolution
- model dependent assumptions on the shape of underlying TMD distributions

Momentum Tomography with TMDs

Sivers function for d-quarks extracted from model simulations with a transverse polarized ³He target.

• Requires global fitting effort

U.S. DEPARTMENT OF Office of Science

Access to orbital angular momentum

d-quark momentum tomography for Sivers function. The d-quark momentum density shows a distortion and shift in $\mathbf{k}_{\mathbf{x}}$. A nonzero $\delta \mathbf{k}_{\mathbf{x}}$ value requires a nonzero orbital angular momentum.

Much Data = Parton Distributions Functions

12 GeV (GPD/TMD) Scientific Capabilities

Hall B – understanding nucleon structure via generalized parton distributions

TMDs and GPDs comprehensive study

Hall A – polarized 3He, future new experiments (e.g., SBS, MOLLER and SoLID)

ENERGY Science

Ultimate TMD statistical precision in valence region

Hall C – precision determination of valence quark properties in nucleons/nuclei

3D Mapping of the Nucleon

Jefferson Lab

Numerous 12 GeV Scientific Capabilities - many undiscussed

Hall B – understanding nucleon structure via generalized parton distributions

Hall D - exploring origin of confinement by studying exotic mesons

Hall A - form factors, future new experiments (e.g., SoLID and MOLLER)

Hall C – precision determination of valence quark properties in nucleons/nuclei

Hall D: Gluonic Excitations and the Mechanism for Confinement

QCD predicts a rich spectrum of as yet to be discovered gluonic excitations - whose experimental verification is crucial for our understanding of QCD in the confinement regime.

With the upgraded CEBAF, a linearly polarized photon beam, and the **GlueX detector**, Jefferson Lab will be <u>uniquely poised</u> to: -

discover these states

γ

beam

- map out their spectrum
- measure their properties

Excited Glue

Х

12 GeV electrons

States with Exotic

Parity Violation Program at JLab

polarization

- Strangeness Form Factors (complete)
 HAPPEX (Hall A)
 G0 (Hall C)
 Luminosity,
- PREX neutron skin

first PREX (²⁰⁸Pb) experiment completed PREX-II and CREX (⁴⁸Ca) preparation ongoing

- Qweak (to be released) proton weak charge lepto-quark couplings
- MOLLER

electron weak charge purely leptonic

SoLID

lepto-quark couplings lepto-phobic Z' d/u, higher-twist

New Opportunity: Searches for A' at Jefferson Lab

- BNL "g-2" expt: Δa_μ(expt-thy) = (295±88) x 10⁻¹¹ (3.4 σ)
- No evidence for SUSY at LHC (yet)
- Another solution: A', a massive neutral vector boson

also useful for dark matter models

- 3 Jefferson Lab proposals:
 - APEX test run (Hall A) published
 - HPS test run (Hall B) complete HPS engineering/1st physics run – complete
 - DarkLight test run (FEL) complete

Questions?....