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* Lecture 2

* Neutron beta decay ... continued

- Parity as a tool to probe matter: PVES

* Highly sensitive low-energy probes of New Physics

- Start ... CPV and Electric Dipole Moments
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» Charged Lepton Flavor Violation
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http://inspirehep.net/record/1608886

The UCN-Tau Annimation
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Why else is neutron lifetime important?
Big-Bang Nucleosynthesis (brief)

Time Since Big Bang Temp
3 min 1°K Nucleosynthesis Begins

Nuclei are now stable against photo disassociation e.g.

n+p—>d+y

and nuclei are quickly formed. The Universe is now
~8/ 7% protons & 137% neutrons

33 min 10°K Nucleosynthesis Ends

Neutrons are all "used up” making *He and the Universe is now

has ~80% H and ~207% He.

4
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Why else is neutron lifetime important?
Big-Bang Nucleosynthesis (brief)

Some of the Reactions in Big Bang Nucleosynthesis

17 _I"Ilru

n—>pt+e+v m N =Nge
p+n— d+y m Disassociation Energy 2. 2MeV

3 q
p+ D—"He +y Cosmic He/H Ratio Depends on 3 quantities:

3 1. Cooling rate of the Universe
D+D—"He+n 2. Rate at which nuclear interactions occur
D+D >T+np 3. Rate at which neutrons are decaying

« THE NEUTRON LIFETIME

Etc.

Y1 =0.264+0.023logn,, + 0.018(7,—10.28)

4 n

Cosmic He Cosmic n Lifetime
abundance baryon
density 5

Ereene NNPSS July 2007



The neutron asymmetry ...
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We’ll concentrate on the 2 recent
experiment that measured ‘big A’

But, note, there is a new major effort being launched nowish
to measure “little a”’ and “little b” ... called Nab
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Modern Asymmetry Experiments
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2013 Update on beta decay asymmetry
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One more thing: Superallowed 0* = 0* Beta Decays

K
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The special case of a transition between isobaric
analogue states, where the structure of the final
state is very similar to the structure of the initial
state, is referred to as "superallowed" for beta
decay, and proceeds very quickly.
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_ K
ft = ( Gf% T>?

\/ ~
f= statistical rate function: f(Z, Q..)

t = partial half-life: f (t,.,, BR)

G, = vector coupling constant
<T > = Fermi matrix element

Forbiddenness AJ | Am
Superallowed 0 no
Allowed 0, 1 no
First forbidden 0,1,2 yes

Second forbidden 1,2, 3 | no




One more thing: Superallowed 0* = 0* Beta Decays
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Tests of CKM Unitarity via nuclear eta,
muon and Kaon decays at the 0.05% level

+ Test CVC from many transitions o
& validate correction terms G, constant to + 0.013%
« Test for Scalar current limit, Csfcu = 0.0014 (13)
Then, IF CVC verified:
VY o Precise Vg V2 = GG = 0.94900 + 0.00042
b Vg Ve Ve b
- X

* Test CKMunitarity | 2 4 v? + V7, = 0.99992 + 0.00048

J. Hardy



2017 Picture: Lifetime, Correlations, V 4 all painting a very
consistent picture now IF we use the “precision” results only
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How does this story end?

| draw the conclusion that the SM is pretty
well tested and confirmed here, IF, the
Beam lifetime experiments were wrong.

« Community of experts needs to resolve
this before drawing exotic physics
conclusions

* The Lifetime is important on its own



Topic 4

arity as a Tool to Probe
e Nucleon and to searc

for New Physics

Contents lists available at SciVerse ScienceDirect
Progress in Particle and Nuclear Physic
- ~ b L’

journal homepage: www.elsevier.com/locate/ppnp

Review
The weak neutral current \!j(;m,,y_a,-.
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The basic idea is this ...

0 Compare elastic scattering of Left and Right handed
electrons on some target ...
o Target could be a proton (e, p), or a deuteron (e, d), etc.
o0 Target could even be an electron (e,e) 2 “Moller” scattering

N e e e

Photon has no

handedness preference But Zboson does

Interference of processes a and b causes a tiny difference in cross
sections vs incoming polarized electron direction

Gi-
: L/ =*4 P~ '4
Apy G\ ¥0, 10

Image: Physics today



In elastic electron-proton scattering

(diverse physics probed depending on kinematics)
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Proportional tov

the Weak Charge Proportional to the
neutral weak axial
Our focus Proportional to the hadronic form factor and
structure, including strange- contains
quark form factors contributions from
the anapole
moment

This was a major program for

years at JLab and elsewhere, 5 ( 2 )

looking for strange quark E Q

contributions to the proton’s 5 2
Gy (O7)

electric and magnetic properties




Qwea k at J Lab Quartz Bar Detectors
Production Mode: B-fp_ld symmetry

180 pA, Integrating  7,.0idal
Spectrometer

35 cm LH, target

E=1.16 GeV .
[=180 pA i \
P =188% Aﬂ:eptanc?—defmmg High-density concrete
Pb collimator . 14:
shielding wall

Gr

R ey
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Parity-Violating Asymmetry Extrapolated to Q<=0
(Young, Carlini, Thomas & Roche, PRL 99, 122003 (2007) )

AER - Az/(—GFQE/'i‘?T{I\/E) = tpueak + QEB(QE)

1o bound from global fit to all
PVES data (as/of 2007)

:}DG i SAMPLE

PDG
1(: 1 HAPPEX
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0 005 0.1 0.15 02 025 023
0* (GeV?)




The canonical display of the running of
sin?0,, vs 4-momentum transfer Q

New physics sensitivity
is deviation from this
expected running curve.

The effective weak mixing angle is the fundamental parameter of parity

EFFECTIVE SIN® 6,(Q)
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violation involving the Z boson

It is expected to vary (‘run’) depending on the energy scale (E) probed by a

given experiment.

Andrzej Czarnecki and William J. Marciano, Nature



Let’s start with some interest at the high energieF.
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SLAC and CERN are 3 ¢ apart! Lots of discussion....
Technicolor? SUSY?

But, then the precision measurement of the Higgs mass fixes
the central value of sin20,,
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Why is it running?

Quantum effects, particularly ‘clouds’ of quark—antiquark excitations
surrounding the electrons at short distances, modify the mixing of the
photon and Z boson. This causes the effective weak mixing angle to
change slowly as a function of the energy scale probed
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So far, | only showed you (e,e) scattering,
but (e,p) very important
QPyeak & Q%eak =~ Complementary Diagnostics for New Physics

- JLab Qweak SLAC E158
\ Y. J
; ' Q% = 0.0716 ~Q5y = 0.0449
i (proposed) i
< ; . :
/ Ci‘lk O +0.0029 Experiment %—'—.—l
I [
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I
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Erler, Kurylov, Ramsey-Musolf, PRD 68, 016006 (2003)



Weak Charge Phenomenology

PR

:H.\T Charge :1\.';?:1"'5'1": Charge
q“P +2/3 1 - 3 sin’ Ow = 1/3
giown -1/3 -1+ $sin’ Oy ~ -2/3
QP = 2¢*P + 1giovm +1 1 - 4sin® By = .048
Q" = 1g* + 2q%" 0 -1
e -1 {1 — 4sin?8,) = - .048

Roles of proton and neutron almost reversed
neutron weak charge dominant
proton weak charge nearly zero

Tribble @ NNPSS electron weak charge nearly zero



The focus now is how precisely do things line up

with expected runnlng (blue line)
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E.g., Next-Generation experiments sensitive to
new, heavy, neutral current interactions?

Heavy Z’' s and neutrinos, technicolor, € e ¢ €
compositeness, extra dimensions, SUSY ... Zo |:> Xg Gr
eJN e)N e,N E,N

*0(sin26w) < 0.5%
-away from the Z resonance

— Or, Dark Photons?

Sensitivity to TeV-scale contact interactions if:
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0.238
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Or deviations from Supersymmetry

SUSY Radiative Corrections
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Most sensitive new test is:

MOLLER at JLab

Measurement Of Lepton Lepton Electroweak Reaction
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.. This is a “stay tuned” moment ...

e Qweak to announce

e Mainz program running
e MOLLER at JLAB

e SOLID at JLAB

e These things are ambitious ... and will take time
and S



Topic 5
Can low-energy

experiments discovery
==m New Physics?




Particle Physicists ask few* questions:

1. Why mass?
Higgs field

2. Why matter?

New sources of CP Violation

3. Why Dark Matter

WIMP? Axion?

4. Why this standard model?

SUSY, Dark Photons, UED, ...

* But, very important !!



Often: Direct answers are found at the
~ Energy Frontiers

-

1. Higgs !!

S/(S+B) Weighted Events / 1.5 GeV

2. But, sources of CP?

3. Hunt for Dark Matter?

4. And, so far data is almost behaving as expected ...

And, if it was the case: How would we interpret some kind of

BUMP at hundreds of GeV or at a TeV?



Let’s discuss some very sensitive low-
energy experiments that might help
resolve these questions 7

S
o

3. Dark Matter: so far, null

4. New Physics? cLFV or Muon g-2 ?



Today: Some very sensitive experiments that
might help resolve these questions

2. CP: noansweryet: EDMSs, Ovpp

3. Dark Matter: so far, null

4. New Physics? CLFV or Muon g-2 ?



What does it take to explain the Baryon
Asymmetry of the Universe ? (BAU)

® The dynamical generation of net baryon number during cosmic
evolution requires the concurrence of three conditions:

|. B (baryon number) violation

® To depart from initial (post mflatlon) B=0

Sakharov ‘67

3. Departure from thermal equilibrium

e <B(t)>=<B(0)>=0 in equilibrium

Vincenzo Cirigliano



Baryon Asymmetry of the Universe

Us 10—12
* Observation
10°°
HB‘ B HE ] _ 5'”3 Hﬂ.tﬂday
HB + HE early universe }?B + HE H?’
nuclei 10'3
—10
— 7%
f@“ 10 neutrons 1OD
e Baryon asymmetry may come W 103

* during baryogenesis at
electroweak symmetry breaking
transition (EWB)

GUT 101>
¢ during leptogenesis at scale of /

; 19
heavy neutrino mass __ yre® Planck 10
Kumar \e T (GeV)



Baryogenesis: At first, it was all about CPV
in the CKM mass mixing matrix
0 1964: Observation of CPV in 2n decays of K° 1

o Occurs ~ 2x10-3 times per normal decay
o0 -2 INTERESTING!!I But, not enough for BAU

0 Lots of great work with kaons, direct CP, direct T violation, and so
on, but ... not enough

0 What about B mesons?
0 “B Factories”, experiments like BaBar and BELLE
o CP discovered there too !
o But, still not enough ...

0 Now what do we do? We need “something” ?

o0 EDMs of paramagnetic atoms and molecules, diamagnetic
atoms, and the neutron ... oh yeah, and maybe the muon

IChristenson, Cronin, Fitch, Turlay, PRL 13: 138 (1964)



Topic 5
Time Reversal Invariance

CP Violation
-> Electric Dipole Moments

ess in Particle and Nuclear Physics 71 (2013) 21-74

Contents lists available at SciVerse ScienceDirect

Progress in Particle and Nuclear Physics

. '

journal homepage: www.elsevier.com/locate/ppnp

Review
Electric dipole moments of nucleons, nuclei, and atoms: \!)(h
The Standard Model and beyond

* Department of Fh




A Permanent Electric Dipole Moments violate P and T;
thus a new source of CP Violation under assumption of
CPT invariance.

t

dﬁu P di |
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Current EDM Limits

Type System EDM Limit (e-cm)
Paramagnetic YDF dp = (—2.44+5.9) x 1028
Paramagnetic ThO dp = (—2.1 +4.5) x 10~2°
Diamagnetic 99yg dy = .

(-2.20 £ 2.75,,, + 1.48,4) x 1073
Nucleon Neutron dp= (0.2 1.7) x 10~ R

Lepton Muon d, = (—0.1+£0.9) x 10~

Many systems ... mostly small Graner et al,PRL 116, 161601 (2016)



Energy
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Fundamental Eﬂphases
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Experiments are largely the same

* Spinis only Vector in system, so _ _
— EDM aligned with or against it dTT5 or d T3

 Measure Larmor precession frequency in a B field
with a parallel vs anti-parallel E field.

ho=2(uBtdE)
« Example then for a neutron:

d = ﬁ(a}+ — m_)
4F




Partial List of EDM Experiments

Leptonic EDMs

Cs (trapped)
Cs (trapped)
Cs (fountain)
210Fr (trapped)

YbF (beam)
HfF+ (trapped)
ThO (beam)
PbF (trapped)
WC (beam)

GGG (solid)

muon (ring)

Penn 5t.

). Texas
LBEML
Cyric

Imperial College
JILA
Harvard-Yale

U. Oklahoma

U. Michigan

Indiana

J-PARC

Hadronic EDMs

(UCN
(UCN
(UCN
(UCN
{
{
{

™ e ™ ™ i

UCN
ring)
ring)

o T D D D D =

125Xe (liquid)
15Xe (cell)
125X¥e (cell)
125Xe (cell)
139Hg (cell)
223Rn (trapped)
225Ra (trapped)
225R3 (trapped)

SNS

ILL-PNPI

PSI
KEK-Triumph
Munich
COSY, BNL
COSY

Princeton
GUMainz
TUMunich
Tokyo Inst. Tech.
Seattle
TRIUMF
Argonne
KVI




So clever, it’s worth 2 minutes: S. K. Lamoreaux and R. Golub,

Cold polarized neutrons enter superfluid helium vessel,
and get stopped & trapped

Spin out of
page

‘

polarized neutron
T=1meV

Incident neutrons have same energy and momentum as phonons
in superfluid helium: they interact and stop

Aim: 2 orders of magnitude improvement
to <5 x 1028 level

Superfluid helium

43



Neutron spins precess because of
external magnetic field

@

=—2u B,/h

@ Cor

pulse

@
@
@

Superfluid helium
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So do spins of polarized 3He, which are also
brought into the same vessel

3He atoms precess slightly faster* than neutrons
(nearly same magnetic moment)

= © @&
@ =

w = @
L 4

Superfluid helium

@
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When neutrons and 3He collide, interaction
depends on relative spin orientations

3He, n spins parallel: “no” interaction

Superfluid helium

46



When neutrons and 3He collide, interaction
depends on relative spin orientations

(2]

Count

p and %&ve off Alation light

6000 F

5000 (| K

4000
3000+
2000
1000 ¢

0]

Mied “

0

100

3He, n spins anti-paralle¥- large rea%‘» probabilty — p + 3H

Superfluid helium
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Now, add external electric field: spin rate
of neutrons affected if EDM is non-zero

Superfluid helium

48



status

Experiment is in a long phase of technical developments
Perhaps starting in 202x, with x a small integer

Several other nEDM experiments going on now
— PSI
— Others in planning

49



The Seattle 1°°Hg (atomic) EDM Measurement

4 mercury vapor Cells:
2 with opposite E fields
2 for B field normalization

=3
f,:}c :ﬁ(_ﬁﬂ ?&3)+@
h 30z h

Cancels up to 2" order gradient noise
Same EDM sensitivity as Middle Difference

5




Larmor precession “in the dark” to avoid influence
of light

Optical pump with polarized laser, then

Measure o, via Optical Rotation
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Photodiode signal (V) vs. time (seconds)

Extract precession phase f at the Start of the final period and the
End of the initial period

I'r'u[lz;lrh: = (r'pF - I('pl)‘rr[}larl»:



Latest result ...

dy, =(2.20+2.75  +1.59 )x10™e-cm

-30
|dy, | <7.5x10 e-cm
g
1.00E-25
® at 95% C.L.
e (B. Graner, et al, PRL 116,
E 161601, 2016)
g 1.00E-27 .—.
S
@
E 1.00E-28
& o
™ 100829 ® Current
Sensitivity
1.00E-30 | 1 | | |
1987 1953 15955 2001 2009 2016

History of Hg-199 Results
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