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*With some random experimental details and a modern perspective

• Lecture 1
• Motivations
• Symmetries, Parity, and the Weak Interaction
• The Fermi Constant
• Muon Decay as a test of V-A theory

• Lecture 2
• Neutron beta decay
• Parity as a tool to probe matter:  PVES
• Highly sensitive low-energy probes of New Physics

• Lecture 3  (transition here at some point …)
• CPV and Electric Dipole Moments
• Charged Lepton Flavor Violation
• Muon g-2



Much of the motivation of this field is about 
looking for New Physics … using low-energy 
experimental techniques

translation:  not colliders



Muon Lifetime

MuSun

µp Capture

New g-2

MuCapMuLan

My group’s program: An Evolution of Precision
Time

µd Capture



• Mass ~ 207 me
– (mµ/me)2 ≈ 43,000 times more sensitive to “new physics” through quantum loops 

compared to electrons  (taus would be better!)

• Lifetime ~2.2 µs
– High-intensity beams; can stop and study; can possibly collide

• Primary production:  π+ µ+νµ
– Polarized naturally: 

• Primary decay µ+ e+νeνµ
– Purely weak;  distribution in θ and E reveals weak parameters

• Lepton number is conserved  

Muon Primer Muon

ν  π+ µ+

µ+ e+ νe νµ

(50 ppb)

(1 ppm)

(BRs 4 < 10-13)

(~99%)

(99.98%)



• Mass ~ 939.5 MeV (6 ppb) 

• Free n Lifetime ~880 s (we will return to this)

• Magnetic moment: -1.91 µN (all “anomalous”)

• Electric Dipole moment: < 0.3 x 10-25 e cm (we will discuss)

• Primary decay n pe-νe (we will also discuss)

• Baryon number is conserved  

Neutron Primer Neutron



• Seriously ?

• It’s light, charged, stable, and we know lots about it

Electron Primer electron



The Motivation for Tests of Fundamental Symmetries and 
the Role of Precision Measurement (the conventional)

• Establish the Standard Model parameters and laws. 
Examples include:
– Masses MZ, MW, MH, mb, mt, me, mu, mv, …
– Couplings:  αQED, αStrong, GF, Ggrav
– Structure of interactions        SU(3)CxSU(2)LxU(1)Y
– Broad issues

• Numbers of generations
• Mixing angles, quarks and neutrinos
• Lepton number and flavor  

– Majorana or Dirac neutrinos  [ See lectures by Kumar ]

– Charged Lepton Flavor Violation  
• CP violation parameters in K and B sector

• The Standard Model as we know it has been built on an 
enormous experimental foundation involving Precision
and Energy frontier efforts

• And, some exquisite Theory !

“NP Role”



The Motivation for Tests of Fundamental Symmetries and 
the Role of Precision Measurement (the exotic)

• Can we sensitively test the SM limitations to help 
answer key questions:

– Baryon Asymmetry of the Universe
– EW symmetry breaking

• Are the Standard Model predictions complete?
– What is missing?

– What extensions are needed?
• The community has also begun to worry …

Marciano



The unconquered Standard Model

9

LHC7/8

LHC13

The indirect approach 

Direct 
approach

Coming up empty



Discrete Fundamental Symmetries

 Parity
 Does experiment distinguish between left and right?

 Time Reversal
 Are physics processes the same in both time directions ?

 Charge Conjugation
 Do particles and antiparticles behave the same 



Combined Symmetries

 CP
 E.g, Do particles and their antiparticles decay with the same 

patterns?

 CPT
 Combination felt to be very solid for any local QM gauge theory.  

No violations at all sensed.  Implications include
 If CP is violated, T must be violated  (a bit of a shock)
 CPT and Lorentz violation are tested as one
 Many tests of particle and antiparticle properties, such as magnetic 

moments of proton – antiproton, electron – positron, muon –
antimuon;  Lifetimes of particle – antiparticle,  and others

 Very unlikely to have time for much here, but ongoing efforts exist 



Topic 1
A Radical Thought



 A troubling problem was the τ+ − θ+ puzzle, … well really K+ decay:
K+  π+ π0 &     K+  π+ π+ π−

named θ+ τ+

parity         +1                             -1

 Conjecture:  two different decay modes of the same particle, with 
same mass and same lifetime
 Can happen if parity is not strictly conserved

 This begged the question, “Has parity been checked in the Weak 
Interaction?”  answer:  Not very well

Same
particle?



 Then, what would constitute a weak-interaction parity test?
 Are muons polarized with respect to their momentum in pion decay?
 Is the decay pattern of electrons from muon decay non-symmetric with 

respect to the muon’s spin?
 Are the decay products from a polarized hyperon non-symmetrically 

emitted?
 Is the beta decay of a polarized Co-60 nucleus non-symmetric?

 … these are common … 
 You need “an axis” to define a direction
 You need something that is not symmetric with respect to that axis



A flurry of tests begins …
Madam Wu’s 
famous test 
with Co-60

(in practice, it took the 
experts at NIST to pull off 
the key polarization step) Field up

Field down

When field is up, betas go more 
“down”;  when field is down, 
betas go more “up”



A flurry of tests begins …
Garwin, Lederman, Weinrich
follow with muon decay 
experiment

Counts vs. Magnetic Field 
compared to B = 0

Solid curve is 1 – 1/3 cos θ



Lee and Yang also suggest that, if PV were so, it offers a natural 
way to determine the muon’s magnetic moment !

gµ = 2.0 ± 0.1
 Spin of µ is ½ (Dirac, point-like object)

And angular distribution proves by 
theorem here that  charge conjugation is 
also not conserved in WI



µ+ B

Parity violation “at home”
At rest, the muon precesses in a magnetic field, giving g, 
(or the magnetic moment)

2m
geB

µ

ω =

g = 2.1 ± 0.1

Fitting Error ~ 1.5 %
Magnetic field error  ~ 5.5 %

Univ. Illinois cosmic ray setup for undergraduate modern experimental physics course



Parity Violation appears on all  
Weak Decays

• Leptonic
– Muon, tau decays

• Hadrons
– Kaon, B-meson
– Neutron
– Nuclei



 Fermi’s idea for neutron beta decay
 4-point interaction
 A charge-changing interaction

 (hadronic  leptonic current)
 No propagator (was wrong)
 Purely Vector (also wrong)

 Actually:  3 massive gauge bosons mediate WI
 W± , Z0  propagator form:
 At low energy 
 The “coupling” or “strength” is GF/ 𝟐𝟐
 The “real” weak coupling is gw.  We will see relation soon

 Fun fact:

Weak Interaction Primer*

*I’d love to cite the source I used, but the lovely posted lecture has no name…



 Parity transform:

 Under P, transform of Dirac equation unchanged
 Eigenvalues of P operator are ±1

 The V-A Interaction (took a while to establish)
 Most general matrix element
 Ô is combination of γ matrices
 Need combination where charged WI only couples to Left-Handed chiral 

particles

 Only the vector (V) and axial vector (A) currents are responsible for PV 
nature of WI

Parity & V-A*

*I’d love to cite the source I used, but the lovely posted lecture has no name…



 What we observe is always a square of an amplitude:

 Apply a parity transformation (V flips, A does not)

 Compare        to         .     A big difference; the interference term 2AV

 V-A  “violates parity maximally” since both currents  have same 
strength

 cV =1 and cA = 1

Parity & V-A*

*I’d love to cite the source I used, but the lovely posted narrative has no author listed …

Weak Charged Current



Topic 2
Aspects of the Weak 

Interaction
𝛼𝛼 =

𝑒𝑒2

ℏ𝑐𝑐



Muon Lifetime
Fundamental electro-weak couplings

Implicit to all EW precision physics

Uniquely defined by muon decay

GF α MZ

QED

q

Extraction of GF from τµ :   
reduced error from 
15 to ~0.5 ppm

15 ppm → 0.5 ppm 0.37 ppb   23 ppm



From τµ to sin2 θW

– Momentum transfer q2 = (pμ − pνμ)2 = (pe + pνe)2 < mµ
2 much smaller than MW

2

– Thus, W propagator shrinks to a point and can be well approximated through a 
local four-fermion interaction, (Fermi’s original conjecture)

GF = (1.166 378 8 ± 0.000 000 7) · 10−5 GeV−2 .

(there are further quantum corrections here not included)



Let’s be careful
Gµ or GF ?

 Lepton Universality is assumed
 The bare gauge couplings assumed the same regardless 

of the lepton involved

 And the bare natural relations

 Is this really true? And how well do we know it?



Fermi Constants and “New 
Physics” – W. Marciano

Tests Lepton Universality to 0.2%

There are even more precise limits at ~10-4

(much more to this study)



World avg δτµ/τµ is 18 ppm, but is it right?

µ+

× 10
±1 ppm

Neutron Lifetime

Lessons from History

?

Precision
vs

Accuracy

Goal of MuLan is 1 ppm.  



ASIDE: Precision measurements have a checkered history.  
Before common practice was to ‘blind*’ results tended to 
have a trend toward an asymptotic value.

*If you want me to talk about how to blind experiments, just ask …



Spoiler Alert
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τ(MuLan) = 2 196 980.3 ± 2.2 ps (1 ppm)
GF = 1.166 378 7(6) x 10-5 GeV-2 (0.5 ppm



Kicker On

Fill Period

Measurement Period

MuLan measured ~ 2 x 1012 decays

time

N
um

be
r (

lo
g 

sc
al

e)

Real data

Detector has symmetric design around stops
at PSI



A difficult fit

Normal Pulse

Two pulses close together

>2 x 1012 decays

“artificial” deadtimes

Modern experiments record the complete waveforms 
using digitizers. Here, 500 MSPS, 8 bit
“Now”  800 MSPS,12-bit



Pileup Time 
Distribution

Normal Time 
Distribution

If you count 1 when 2 went through, it’s called Pileup
Leading order pileup is a ~5x10-4 effect, yet …

•Statistically reconstruct 
pileup time distribution

•Fit corrected distribution
Fill i

Fill i+1

This is only the 1st

order effect
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SYSTEMATICs, SYSEMATICs, and many tests 

tau vs fit start time
Red band is the 
set-subset allowed 
variance

Relative 
τ (ppm)

0                                                                     9 µs

22 µs

ppm τµ + 
∆secret



Agilent E4400 Function 
Generator

f = 450.87649126 MHz

1 ct = 2.21790228 ns

Input frequency only known to 200 kHz [~ +/- 443 ppm]

The analysis is double blinded to avoid biasing 
the results.

ct990.5  ps2.21968320 ==  τ

Fit results reported in terms of a relative secret reference value

XXXX.XXXX ns

∆R=1 is 1 ppm shift of lifetime

f = 451.0 +/- 0.2

1 ct = 2.217XXX

6

0

0 10×
−

=
τ

ττR



Okay, enough.  Unblind it

τ(R06) = 2 196 979.9 ± 2.5 ± 0.9 ps
τ(R07) = 2 196 981.2 ± 3.7 ± 0.9 ps

τ(Combined) = 2 196 980.3 ± 2.2 ps (1.0 ppm)
∆τ(R07 – R06) = 1.3 ps

The most precise particle or nuclear or atomic lifetime ever measured 

PRL 106, 041803 (2011)
Phys. Rev. D 87, 052003 (2013)

MuLan FAST
PSI



From τµ to GF … 



GF & τµ precision has improved by ~4 orders of 
magnitude over 60 years.

Achieved!



lo
g(

co
un

ts
)

µ decay time

System Uncertainty (ppm)

λ+ 1
ΛS 10
ΛD 10

µ+

µ-p
µ-d

}
}

MuLan (complete)

MuCap (complete) MuSun  (in progress)

The 1 ppm µ+ lifetime is compared to the µ- lifetime in 
gaseous p or d targets to determine the capture rate

( ) %16.0<∆ −+ −µµ
τScale:

µ
− ν+→+µ npExample: 

𝟏𝟏
𝛕𝛕

= 𝚲𝚲𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 = 𝚲𝚲𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝 + 𝚲𝚲𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜

Extract physics here



Wµ

ν

q
q

Technique:  Precision lifetime 
measurement in an ultra-pure 
hydrogen time projection chamber

e

The singlet muon capture ΛS on the proton is sensitive to 
axial nucleon structure

ΛS

µ



Why do we say the result is Unambiguous ?

Horizontal axis represents some not-well-known Mu-Molecular physics

MuCap is designed to “ignore” this problem

Physics
Axis

Phys.Rev.Lett. 110 (2013) 012504

1st Precise and Unambiguous Result 
Verifies Basic Prediction of Low-Energy QCD



The Structure of the Weak Interaction
Is it really only V-A ? (no tensor, scaler terms …)

Angle with respect to 
(positive) muon spin

µ+e+
𝜐̅𝜐
𝜐𝜐

1 cosa θ+

Primary decay µ+ e+νeνµ

θ



Final results from TWIST measurement of muon 
decay parameters
Is muon decay purely V-A? 

Sensitive to attractive SM extensions:
L-R symmetric models, which would permit a WR

Basic idea:  
Measure the energy and angular distribution of e+ from  
µ+e+νeνµ and compare to Monte Carlo expectations

θ
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Even more generally:  Muon decay spectrum
in greater detail:  TWIST experiment

SM 
ρ =  0.7518 ± 0.0026 3/4 
η =  -0.007 ± 0.013 0
Pµξ = 1.0027 ± 0.0079 ± 0.0030 1
δ =  0.7486 ± 0.0026 ± 0.0028 3/4
Pµ(ξδ/ρ) >  0.99682 (90% c.l.) 1

)1(3)34(
3
2)33(

)(cos
0

2

2

x
x
xxx

dxdx
d

−+−+−∝
Γ ηρ

θ





 −+−+ )34(

3
2)1(cos xxP δθξµ

max,e

e

E
Ex =where



The formalism, "Michel" parameters
 Muon decay parameters 
 Differential decay rate vs. energy and angle:

(symmetric half shown)

Stopped µ

Decay e+



Michel Parameters:  TWIST final results

Results mostly constrain right-handed muon terms

"SM still okay"

Manifest LRS model Generalized LRS model

M
ix

in
g 

An
gl

e

Mass m2 (GeV)

¾ 
¾ 

1

SM



Topic 3
Parity Violation, the Weak 

Interaction, & neutrons



The Neutron as a Fundamental Laboratory

Only 3 parameters needed: Vud, λ, φNeutron beta decay



Dynamics and observables
Basic beta decay Lagrangian for a baryon

Slides: D. Pocanic



Extracting Vud from n decay

Slides: D. Pocanic



Richness in the Neutron Decay Distribution
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22 3 VA gg +

VA g/g
VgNeutron Decay Correlations Nuclear O+ → O+  Decays,

CKM Unitarity

gV

gA

???

n Lifetime
How thick are the 
bands and do they 

overlap ?



J. Nico, 2007

2007 picture:  Lifetime and Correlations combine in a 
confused picture for the physics of gA or unitarity

gA X

X

Not 
consistentPDG 

2006

Newer 
Measurements

Newer 
Measurements



Let’s look at more recent versions of these 
experiments, but define two “kinds” of n sources

55

Cold and Ultra-cold 
Neutrons



Difficulty is consistency in neutron 
decay experiments
• Lifetime experiments:

– Cold “beam” of neutrons … arrange to trap, store, 
then count the feeble decay protons

– Bottled up Ultra Cold neutrons … hold them for a 
while, dump, and count how many are left

• Asymmetry experiments
– Cold polarized beam passes through a spectrometer 

and count the left and right going particles vs. the spin 
orientation (very few decay, but there are many in the 
beam)

– Ultra-cold polarized neutrons and somewhat similar 
arrangement, but very few in the “beam” but many 
decay in the fiducial volume



Modern Lifetime Methods

Bottle
Keep n away from all walls
1) Gravity (up)
2) Magnetic dipoles (down)



Stopping Point
for today
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