charge = -qmass = m_e spin = 1/2 magnetic moment = μ_B

charge = -qmass = m_e spin = 1/2 magnetic moment = μ_B

and that's pretty much it.

Or is it?

electron Electric Dipole Moment (eEDM)?

electron Electric Dipole **Moment** (eEDM)?

eEDM looks like offset between center of mass and center of charge!

(In my world, [E]=[B] [d] = [μ] = distance-charge)

$d_e < 10^{-28} \text{ cm}$ (ACME: Harvard/Yale)

(In my world, [E]=[B] [d] = [µ] = distance-charge) $d_e^{} < 10^{-28} \ cm$

Isn't that basically zero? Why do better?

(In my world, [E]=[B] [d] = [µ] = distance-charge) $d_e^{} < 10^{-28} \ cm$

Isn't that basically zero? Why do better?

A1: Doing better is like building a bigger LHC!

(In my world, [E]=[B] [d] = [µ] = distance-charge) $d_e^{} < 10^{-28} \ cm$

Isn't that basically zero? Why do better?

A1: Doing better is like building a bigger LHC!

A2: Doing better is like building a new telescope!

New particle physics from precision dipole moments ---- long tradition

Electron's magnetic moment: $\mu_e = g\mu_b$

New particle physics from precision dipole moments ---- long tradition Electron's magnetic moment: $\mu_e = g\mu_b$

1. g = 2 (2, not 1! The Dirac equation)

New particle physics from precision dipole moments ---- long tradition Electron's magnetic moment: $\mu_e = g \mu_b$

- 1. g = 2 (2, not 1! The Dirac equation)
- 2. $g = 2 + \alpha/\pi$ (early test of one-loop QED)

New particle physics from precision dipole moments ---- long tradition Electron's magnetic moment: $\mu_e = g\mu_b$ (2, not 1! The Dirac equation) 1. q = 22. $q = 2 + \alpha/\pi$ (early test of one-loop QED)

3. $g = 2 + a_1 \alpha + a_2 \alpha^2 + a_3 \alpha^3 + a_4 \alpha^4 + ...$

(best test of many-loop field theory)

Q: Can we get still more particle physics, beyond SM, from electron μ_{mag} ?

Q: Can we get still more particle physics, beyond SM, from electron μ_{mag} ?

A: Probably not. m_e is too small.

Q: How about new particle physics from muon μ_{mag} ?

Q: How about new particle physics from muon μ_{mag} ?

A: Maybe (there is a big effort) but difficult due to uncertainties in QCD "theory background".

New particle physics from precision dipole moments

Advantage of *electric* dipole moments, with respect to *magnetic* dipole moments:

 $\begin{array}{c} d_e,\, d_n,\, d_\mu,\, d_{Hg} ... \\ have \,\, very \,\, small \,\, SM \\ theory \,\, background \end{array}$

New particle physics from precision dipole moments

Advantage of *electric* dipole moments, with respect to *magnetic* dipole moments:

 $\begin{array}{l} d_e,\, d_n,\, d_\mu,\, d_{Hg} ... \\ have \,\, very \,\, small \,\, SM \\ theory \,\, background \end{array}$

OK, so what might d_e be?

(In my world, [E]=[B]

 $[d] = [\mu] = distance-charge)$

r _{class.} = e ² /mc ²	d _e = e r _{class.} ?	$\alpha^2 e a_0$	3x10 ⁻¹³ e-cm	
Why 10 ⁻¹⁶ ??				
v				
Future limit from proposed experiments (JILA, many other groups):			<10 ⁻²⁹ e-cm	

Motivation #2 (EDM like a big telescope) The remnant of asymmetry. The situation, approximately 14 billion years before right now:

The situation, approximately 14 billion years before right now:

Then, shortly thereafter:

Then, shortly thereafter:

Then, the universe expanded and cooled:

Then, true love!:

In the mass cosmic wedding, there was somebody for everyone.

In the mass cosmic wedding, there was somebody for everyone. Except for you.

Measuring electron EDM using molecular ions

JILA eEDM collaboration

- Dr. Yan Zhou
- Dr. Yuval Shagam
- Kia Boon Ng
- Will Cairncross
- Dan Gresh
- Tanya Roussy
- Fatemeh Abbasi-Razgaleh
- Jeff Meyers, Kevin Boyce
- Jun Ye
- Eric Cornell

Past Group Members

- Laura Sinclair
- Kang-Kuen Ni
- Kevin Cossel
- Russ Stutz
- Aaron Leanhardt
- Yiqi Ni
- Huanqian Loh
- Matt Grau

Local theory: John Bohn Non local Theory: Bob Field Still Less Local Theory St. Petersberg quantum chemistry group

Thanks: NSF/PFC, NIST, and Marsico Foundation

Q: How to measure an eEDM?

How to measure eEDM? First, how do we measure eMDM?

В

How to measure eEDM?

How to measure eEDM?

Figure-of-merit: What makes a good EDM experiment?

Figure-of-merit: What makes a good EDM experiment?

Big Electric Field!

Problem: Big E, long τ . Electron accelerates quickly, and is gone????

Our approach. 1. Use molecule for big E_{eff} (we follow Hinds and Demille in this)

Our approach. 2. Use trapped ion for long τ

(atomic spectroscopy in ion traps sees many seconds)

We will work in an ion trap.

Comparison with previous and ongoing experiments

Figure-of-merit : $E_{eff}\tau\sqrt{N}$	E _{eff} (V/cm)	T(msec)	$N_{eff}(s^{-1})$
Berkeley Tl beam, d _e <1.6x10 ⁻²⁷ e.cm (2002)	6 x 10 ⁷	2	1 x 10 ⁹
Imperial YbF beam, de<1.0x10 ⁻²⁷ e.cm (2011)	1.5 x 10 ¹⁰	1	10 ⁶
Penn State, (projected sensitivity d _e < 10 ⁻²⁸ e.cm)	~10	~10 ³	?
ACME Collaboration (ThO), $d_e < 9x10^{-29}$ e.cm (2014)	8.4x 10 ¹⁰	1.1	2.5 x 10 ⁴
JILA (projected sensitivity $d_e < 10^{-28}$ e.cm)	3-9 x 10 ¹⁰	1000	10

Also other experiments in atoms, Penn State, TRIUMF, Tokyo, etc.

Molecular Ions

$$\delta d_e \sim \frac{1}{|E_{eff}|\tau\sqrt{N}}$$

Molecules provide large effective electric fields

$$\begin{split} E_{lab} &= 10 \text{ V/cm} \\ |E_{eff}| > 10^{10} \text{ V/cm} \end{split}$$

P. G. H. Sandars, Physics Letters 14, 194 (1965).
E. A. Hinds, Physica Scripta T70, 34 (1997).
D. DeMille, *et al.*, Physical Review A 61, 1 (2000).

Trap molecular ions to probe for long time

- Trap lifetime of many seconds
- Science state lifetime 2.1(1)s
- May trap many ions in thermal cloud 1~10 K

Our choice: HfF⁺

Electric Field

• To take advantage of large E_{eff} we must polarize the molecule with an electric field

• But because the molecule is also an ion, this won't work

Rotating Electric Field

• Solution! Rotate the electric field

!!!!Use rotating E-field bias!!!!!

-E-field defines quantization axis

-Excellent rejection of lab-frame residual

B-field.

Leanhardt et al, J. Mol. Spec. (2011) [25 typeset pages]

 $\omega_{\rm rot}$ is: BIG enough that radius of "micromotion" circle is small compared to trap size.

SMALL enough so that $d_{mol} E >> \omega_{rot}$ and the molecule axis stays aligned with E.

One does Zeeman-level spectroscopy then in the rotating frame.

Apparatus

Rotating magnetic field: <u>not sensitive to DC fields</u>

Initial state preparation:

photo-ionization, coherent transfer, m-level depletion.

(2 tunable UV lasers, 2 tunable IR)

Final spin state read-out:

(another tunable UV laser and a fixed-freq UV laser

State Transfer

$^{3}\Delta_{1}$, J=1, F=3/2

m_F=-3/2

-1/2

1/2

3/2

m_F=-3/2 -1/2 1/2 3/2

"The Demille Idea"

Transfer lasers prepare population in a single pair of Stark states

Optically deplete the population of one m_F level using strobed circularly polarized light

Transfer

Ramsey Sequence

Optically deplete population out of one of the m_F levels

Dissociate all of the ions in the J = 1 level, and count Hf⁺ ions in the trap

- 1. Measure initial phase and phase at long time
- 2. Compare upper and lower transitions
- 3. Switch B field sign

Systematics

How to make sure you're actually measuring something

- 1. Measure initial phase and phase at long time
- 2. Compare upper and lower transitions
- 3. Switch B field sign

- 1. Measure initial phase and phase at long time
- 2. Compare upper and lower transitions
- 3. Switch B field sign

- 1. Measure initial phase and phase at long time
- 2. Compare upper and lower transitions
- 3. Switch B field sign

- 1. Measure initial phase and phase at long time
- 2. Compare upper and lower transitions
- 3. Switch B field sign

2016.08.30

- 1. Measure initial phase and phase at long time
- 2. Compare upper and lower transitions
- 3. Switch B field sign

!!!!Use rotating E-field bias!!!!!

-E-field defines quantization axis

-Excellent rejection of lab-frame residual

B-field.

Leanhardt et al, J. Mol. Spec. (2011) [25 typeset pages] One does Zeeman-level spectroscopy then in the rotating frame.

E _____

Basic scale of Berry's phase related freq shift in our experient: 750 kHz. Rough place to do 1 mHz spectroscopy?

!!!!Use rotating E-field bias!!!!!

-E-field defines quantization axis

-Excellent rejection of lab-frame residual

B-field.

Leanhardt et al, J. Mol. Spec. (2011) [25 typeset pages] One does Zeeman-level spectroscopy then in the rotating frame.

!!!!Use rotating E-field bias!!!!!

-E-field defines quantization axis

-Excellent rejection of lab-frame residual

B-field. B_{straylab} One does Zeeman-level spectroscopy then Leanhardt et al, J. Mol. Spec. in the rotating frame. (2011) [25 typeset pages]

1. We won't even need magnetic shielding!

2. Changing the direction of rotation will be superfluous!

1. We won't even need magnetic shielding! True!

2. Changing the direction of rotation will be superfluous!

- 1. We won't even need magnetic shielding! True! (or, mostly true)
- 2. Changing the direction of rotation will be superfluous!

- 1. We won't even need magnetic shielding! True! (or, mostly true)
- 2. Changing the direction of rotation will be superfluous! True!

- 1. We won't even need magnetic shielding! True! (or, mostly true)
- 2. Changing the direction of rotation will be superfluous! True! (or, true, except...)

Frequency channel	All data	2017 only
f ^R	2.6(9) mHz	3(1) mHz
f ^{DR}	-0.6(8) mHz	-1(1) mHz
f ^{BD}	34.5(8) mHz	34.4(1.0) mHz
f ^{BDR}	0.4(9) mHz	-0.3(1.0) mHz

We are taking data "blind"!

Current EDM number:

EDM = -8.3 +/- 1.5(stat) +/- 0.02(syst) +/- 5.0(blind) 10^-28 e cm

Best limit: $|d_e| < 0.87 \times 10^{-28} e cm$

M. Henrion, B. Fischhoff, American Journal of Physics **54**, 791 (1986)

Frequency channel	All data	2017 only
f ^R	2.6(9) mHz	3(1) mHz
f ^{DR}	-0.6(8) mHz	-1(1) mHz
f ^{BD}	34.5(8) mHz	34.4(1.0) mHz
f ^{BDR}	0.4(9) mHz	-0.3(1.0) mHz

f_BD = (0.10 +/- 0.87_stat +/- 0.20_syst) mHz

d_e = (0.09 +/- 0.77_stat +/- 0.18_syst) *1e-28 e.cm

|de| < 1.4 mHz

|d_e| < 1.3e-28 e.cm

Generic "new physics" resonance experiment

Generic "new physics" resonance experiment

 δ Physics = δ f / (\mathcal{E} / h)

 δ Physics = δ f / (\mathcal{E} / h)

effective coherence time

Sensitivity of resonance line to physics

how well you can "split the line" = 1/(Signal-to-noise) + systematic errors

effective coherence time

Sensitivity of resonance line to physics

how well you can "split the line" = 1/(Signal-to-noise) + systematic errors effective coherence time Sensitivity of resonance line to physics

Comes for Free!

how well you can "split the line" = 1/(Signal-to-noise) + systematic errors

effective coherence time

Glamorous AMO!

Traps, de-accelerators, cryo-buffer gas, laser cooling! Sensitivity of resonance line to physics

Comes for Free!

how well you can "split the line" = 1/(Signal-to-noise) + systematic errors

Blood, Sweat, and Tears Risky, thankless, back-breaking work! effective coherence time

Glamorous AMO!

Traps, de-accelerators, cryo-buffer gas, laser cooling! Sensitivity of resonance line to physics

Comes for Free!

how well you can "split the line" = 1/(Signal-to-noise) + systematic errors

Blood, Sweat, and Tears Risky, thankless, back-breaking work! (i.e. "precision metrology") effective coherence time

Glamorous AMO!

Traps, de-accelerators, cryo-buffer gas, laser cooling! Sensitivity of resonance line to physics

Comes for Free!

Blood, Sweat and Tears. Splitting the Line

Experiment $1/(\delta f/\Delta)=1/(\delta f T)$ Qualitative Judgement

Blood, Sweat and Tears. Splitting the Line

Experiment	1/(δf/∆)=1/(δf T)	Qualitative Judgement
HgEDM (U.W.)	3x10 ⁷	Very, very serious guys.

Experiment	$1/(\delta f/\Delta)=1/(\delta f T)$	Qualitative Judgement
HgEDM (U.W.)	3x10 ⁷	Very, very serious guys.
Cesium Beams	Clock 1 x 10 ⁶	Professional metrologists

Experiment	1/(δf/Δ)=1/(δf T)	Qualitative Judgement
HgEDM (U.W.)	3x10 ⁷	Very, very serious guys.
Cesium Beams C	Clock 1 x 10 ⁶	Professional metrologists
eEDM (ACME)	1x10 ⁵	Appears to be room to improve

Experiment	1/(δf/Δ)=1/(δf T)	Qualitative Judgement
HgEDM (U.W.)	3x10 ⁷	Very, very serious guys.
Cesium Beams	Clock 1 x 10 ⁶	Professional metrologists
eEDM (ACME)	1x10 ⁵	Appears to be room to improve
eEDM (JILA)	3x10 ²	Still in kindergarten

Problems if phase of rf at site #1 and #2 are different. Time between p/2 pulses, T, is stuck at its largest value.

How will we do better?

1. Several incremental things, factors of root-2 here and there.

2. Improve count rate by trapping more ions. (increasing ion number is actually easy for us.)

Resultant electric field at ion #2

Resultant electric field at ion #2

And imagine E_{rot} is out of the page, then viewed from the side:

A = solid angle swept outby changing bias field.

Berry's phase after one cycle: $\delta \phi = m \mathcal{A}$

And the effect of many ion-ion close-pass events is to cause the phase between m=3/2 and m=-3/2 states to random-walk into decoherence.

But! If we double magnitude of E_{rot}...

 \mathcal{A} = solid angle swept out by changing bias field.

Berry's phase after one cycle: $\delta \phi = m \mathcal{A}$

And the effect of many ion-ion close-pass events is to cause the phase between m=3/2 and m=-3/2 states to random-walk into decoherence (when accumulated $\delta \pi \sim \pi/2$)

But! If we double magnitude of E_{rot} ... then same close-pass even yield only $\frac{1}{4}$ the subtended area, and time required to decohere increases by 2^4 .

In Mark 2 machine, we hope to have 10 times more ions even while decoherence rate lower by 1.6.