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charge =  -q
mass = me
spin = 1/2
magnetic moment
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and that’s pretty 
much it.

Or is it?
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eEDM looks like offset between center of mass and 
center of charge!

electron
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Charge

de

(  In my world, [E]=[B] [d] = [µ] = distance-charge )
de< 10-28 cm

Isn’t that basically zero?  Why do better?
A1:  Doing better is like building a bigger LHC!
A2:  Doing better is like building a new telescope!              
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New particle physics from precision
dipole moments  ---- long tradition

Electron’s magnetic moment: µe=gµb

1.    g = 2               (2, not 1!   The Dirac equation)

2.    g = 2 – α/2       (early test of one-loop QED)

3.     g = 2 + a1α + a2α2 + a3α3 + a4α4 + �..

(best test of many-loop field theory)
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New particle physics from precision
dipole moments  ---- long tradition

Electron’s magnetic moment: µe=gµb

1.    g = 2               (2, not 1!   The Dirac equation)

2.    g = 2 + α/π (early test of one-loop QED)

3.     g = 2 + a1α + a2α2 + a3α3 + a4α4 + …

(best test of many-loop field theory)
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Q: Can we get still more particle physics,
beyond SM,  from electron µmag?
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Q: How about new particle physics from muon  µmag?
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due to uncertainties in QCD “theory background”.
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Advantage of electric dipole moments, with
respect to magnetic dipole moments:

de, dn, dµ, dHg…    
have very small SM 
theory background

New particle physics from precision dipole moments

SUSY
Multi-Higgs

Left-Right
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de [e*cm]
10-24 10-3810-26 10-28 10-30 10-32 10-34 10-36

|de| < 1.6 x 10-27 e*cm  Berkeley [PRL 88, 071805 (2002)]
<0.8 x 10 -28 e*cm  Harvard/Yale  (2014)



Advantage of electric dipole moments, with
respect to magnetic dipole moments:

de, dn, dµ, dHg…    
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theory background

New particle physics from precision dipole moments

SUSY
Multi-Higgs

Left-Right
Std. Mod.

de [e*cm]
10-24 10-3810-26 10-28 10-30 10-32 10-34 10-36

|de| < 1.6 x 10-27 e*cm  Berkeley [PRL 88, 071805 (2002)]
<0.8 x 10 -28 e*cm  Harvard/Yale  (2014)
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(  In my world, [E]=[B]

[d] = [µ] = distance-charge )

OK, so what might de be?
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de = e rclass. ? α2 e a0 3x10-13 e-cm

Future limit from proposed 
experiments (JILA,  many 
other groups):

rclass. = e2/mc2

<10-29 e-cm
rclass

Why
10-16 ??

x

e
sNew

sPhysics

If de/rclass= (1/24π) “(sin θnewcp)”(me/mnew)2

=10-16

Then
mnew= 2000 GeV

Compare with MHiggs ~ 100GeV

0.1
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Motivation #2   (EDM like a big telescope)

The remnant of asymmetry.



The situation, approximately 
14 billion years before right now:

Bang
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Then, the universe expanded and cooled:
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In the mass cosmic wedding,
there was somebody for everyone.



In the mass cosmic wedding,
there was somebody for everyone.
Except for you.







Measuring electron EDM using molecular 
ions

JILA eEDM collaboration



• Dr. Yan Zhou
• Dr. Yuval Shagam
• Kia Boon Ng
• Will Cairncross
• Dan Gresh
• Tanya Roussy
• Fatemeh Abbasi-Razgaleh
• Jeff Meyers, Kevin Boyce
• Jun Ye
• Eric Cornell

Past Group Members
• Laura Sinclair
• Kang-Kuen Ni
• Kevin Cossel
• Russ Stutz
• Aaron Leanhardt
• Yiqi Ni
• Huanqian Loh
• Matt Grau

Local theory: John Bohn
Non local Theory: Bob Field
Still Less Local Theory

St. Petersberg quantum chemistry group

Thanks:  NSF/PFC, 
NIST,

and Marsico
Foundation





Q: How to measure an eEDM?
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-

Problem: 
Big E, long τ.    Electron accelerates quickly, and is gone????

E
Solution: Attach electron spin to
a big atomic nucleus!

-

E z

Eeff = a Elab Z3



Elab Eeff

|
++
Z

Our approach.  1. Use molecule for big Eeff

(we follow Hinds and Demille in this)

Elab = 10 V/cm Eeff > 1010 V/cm



|

++

Our approach.  2. Use trapped ion for long τ

(atomic spectroscopy in ion traps sees many seconds )

We will work in
an ion trap.



Comparison with previous and ongoing 
experiments

Eeff(V/cm) Ʈ(msec) Neff (s-1)

Berkeley Tl beam, de<1.6x10-27 e.cm (2002) 6 x 107 2 1 x 109

Imperial YbF beam, de<1.0x10-27 e.cm (2011) 1.5 x 1010 1 106

Penn State, 
(projected sensitivity de < 10-28 e.cm) ~10

8 ~103 ?

ACME Collaboration (ThO), de<9x10-29 e.cm
(2014) 8.4x 1010 1.1 2.5 x 104

JILA
(projected sensitivity de < 10-28 e.cm) 3-9 x 1010 1000 10

Also other experiments in atoms, Penn State, TRIUMF, Tokyo, etc. 



Molecular Ions

Molecules provide large 
effective electric fields

P. G. H. Sandars, Physics Letters 14, 194 (1965).
E. A. Hinds, Physica Scripta T70, 34 (1997).
D. DeMille, et al., Physical Review A 61, 1 (2000).

Trap molecular ions to probe 
for long time
• Trap lifetime of many seconds
• Science state lifetime 2.1(1)s
• May trap many ions in thermal 

cloud 1~10 K

Our choice: 
HfF+

𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙 = 10 V/cm
|𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒| > 1010 V/cm



Electric Field
• To take advantage of large 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒 we must polarize the molecule with an 

electric field

• But because the molecule is also an ion, this won’t work

𝐸𝐸

𝐸𝐸



Rotating Electric Field

• Solution! Rotate the electric field

Hf+ F

𝐸𝐸



!!!!!Use rotating E-field bias!!!!!
-E-field defines quantization axis

-Excellent rejection of lab-frame residual 

B-field.

+

ωrott

E

+

+
+

ωrot is:
BIG enough that radius
of “micromotion” circle
is small compared to 
trap size.

SMALL enough so that
dmol E  >> ωrot and the 
molecule axis stays 
aligned with E.

One does Zeeman-level 
spectroscopy then
in the rotating frame.Leanhardt et al, J. Mol. Spec.

(2011)   [25 typeset pages] 



Apparatus

Secular trap motion at 𝜔𝜔𝑆𝑆𝑒𝑒𝑆𝑆~ 2𝜋𝜋(4 𝑘𝑘𝑘𝑘𝑘𝑘)
“RF” micromotion at𝜔𝜔𝑟𝑟𝑒𝑒 = 2𝜋𝜋 50 𝑘𝑘𝑘𝑘𝑘𝑘
Rotational micromotion at 𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟 = 2𝜋𝜋(250 𝑘𝑘𝑘𝑘𝑘𝑘)

Rotating magnetic field: not sensitive to DC fields





Initial state preparation:
photo-ionization, coherent transfer,
m-level depletion.
(2 tunable UV lasers, 2 tunable IR)

Final spin state read-out:
(another tunable UV laser and a fixed-freq UV laser



Lasers

Lasers
Lasers

Experiment



State Transfer

𝑋𝑋1Σ0+

HfF+

3Δ1

3Δ2

3Δ3

1Δ2

3Π0−

3Π0+

3Π1

𝑣𝑣 = 0

𝑣𝑣 = 1

𝑣𝑣 = 2

𝐽𝐽 = 1

𝐽𝐽 = 2

𝐽𝐽 = 3

𝐽𝐽 = 4

𝐽𝐽 = 5

𝐹𝐹 = 3/2

𝐹𝐹 = 1/2



3Δ1, J=1, F=3/2

-1/2 1/2 3/2mF=-3/2



3Δ1, J=1, F=3/2

-1/2 1/2 3/2mF=-3/2

𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟



3Δ1, J=1, F=3/2

-1/2 1/2 3/2mF=-3/2

𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟



3Δ1, J=1, F=3/2

3𝑔𝑔𝑙𝑙𝜇𝜇𝐵𝐵𝐵𝐵𝑟𝑟 − 2deEeff

3𝑔𝑔𝑢𝑢𝜇𝜇𝐵𝐵𝐵𝐵𝑟𝑟 + 2deEeff

“The Demille Idea”



Ramsey Sequence
H
f F

+
H
f F

+

t

Transfer

Transfer lasers 
prepare 
population in a 
single pair of 
Stark states



Ramsey Sequence

H
f F

+

t

Transfer

Optically deplete 
the population of 
one 𝑚𝑚𝐹𝐹 level 
using strobed
circularly 
polarized light
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+

𝜋𝜋/2 pulse puts system 
into the superposition
� �𝑚𝑚𝐹𝐹 = −

3
2 + � �𝑚𝑚𝐹𝐹 = +

3
2
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Free evolution
Δ𝜙𝜙 =

Δ𝐸𝐸
ℏ
𝑡𝑡

Δ𝐸𝐸 = 3𝑔𝑔𝑢𝑢𝜇𝜇𝐵𝐵𝐵𝐵𝑟𝑟 + 2𝑑𝑑𝑒𝑒𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒
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A second 𝜋𝜋/2 pulse projects 
the phase onto population

Δ𝐸𝐸 = 3𝑔𝑔𝑢𝑢𝜇𝜇𝐵𝐵𝐵𝐵𝑟𝑟 + 2𝑑𝑑𝑒𝑒𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒
𝜋𝜋
2

Δ𝑃𝑃 ∝ cos(Δ𝜙𝜙)
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Transfer
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Ramsey Sequence

H
f F

+
Optically deplete 
population out of 
one of the 𝑚𝑚𝐹𝐹
levels 

Δ𝐸𝐸 = 3𝑔𝑔𝑢𝑢𝜇𝜇𝐵𝐵𝐵𝐵𝑟𝑟 + 2𝑑𝑑𝑒𝑒𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒
𝜋𝜋
2

t

Transfer

Δ𝑃𝑃 ∝ cos(Δ𝜙𝜙)
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Ramsey Sequence

H
f F

+

Dissociate all of the ions 
in the 𝐽𝐽 = 1 level, and 
count Hf+ ions in the trap

Δ𝐸𝐸 = 3𝑔𝑔𝑢𝑢𝜇𝜇𝐵𝐵𝐵𝐵𝑟𝑟 + 2𝑑𝑑𝑒𝑒𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒
𝜋𝜋
2

t

Transfer



Ramsey Fringe
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eEDM measurement

2016.08.30 Matt Grau - Measuring the electron 
EDM with trapped molecular ions

1. Measure initial phase and phase at long time
2. Compare upper and lower transitions
3. Switch B field sign

3𝑔𝑔𝑙𝑙𝜇𝜇𝐵𝐵𝐵𝐵𝑟𝑟 − 2deEeff

3𝑔𝑔𝑢𝑢𝜇𝜇𝐵𝐵𝐵𝐵𝑟𝑟 + 2deEeff
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Systematics

How to make sure you’re 
actually measuring 

something



eEDM measurement

2016.08.30 Matt Grau - Measuring the electron 
EDM with trapped molecular ions

1. Measure initial phase and phase at long time
2. Compare upper and lower transitions
3. Switch B field sign
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eEDM measurement

2016.08.30 Matt Grau - Measuring the electron 
EDM with trapped molecular ions

1. Measure initial phase and phase at long time
2. Compare upper and lower transitions
3. Switch B field sign

3𝑔𝑔𝑙𝑙𝜇𝜇𝐵𝐵(𝐵𝐵𝑟𝑟+𝑏𝑏) − 2deEef
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eEDM measurement

2016.08.30 Matt Grau - Measuring the electron 
EDM with trapped molecular ions

1. Measure initial phase and phase at long time
2. Compare upper and lower transitions
3. Switch B field sign

3𝑔𝑔𝑙𝑙𝜇𝜇𝐵𝐵(−𝐵𝐵𝑟𝑟+𝑏𝑏) − 2deEef

3𝑔𝑔𝑢𝑢𝜇𝜇𝐵𝐵(−𝐵𝐵𝑟𝑟+𝑏𝑏) + 2deEe

94



E

A  = solid angle swept out
by changing bias field.

s

Berry’s phase after one cycle:
δφ = m A



!!!!!Use rotating E-field bias!!!!!
-E-field defines quantization axis

-Excellent rejection of lab-frame residual 

B-field.

+

ωrott

E

+

+
+

One does Zeeman-level 
spectroscopy then
in the rotating frame.Leanhardt et al, J. Mol. Spec.

(2011)   [25 typeset pages] 



E

A  = solid angle swept out
by changing bias field.

s

Berry’s phase after one cycle:
δφ = m A

Basic scale of Berry’s phase related freq shift
in our experient:  750 kHz. Rough place to do 
1 mHz spectroscopy?
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Two boasts from the early days of the experiment:

1. We won’t even need magnetic shielding!
True!   (or, mostly true)

2. Changing the direction of rotation will be superfluous!
True!   (or, true, except…)
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Current EDM number:

EDM = -8.3 +/- 1.5(stat) +/- 0.02(syst) +/- 5.0(blind) 10^-28 e cm

Best limit:
|𝑑𝑑𝑒𝑒| < 0.87 × 10−28 𝑒𝑒 𝑐𝑐𝑚𝑚

We are taking data “blind”!



Blinding data

M. Henrion, B. Fischhoff, American Journal  of Physics 54, 791 
(1986)
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laser cooling!

Comes for Free!
(OK, not really, if you
have to use radium,
or prepare state of
exotic molecule)
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Experiment         1/(δf/∆)=1/(δf T)      Qualitative Judgement

HgEDM (U.W.)             3x107 Very, very serious guys.

Cesium Beams Clock  1 x 106 Professional metrologists

eEDM (ACME)             1x105 Appears to be room to
improve

eEDM (JILA)                 3x102 Still in kindergarten

Blood, Sweat and Tears.  Splitting the Line



N

S

N

S

spin 
prep

spin 
analysis

detection

π/2 
#1

π/2 
#2

rf in

Problems if phase of rf at site #1 and #2 are different.
Time between p/2 pulses, T,  is stuck at its largest value.

Old-school Atomic-Beam Clock



Δ𝐸𝐸 = 3𝑔𝑔𝑢𝑢𝜇𝜇𝐵𝐵𝐵𝐵𝑟𝑟 + 2𝑑𝑑𝑒𝑒𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒

Ramsey Fringe



How will we do better?

1. Several incremental things, factors of root-2 here and there.

2. Improve count rate by trapping more ions. (increasing ion 
number is actually easy for us.)
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But!  If we double magnitude of Erot…



A  = solid angle swept out
by changing bias field.

Berry’s phase after one cycle:
δφ = m A

And the effect of many ion-ion close-pass
events is to cause the phase between m=3/2 
and m=-3/2 states to random-walk into 
decoherence (when accumulated δπ ~ π/2)

But!  If we double magnitude of Erot… then same
close-pass even yield only ¼ the subtended area,
and time required to decohere increases by 24.

In Mark 2 machine, we hope to have 10 times more 
ions even while decoherence rate lower by 1.6.
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