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Outline

Goal: Pursue problem with some depth while still introducting
generic tools

e Neutron stars

e Thermodynamics and statistical mechanics
e Density functionals and Skyrme

e Infinite nucleonic matter and nuclei

e Weak equilibrium

e Newtonian and GR stars

e y* fitting and Bayesian inference



~ The QCD phase diagram
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e Heavy-ion collisions and lattice QCD sensitive primarily to high
T, low p regions

e Electromagnetic and gravitational wave observations of neutron

star-related phenomena are the best probe of cold, dense (and
non-perturbative) QCD.



Stellar Evolution
EVOLUTION OF STARS
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e Gravitational mass of the remnant and the total energy released

e Still a lot of uncertainty



Neutron Star Composition

A neutron star
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Infinite nucleonic matter

e Think of a large number of neutrons and protons in a
box. What is the energy per particle for that box?

e Electrons and muons: always present to ensure
charge neutrality

e Presume local thermodynamic equilibrium

e Can ignore gravity in the computation of
microscopic properties of matter: gravitational
potential change is small over small scales



Thermodynamic preliminaries

E=-PV+TS+ Y wN; ; dE=-
i

PdV + TdS + ) widN;

Natural variables for internal energy, E, are §, V, and N: internal energy is

minimized at fixed S, V, and N.

Helmholtz free energy

F=E-TS

dF = dE — TdS — 8dT

= dF = —SdT — PdV + ) p:dN;

Free energy is minimized atfixed N, V and T

Neutron star case, T = 0 and Ei Uin; = UpNR:

B
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Quantum Statistical Mechanics

e Use units where i = ¢ = 1; Start with non-interacting particles

d’k

P(u,T) = +gT / log[l + e &#IT]  E=k*+m?

(2z)’

Johns, Ellis, and Lattimer (1996)
e Upper signs for fermions; constant g is spin degeneracy factor

e For fermions: degenerate limit g — ©0; non-degenerate limit
U — —oo, unless antiparticles are included, then u — O.

e For relativistic systems

E-pu= \/k2+m2—;,t
e For non-relativistic systems

k* k*
E-p=m+ ——(@pp+m)=_——j
2m 2m

and also the integrals are much easier



Nondegenerate expansion

(this is mostly for reference)
e Define:

t=Tim ; w=W@-—-—mlT

e Using the identity

oo .3'{34 IE _|_z2 —1/2 dx © o 1yn—1
( ) = 37° E =D EH"'E?KQ(HZ)
0 1 4+ eV¥te-¢

Tooper (1969)

e one obtains

l)Hl Ku+1/0) k
/&
2:#1:2 [ 2 ( t )

 This can be used directly, unless ¢ is large compared to k, in which case one can use

[ 2x 3 15
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Degenerate expansion '

e (this is mostly for reference)
e Use the Sommerfeld expansion:

0o f(z) n 2n . 2(_1)1-1-:1(21?:—1_ I)BE;:
/u D 4 el /ﬂzHEH; A )][ @n)! ]

n=1

e where By, are the Bernoulli numbers and f ®*~V represents the (2n — 1)th
derivative of f .

e This is an asymptotic, not convergent, expansion
» Applying this to the pressure leads to the function (x = wt)

Py = %(1 + x)4/X(2 + x) [-3 + 2x(2 + x)] + —lﬂg\{_l_ ”2"'*"]

e this runs into numerical issues when x is small, but can be replaced by a Taylor
series
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Second Derivatives of the Pressure

e Three independent derivatives are enough to compute all
second derivatives

e Intermsof u and T

(3). () (31, = (5)
= ’ E— ) ﬂﬂd JES— — =
ou V.T aT V.u oT V.u ou V.T

e E.g. specific heats

- _T'(as) _(6?1)2 (an)‘l'
" on|\oT /)y \oT )uv\ou/py.

. _T(as) +52_T(@) _23T(an)
£ n aT wVv ﬂ3 aﬂ TV Hz aT u,v ,

Derivation here




Non-relativistic Energy Density Functionals

e Density functional theory: the ground state of a many-body system
uniquely determined by the densities.

e Separate into kinetic and potential energy (ambiguous)
H = Hyin(ny, np) + Hp:}t,(”ns np)
e If we can determine the kinetic energy from the non-interacting case:

kg kE kj. kg
My = i/ N o B i/ k2 dk
’ 27 0 2??11' 203‘1‘2??11' 27? 0

e If interactions modify the kinetic energy, then rewrite them as

gk>
He =
<0 5 0n2m*

e Where m* is an "effective mass" (which may depend on the densities)

e Finite temperature, carry over all of the same temperature integrals,
replacing m* with m (Fermi-Liquid theory) and replacing ¢ with an
effective chemical potential
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The Skyrme Interaction L

Skyrme (1959), Negele and Vautherin (1972), Stone and Reinhard (2007), Kortelainen et al. (2014)

T T
R 4 P
2m,  2m,

+ Dy, ('r,,nn + 'rpnp) + Cpgn?g
+ ng(nﬁ =+ ﬂ%) =+ CP3H§+E T eea

H =

+ Cynp(tn + 7p)

¢ For non-homogeneous systems, add gradient terms

Hoas = [Q,m (Vi)™ + 200y Vn, - Vi, + Qpp (V) ]
¢ Can think of a gradient expansion, but they don't always converge

¢ add also Coulomb, spin-orbit, ...



EOS Near Saturation

e Defineng = n, +n,,x = ny/ng,6 = 1 — 2x, and

€ = (n — ng)/(3ng)

K K.
E(ng,8)= —B+ —€* + CoLs (S+L€+ e 4

2! 3!
+ E4(ng, 8) + O(8°)

2!

where g ~ 0.16 fm™ and B ~ 16 MeV

Compression modulus: y = —1/V(dV/dP) = 1/n(dP/dn)™"
Incompressibility, K = 9/(ny), i.e.

oP
-s(0)
anB =M

Incompressibility is measured in giant monopole resonances,

K = 220 — 260 MeV.

Osym 3
3!

)
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The Nuclear Symmetry Energy
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¢ Define nuclear matter as a
box with equal numbers of
neutrons and protons

[
=

MNeutron matter

LiA (MeV)

¢ No protons = pure neutron
matter

MNuclear TTEL'/
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Steiner et al. (2005)
* Define the "symmetry energy" as the difference
e S(ng) = Epent(np) — Enuc(np)
e S is the value at the nuclear saturation density § = S(rng) = 29 to 36
MeV
e L is the derivative, L = 3nS’(ng) = 30to 70 MeV
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Weisacker-Bethe semi-empirical mass
formula

2
(N -2)

E(Z,N) = —BA + EqA?? + CZ°A7° + S

+1 Nand Z odd
+Epir4 —1 N and Z even
0 otherwise

von Weisédcker (1935); Bethe and Bacher (1936); Dieperink et al. (2009) Moller et al. (2016)
e Radius ~ A - this is saturation!
e Surface energy ~ R* ~ A% ; curvature energy ~ R ~ A'7

e Expansion in 1/R
e Coulomb length scale = Debye screening length
e Can add "shell effects" via Strutinsky method



Weak Equilibrium

e Over long time scales, weak equilibrium is achieved through
n<p-+te

* This implies detailed balance, i.e. u, = p, + p.
¢ Weak equilibrium choses a particular n/p ratio

e [f we presume that baryon number is conserved, then baryon and
charge conservation imply

ui = Bipp + Qipg
e where B; is the baryon number of particle i and Q; is its charge.

e Neutrinos leave the star unless T > 10 MeV, thus no chemical
potential

18



Classical stars
e Beginwith T = B =Q =0and spherical symmetry

d

am = 4nr2p; m(r =0) =
dr

@ _ _Gmp, P(r=R) =
dr

M = / 4rr? p dr

e where p is the rest mass density
e Stellar structure just an application Newton's laws

e One parameter family of solutions, as long as P(p) is
specified, parameterized by P(r = 0)

19



Planetary Radius (Rjup)

Planetary masses and radii
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Relativistic stars 21
» Specify the metric

ds* = —**Vdr* + X Vdr® + r*d6* + r* sin” 6dg’*
e Now, m is "gravitational mass"

d_m = 4xr’e; m(r=0)=0
dr

dP -G P 47 Pr> 2G
— = jriHE(I+—) 1+ il (1— m); P(r=R)=0
dr r2 g m r

e The baryonic mass is

R ~1/2
2G
Mg = / 4rrr2n3m3(1 — m) dr
0 r

e Gravitational potential:

inside : — = —— —

r dr e dr

2GM dd 1 dP P!
outside : 2® = (1 - ) ( )



Problem 1

e Using the definition of the gravitational potential in a
zero-temperature relativistic star, and n = dP/du,
show that if we redefine a new chemical potential
which is modified by the GR, this new chemical
potential is a constant through the entire star.
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Problem 2 =

e Presume that energy per particle of nucleonic matter
IS

K —
ElA(ny, n,) = —B + (”B 70

2 2
o (™ ) + (1 = 2x)2S(np)

e withng = n, +n, andx = n,/np .

e Assuming entropy = T = 0, obtain the electron
chemical potential in beta-equilibrium in terms the
constants and functions given above



Problem 3

e The speed of sound, c2 can be obtained from the
derivative ¢ = dP/dEe.

e Assume a quark matter equation of state of

3 3&2
P=_"_pui- "=
422" 4p2

e where y; = pp/3anday = m?2 — 4A?% and m; is the
strange quark mass and A is the quark superconducting

gap and B is the bag constant. Determine the speed of
sound at large ¢ and determine how it depends on m;, B

and A.
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