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The charmonium system

• Why do we believe this is a spectrum 
of charm anti-charm?

• How can we study QCD through 
properties of the states?

3

CHARMONIUM

Strong Force
cc̄

Eur. Phys. J. C (2011) 71: 1534 Page 29 of 178

quarkonium is characterized by the heavy-quark bound-state
velocity, v ≪ 1 (v2 ∼ 0.3 for cc̄, v2 ∼ 0.1 for bb̄, v2 ∼ 0.01
for t t̄) and by a hierarchy of energy scales: the mass m (hard
scale, H), the relative momentum p ∼ mv (soft scale, S), and
the binding energy E ∼ mv2 (ultrasoft scale, US). For en-
ergy scales close to ΛQCD, perturbation theory breaks down
and one has to rely on nonperturbative methods. Regardless,
the nonrelativistic hierarchy of scales,

m ≫ p ∼ 1/r ∼ mv ≫ E ∼ mv2, (9)

where r is the typical distance between the heavy quark and
the heavy antiquark, also persists below the scale ΛQCD.
Since m ≫ ΛQCD, αs(m) ≪ 1, and phenomena occurring at
the scale m may be always treated perturbatively. The cou-
pling may also be small if mv ≫ ΛQCD and mv2 ≫ ΛQCD,
in which case αs(mv) ≪ 1 and αs(mv2) ≪ 1, respectively.
This is likely to happen only for the lowest charmonium and
bottomonium states (see Fig. 31). Direct information on the
radius of the quarkonia systems is not available, and thus the
attribution of some of the lowest bottomonia and charmonia
states to the perturbative or the nonperturbative soft regime
is at the moment still ambiguous. For t t̄ threshold states even
the ultrasoft scale may be considered perturbative.

This hierarchy of nonrelativistic scales separates quarko-
nia [1] from heavy-light mesons, the latter of which are char-
acterized by just two scales: m and ΛQCD [132, 133]. This
makes the theoretical description of quarkonium physics
more complicated. All quarkonium scales get entangled in
a typical amplitude involving a quarkonium observable, as
illustrated in Fig. 32. In particular, quarkonium annihila-
tion and production take place at the scale m, quarkonium
binding takes place at the scale mv (which is the typical
momentum exchanged inside the bound state), while very
low-energy gluons and light quarks (also called ultrasoft de-
grees of freedom) are sufficiently long-lived that a bound

Fig. 31 The strong-coupling constant, αs, at one loop, as a function of
quarkonium radius r , with labels indication approximate values of mv
for Υ (1S), J/ψ , and Υ (2S)

state has time to form and therefore are sensitive to the
scale mv2. Ultrasoft gluons are responsible for phenomena
like the Lamb shift in QCD. The existence of several scales
complicates the calculations. In perturbative calculations of
loop diagrams the different scales get entangled, challenging
our abilities to perform higher-order calculations. In lattice
QCD, the existence of several scales for quarkonium sets re-
quirements on the lattice spacing (a < 1/m) and overall size
(La > 1/(mv2)) that are challenging to our present compu-
tational power.

However, it is precisely the rich structure of separated en-
ergy scales that makes heavy quarkonium particularly well
suited to the study of the confined region of QCD, its inter-
play with perturbative QCD, and of the behavior of the per-
turbation series in QCD: heavy quarkonium is an ideal probe
of confinement and deconfinement. Quarkonia systems with
different radii have varying sensitivities to the Coulombic
and confining interactions, as depicted in Fig. 33. Hence

Fig. 32 Typical scales appearing in a quarkonium annihilation dia-
gram

Fig. 33 Static QQ potential as a function of quarkonium radius r



M. R. Shepherd 
NNPSS at MIT 

July 2016

Producing Charmonium

• Probes the ratio of quark to lepton couplings in QED: Qq2 / Qµ2

4
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Producing Charmonium
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Ryan Mitchell — Indiana University

Connecting the XYZ at BESIII
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ψ’→γχc2 ψ’→γχc1
ψ’→γχc0

χcJ→γJ/ψ

ψ’→γηc

Eur. Phys. J. C (2011) 71: 1534 Page 55 of 178

Magnetic transitions flip the quark spin. Transitions that
do not change the orbital angular momentum are called mag-
netic dipole, or M1, transitions. In the nonrelativistic limit,
the spin-flip transition decay rate between an initial state
i = n 2s+1lJ and a final state f = n′ 2s′+1lJ ′ is:

Γ
(
i

M1−→ γ + f
)

= 16
3

αe2
Q

E3
γ

m2
i

(2J ′ + 1)SM
if |Mif |2, (90)

where eQ is the electrical charge of the heavy quark Q

(eb = −1/3, ec = 2/3), α the fine-structure constant, Eγ =
(m2

i − m2
f )/(2mi) is the photon energy, and mi , mf are the

masses of the initial- and final-state quarkonia, respectively.
The statistical factor SM

if = SM
f i reads

SM
if = 6(2s + 1)(2s′ + 1)

×
{

J 1 J ′

s′ l s

}2 {
1 1

2
1
2

1
2 s′ s

}2

. (91)

For l = 0 transitions, SM
if = 1. For equal quark masses m,

the overlap integral Mif is given by

Mif = (1 + κQ)

×
∫ ∞

0
drunl(r)u

′
n′l(r)j0

(
Eγ r

2

)
, (92)

where jn are spherical Bessel functions and κQ is the anom-
alous magnetic moment of a heavy quarkonium QQ̄. In pN-
RQCD, the quantity 1 + κQ is the Wilson coefficient of the
operator S†σ · eQBem/(2m)S, where Bem is the magnetic
field and S is a QQ̄ color-singlet field.

Electric transitions do not change the quark spin. Transi-
tions that change the orbital angular momentum by one unit
are called electric dipole, or E1, transitions. In the nonrela-
tivistic limit, the spin-averaged electric transition rate be-
tween an initial state i = n 2s+1lJ and a final state f =
n′ 2s′+1l′J ′ (l = l′ ± 1) is

Γ
(
i

E1−→ γ + f
)
= 4

3
αe2

QE3
γ (2J ′ + 1)SE

if |Eif |2, (93)

where the statistical factor SE
if = SE

f i is

SE
if = max (l, l′)

{
J 1 J ′

l′ s l

}2

. (94)

The overlap integral Eif for equal quark masses m is given
by

Eif = 3
Eγ

∫ ∞

0
drunl(r)un′l′(r)

×
[

Eγ r

2
j0

(
Eγ r

2

)
− j1

(
Eγ r

2

)]
. (95)

Since the leading-order operator responsible for the elec-
tric transition does not undergo renormalization, the elec-
tric transition rate does not depend on a Wilson coefficient,
analogous to the case of the quarkonium magnetic moment
appearing in the magnetic transitions.

If the photon energy is smaller than the typical inverse
radius of the quarkonium, we may expand the overlap in-
tegrals in Eγ r , generating electric and magnetic multipole
moments. At leading order in the multipole expansion, the
magnetic overlap integral reduces to Mif = δnn′ . Transi-
tions for which n = n′ are called allowed M1 transitions,
transitions for which n ≠ n′ are called hindered transitions.
Hindered transitions happen only because of higher-order
corrections and are suppressed by at least v2 with respect to
the allowed ones. At leading order in the multipole expan-
sion the electric overlap integral reduces to

Eif =
∫ ∞

0
drunl(r)run′l′(r). (96)

Note that E1 transitions are more copiously observed than
allowed M1 transitions, because the rates of the electric
transitions are enhanced by 1/v2 with respect to the mag-
netic ones. Clearly, the multipole expansion is always al-
lowed for transitions between states with the same princi-
pal quantum numbers (Eγ ∼ mv4 or mv3 ≪ mv) or with
contiguous principal quantum numbers (Eγ ∼ mv2 ≪ mv).
For transitions that involve widely separated states, the hi-
erarchy Eγ ≪ mv may not be realized. For example, in
Υ (3S) → γ ηb(1S), we have Eγ ≈ 921 MeV, which is
smaller than the typical momentum transfer in the ηb(1S),
about 1.5 GeV [175], but may be comparable to or larger
than the typical momentum transfer in the Υ (3S). On the
other hand, in ψ(2S) → γχc1, we have Eγ ≈ 171 MeV,
which is smaller than the typical momentum transfer in both
the ψ(2S) and the χc1.

Beyond the nonrelativistic limit, (90) and (93) get cor-
rections. These are radiative corrections counted in powers
of αs(m) and relativistic corrections counted in powers of v.
These last ones include proper relativistic corrections of the
type (mv)2/m2, recoil corrections and, for weakly coupled
quarkonia, also corrections of the type ΛQCD/(mv). Finally,
we also have corrections of the type Eγ /(mv) that involve
the photon energy. In the charmonium system, v2 ≈ 0.3, and
corrections may be as large as 30%. Indeed, a negative cor-
rection of about 30% is required to bring the nonrelativistic
prediction of B(J/ψ → γ ηc(1S)), which is about 3%, close
to the experimental value, which is about 2%. We will see
that this is actually the case. In the bottomonium system,
v2 ≈ 0.1 and corrections may be as large as 10%.
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ΧcJ Decays

• Study:

• ψ’ → γ π+π-

• ψ’ → γ p anti-p

• Homework:  why does a third 
peak appear in p anti-p but 
not ππ?

• JP of a pion:  0-

• JP of a proton: 1/2-

7

!2 of the constraint to the beam four-momentum has been
checked by changing the cut value in the range 12–50 and
noting the change in the yield in these, and other similar
decay modes. Based on this study we place a systematic
uncertainty of 2.5% on the efficiency of this requirement.
The uncertainties due to track reconstruction are 0.3% per
charged track (0.67% for kaons). The limited Monte Carlo
statistics introduces an uncertainty that is in all cases less
than 1.5%. The systematic uncertainty due to the photon
detection and shower-shape criteria is set at 2% per photon
both for the transition photon and for the decay products of
" and #0 decays. In the cases including " decays, this
contribution is incorporated taking into account the frac-
tion of those decays that proceed through each " decay

mode. The final signal plots are all well fit using the
functions described above. By studying the variation of
the yields of the high statistics modes resulting from float-
ing the signal parameters, we assign a 2% uncertainty in
each mode due to the uncertainties in the fitting procedure.
In addition we allow an extra 2% uncertainty in the yield of
the !c0 to account for the possibility of a coherent compo-
nent of the background that might interfere with the signal.
This was evaluated by introducing such a component into
the fits and noting the changes in yields. We have checked
that the yields from the various decay modes of the "ð0Þ

mesons are consistent with their branching fractions and
efficiencies. When calculating the final branching frac-
tions, we add the above systematic uncertainties in quad-
rature. The uncertainty due to the c ð2SÞ ! $!c branching
fractions is kept separate and quoted as a second systematic
uncertainty.
For evaluating the limits in the cases where there is no

significant signal, we take the probability density function
and convolve this with Gaussian systematic uncertainties.
We then find the branching fraction that includes 90% of
the total area.
Our results are summarized in Table II, and compared

with the PDG fits [5] to results from BES [14] and CLEO
[15]. These fits explicitly assume that Bð!c ! #þ#$Þ ¼
2Bð!c ! #0#0Þ. Our results do not include that constraint,
but the data are consistent with this isospin symmetry. Our
results are also consistent with the expected result that
Bð!c ! KþK$Þ ¼ 2Bð!c ! K0

SK
0
SÞ, whereas previous re-

sults had indicated that this might not be so in the J ¼ 2
case. The largest deviation from previous results ( & 3%) is
in the case of !c0 ! #þ#$. In the case of the !c2, our
limit for the branching fraction into ""0 is below the fit
value obtained from previous data by Q. Zhao [4], suggest-
ing that the DOZI decays of the !c2 may contribute less
than indicated by that phenomenological analysis. We note
that there is an overlap of datasets in the results presented
here and those of our previous analysis of "ð0Þ"ð0Þ decays,
and so our new results should replace rather than augment
our previous measurements.
In summary, we measure branching fractions for !c0 and

!c2 decays into #0#0, #þ#$, KþK$, K0
SK

0
S, "", and

"0"0. The decay !c2 ! "" is observed for the first time

FIG. 1 (color online). Invariant mass distributions for #þ#$,
#0#0, KþK$, K0

SK
0
S, "", ""

0, "0"0. The fits are described in
the text. The downward arrows are at the value of the invariant
mass of the !c1.

TABLE I. Yields found in the data sample and detection efficiencies obtained from analyses of Monte Carlo generated events.

Mode !c0 !c2

Yield Efficiency (%) Yield Efficiency (%)

#þ#$ 8934' 111 58:7' 2:4 2543' 56 66:2' 2:7
#0#0 2807' 62 40:0' 4:4 793' 33 48:5' 5:3
KþK$ 8156' 100 53:8' 2:5 1645' 42 60:2' 2:8
K0

SK
0
S 2109' 49 25:3' 1:1 373' 20 29:3' 1:3

"" 930' 35 12:3' 1:1 156' 14 12:6' 1:1
""0 35' 13 9:2' 0:8 3:3' 8:0 10:5' 0:9
"0"0 413' 24 8:2' 0:6 12' 7 8:8' 0:5
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!c2, respectively, in accordance with expectations for an
E1 transition. The efficiencies, shown in Table I, include all
the relevant branching fractions [1].

The final invariant mass distributions are shown in
Fig. 1. These plots are each fit with three signal shapes
comprising Breit-Wigner functions convolved with
Gaussian resolutions, together with a constant background
term. The masses and widths of the Breit-Wigner functions
were fixed according to the current averages [1], and the
widths of the Gaussian resolution functions were fixed at
the values found from Monte Carlo simulation (ranging
from 3:6–5:1 MeV=c2 depending on the spin of the !c and
the decay mode). The yields from these fits are tabulated in
Table I.
To convert the yields to branching fractions, we divide

by the product of the number of  ð2SÞ events in the data
sample, the detector efficiency, and the branching fractions
for  ð2SÞ into !cJ. For the last factor, we use the CLEO
measurements of Bð ð2SÞ ! "!c0Þ ¼ ð9:22$ 0:11$
0:46Þ%, Bð ð2SÞ ! "!c1Þ ¼ ð9:07$ 0:11$ 0:54Þ%,
and Bð ð2SÞ ! "!c2Þ ¼ ð9:33$ 0:14$ 0:61Þ% [13].
The results are tabulated in Table II.
We consider systematic uncertainties from many differ-

ent sources. All modes have a 2% uncertainty from the
total number of  ð2SÞ decays [8]. The requirement on the
!2 of the constraint to the beam four momentum has been
checked by changing the cut and noting the change in the
yield in these, and other similar decay modes. Based on
this study, we place a systematic uncertainty of 2.5% on the
efficiency of this requirement. The uncertainties due to
track reconstruction are 0.3% per charged track. The lim-
ited Monte Carlo statistics introduces an uncertainty that is
always a small fraction of the statistical uncertainty in the
data. Using comparison of data and Monte Carlo simula-
tion of hyperon and antihyperon yields from the  ð2SÞ, we
checked our modeling of the hyperon selection efficiency.
The assigned systematic uncertainty arising from this study
was up to 3% per hyperon. The systematic uncertainty due
to the photon detection and shower-shape criteria is set at
2% per photon. In the case of the !c1 decaying into two
spin one-half particles, the two daughters can have their
spins either parallel or antiparallel, and in the !c2 case
there are even more possibilities of combinations of intrin-
sic spins and relative angular momentum. These helicity
correlations are not well known in the case of decays into
baryons, and this introduces a small uncertainty in the
modeling of the efficiencies. We investigated the effects
of helicity amplitudes on our efficiency by generating
Monte Carlo with a variety of different helicities and found
small variations. From this study, we assign a 1% uncer-
tainty in the efficiency of the !c1 and 2.5% of the !c2. The
plots are all well fit using the fitting functions described
above. By studying the variation of the yields of the high
statistics modes resulting from floating the signal parame-
ters, we assign a 2% uncertainty in each mode due to
uncertainties in the fitting procedure. When calculating
the final branching fractions, we add the above systematic
uncertainties in quadrature. The uncertainty due to the

FIG. 1 (color online). Invariant mass distributions for p !p, " !",

#0#0, #þ#þ, $&$&, $0$0. The fits are described in the text.
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To convert the yields to branching fractions, we divide

by the product of the number of  ð2SÞ events in the data
sample, the detector efficiency, and the branching fractions
for  ð2SÞ into !cJ. For the last factor, we use the CLEO
measurements of Bð ð2SÞ ! "!c0Þ ¼ ð9:22$ 0:11$
0:46Þ%, Bð ð2SÞ ! "!c1Þ ¼ ð9:07$ 0:11$ 0:54Þ%,
and Bð ð2SÞ ! "!c2Þ ¼ ð9:33$ 0:14$ 0:61Þ% [13].
The results are tabulated in Table II.
We consider systematic uncertainties from many differ-

ent sources. All modes have a 2% uncertainty from the
total number of  ð2SÞ decays [8]. The requirement on the
!2 of the constraint to the beam four momentum has been
checked by changing the cut and noting the change in the
yield in these, and other similar decay modes. Based on
this study, we place a systematic uncertainty of 2.5% on the
efficiency of this requirement. The uncertainties due to
track reconstruction are 0.3% per charged track. The lim-
ited Monte Carlo statistics introduces an uncertainty that is
always a small fraction of the statistical uncertainty in the
data. Using comparison of data and Monte Carlo simula-
tion of hyperon and antihyperon yields from the  ð2SÞ, we
checked our modeling of the hyperon selection efficiency.
The assigned systematic uncertainty arising from this study
was up to 3% per hyperon. The systematic uncertainty due
to the photon detection and shower-shape criteria is set at
2% per photon. In the case of the !c1 decaying into two
spin one-half particles, the two daughters can have their
spins either parallel or antiparallel, and in the !c2 case
there are even more possibilities of combinations of intrin-
sic spins and relative angular momentum. These helicity
correlations are not well known in the case of decays into
baryons, and this introduces a small uncertainty in the
modeling of the efficiencies. We investigated the effects
of helicity amplitudes on our efficiency by generating
Monte Carlo with a variety of different helicities and found
small variations. From this study, we assign a 1% uncer-
tainty in the efficiency of the !c1 and 2.5% of the !c2. The
plots are all well fit using the fitting functions described
above. By studying the variation of the yields of the high
statistics modes resulting from floating the signal parame-
ters, we assign a 2% uncertainty in each mode due to
uncertainties in the fitting procedure. When calculating
the final branching fractions, we add the above systematic
uncertainties in quadrature. The uncertainty due to the

FIG. 1 (color online). Invariant mass distributions for p !p, " !",

#0#0, #þ#þ, $&$&, $0$0. The fits are described in the text.
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respect to the eþ beam direction in the range j cos!j<
0:75. This requirement is used to suppress continuum
background eþe" ! ""ð"Þ, where the two energetic pho-
tons are mostly distributed in the forward and backward
regions. We restrict the analysis to events that have no
detected charged particles. The average event vertex of
each run is assumed as the origin for the selected candi-
dates. For c 0 ! "1#c0;2, #c0;2 ! "2"3 analysis, events are
required to have three photon candidates, among which the
smallest energy photon is selected as the radiated photon
"1 and the second-largest and the largest energy photons
are defined as "2"3 from #c0;2 decays. An energy-
momentum conservation constraint 4C fit is performed,
and events with #2 % 80 are retained in the final selection.
The energy spectrum of the radiated photons is shown in
Fig. 1, where enhancements due to the #c0 and #c2 over
substantial backgrounds are clearly observed.

To determine signal efficiencies 100 K signal MC event
samples are generated for the #c0 and the #c2, with PDG
values for the masses and widths [12]. The radiative tran-
sition c ð2SÞ ! "1#c0 is generated using a ð1þ cos2!Þ
distribution, where ! is the radiative photon angle relative
to the positron beam direction, in accordance with expec-
tations for pure E1 transitions. The #c0 ! "2"3 decays are
generated using a uniform angular distribution. Although
the radiative transition c ð2SÞ ! "1#c2 is dominantly pure
E1 [24,25], there is some recent experimental evidence that
the decay has contributions from higher-order multipoles
[26]. The full angular amplitudes for c 0 ! "1#c2 are
discussed in association with Eq. (5) in Sec. 5.
Furthermore, the "2"3 photons in the decay #c2 ! "2"3

are expected to be mostly in a pure helicity-two state; the
ratio of the partial two-photon widths for the helicity-zero
and helicity-two amplitudes is predicted to be less than
0.5% [5]. Thus the signal MC for the decay c 0 ! "1#c2,

#c2 ! "2"3 is generated with "2"3 in a helicity-two state
as described in Sec. 5.
The energy resolutions determined by the MC simula-

tions are $ðE"1
Þ ¼ 6:74' 0:29 MeV for #c0 and

$ðE"1
Þ ¼ 3:91' 0:09 MeV for #c2. The efficiencies de-

termined from MC simulations for the #c0 and #c2 are
%ð#c0Þ ¼ ð35:4' 0:06Þ% and %ð#c2Þ ¼ ð38:0' 0:07Þ%.
The difference between %ð#c0Þ and %ð#c2Þ is due primarily
to the different angular distributions.
The dominant nonpeaking background that is apparent

in the spectrum in Fig. 1 is from continuum eþe" !
""ð"Þ processes. It is determined from MC simulations
that contributions to the background due to radiative de-
cays to the &, &0, and 3" decays of c 0 are nonpeaking,
spread over the full range of E"1

, and negligible. Therefore,
they do not change the shape of the dominant continuum
background. In addition we use MC simulations to inves-
tigate possible sources of peaking backgrounds. These are
found to come from #c0;c2 ! '0'0 and && decays and
'0ð&Þ ! "", where two of the "’s have low momentum
and are not detected or are outside of the fiducial volume of
this analysis. We generate at least 100 K events of each
type to determine the efficiencies for the peaking back-
grounds, and use the efficiencies and branching fractions
measured by BESIII [14] to determine the numbers of
peaking background events listed in Table I.

IV. MEASUREMENTOF BRANCHING FRACTIONS
AND TWO-PHOTON WIDTHS

An unbinned maximum likelihood (ML) fit is done to
the E"1

spectrum as shown in Fig. 1. The shape of the large
nonpeaking background in the spectrum is determined with
the 44:1 pb"1 of off-c 0 data taken at

ffiffiffi
s

p ¼ 3:65 GeV, as
well as the 921:8 pb"1 of c ð3770Þ data taken at

ffiffiffi
s

p ¼
3:773 GeV. As is evident in Fig. 2, the off-c 0 data are in
good agreement with the high statistics c ð3770Þ data, for
which transitions to either the #c0 or #c2 states are ex-
pected to be less than 8 events [12]. We also generate
eþe" ! ""ð"ÞMC events using the Babayaga QED event
generator [27] and confirm that the shapes from the 3.65
and 3.773 GeV samples are consistent with being due to the
QED process. The E"1

distribution for the c ð3770Þ data is
fitted with the data-driven function:
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FIG. 1 (color online). Upper plot: The fitted E"1
spectrum for

the c 0 data sample. The expected positions of E"1
from #c0, #c1,

#c2 are indicated by arrows. The dashed curve shows the
background line shape fixed to the shape in Fig. 2. Lower plot:
The number of standard deviations, #, of data points from the
fitted curves.

TABLE I. Expected numbers of background events peaking at
the #cJ signal regions from MC simulations. The errors are the
uncertainties from these measured branching fractions [14].

Decay modes n#c0
n#c2

c 0 ! "#c0, #c0 ! '0'0 25:4' 2:2 0:0' 0:0
c 0 ! "#c0, #c0 ! && 0:4' 0:1 0:0' 0:0

c 0 ! "#c2, #c2 ! '0'0 0:0' 0:0 7:7' 0:7
c 0 ! "#c2, #c2 ! && 0:0' 0:0 0:1' 0:1

Sum 25:8' 2:2 7:8' 0:7

M. ABLIKIM et al. PHYSICAL REVIEW D 85, 112008 (2012)

112008-4

BESIII, PRD 85, 112008 (2012)

prediction:
αs = 0.32→R=0.12

Γγγ(χc2) =   4(|Ψ’(0)|2αEM
2/mc4) x [1 - 1.70αS + ...]

Γγγ(χc0) = 15(|Ψ’(0)|2αEM
2/mc4) x [1 + 0.06αS + ...]

R = = (4/15) [ 1 - 1.76αS + ...]

Expt:  R = 0.27 ± 0.04

χc(0,2) γγ

Higher order corrections significant!
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• Test of non-perturbative QCD corrections 
to a QED process (at first order):
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3

ment of B(ηc → γγ) to date comes from BELLE, with a
significance of 4.1σ [9]. The J/ψ → γηc, ηc → γγ branch-
ing fraction is predicted to be (4.4 ± 1.1)× 10−6 [10], if
higher-order QCD corrections are not taken into account.
CLEO reported an upper limit of B(J/ψ → γηc, ηc →
γγ) < 6× 10−6 at 90% confidence level [7].
This article presents the most precise measurement yet

of the J/ψ → 3γ branching fraction and its photon en-
ergy spectrum using ψ(3686) → π+π−J/ψ decays. In
addition, evidence for J/ψ → γηc, ηc → γγ is report-
ed. The analysis is based on a sample of (1.0641 ±
0.0086) × 108 ψ(3686) events [11] collected with the
Beijing Spectrometer (BESIII), at the Beijing Electron-
Positron Collider (BEPCII) [12]. Using ψ(3686) →
π+π−J/ψ events for this study rather than e+e− →
J/ψ → 3γ eliminates background from the QED process
e+e− → 3γ.
BEPCII is a double-ring electron-positron collider, de-

signed to run at energies around the J/ψ peak. The
BESIII detector [12] is a cylindrically symmetric detec-
tor with five sub-detector components. From inside to
out, these are: main drift chamber (MDC), time-of-
flight system, electromagnetic calorimeter (EMC), super-
conducting solenoid magnet, and muon chamber. The
momentum resolution for charged tracks reconstructed
by the MDC is 0.5% for transverse momenta of 1GeV/c.
The energy resolution for showers deposited in the EMC
is 2.5% for 1GeV photons.
The BESIII detector is modeled with a Monte Carlo

(MC) simulation based on GEANT4 [13, 14]. The
KKMC generator [15] is used to produce MC samples
at any specified energy, taking into account initial state
radiation and beam energy spread. The known ψ(3686)
decay modes are generated with EVTGEN [16] using
branching fractions listed by the Particle Data Group
(PDG) [8], while unknown decay modes are simulated
with LundCharm [17].
For the selection of ψ(3686) → π+π−J/ψ, J/ψ → 3γ

candidates, events with only two charged tracks and at
least three photons are required. The minimum dis-
tance of any charged track to the interaction point is
required to be within 10 cm in the beam direction and
within 1 cm in the perpendicular plane. The two charged
tracks are assumed to be π+π− candidates, and the recoil
mass in the center of mass system must be in the range
[3.091, 3.103]GeV/c2.
Photon candidates are chosen from isolated clusters in

the EMC whose energies are larger than 25MeV in the
barrel region (| cos θ| < 0.8) and 50MeV in the end-cap
regions (0.86 < | cos θ| < 0.92). Here, θ is the polar angle
with respect to the beam direction. To reject photons
from bremsstrahlung and from interactions with materi-
al, showers within a conic angle of 5◦ around the momen-
ta of charged tracks are rejected. To suppress wrongly
reconstructed showers due to electronic noise or beam
backgrounds, it is required that the shower time be with-
in 700 ns of the event start time. Events with 3 or 4
photon candidates are kept for further data processing.
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FIG. 1. Scatter plots of M(γγ)lg versus M(γγ)sm for data
before (c) and after (e) removal of backgrounds from J/ψ →

γπ0/η/η′ and MC simulations of the processes (a) J/ψ →

γπ0/η/η′ → 3γ, (b) J/ψ → γf2(1270) → γ(γγ)π0(γγ)π0 , (d)
J/ψ → 3γ, and (f) J/ψ → γηc → 3γ. The vertical lines
indicate the mass windows to reject π0, η and η′.

The π+ and π− tracks are fitted to a common ver-
tex to determine the event interaction point, and a four-
constraint kinematic fit to the initial four-momentum of
the ψ(3686) is applied for each π+π−γγγ combination.
The combination with the smallest fit χ2

4C is kept, and
χ2
4C < 50 is required.
Figure 1 shows distributions of M(γγ)lg versus

M(γγ)sm, where M(γγ)lg and M(γγ)sm are the largest
and smallest two-photon invariant masses among the
three combinations, respectively. Events from the back-
ground processes J/ψ → γπ0/η/η′ → 3γ can be
clearly seen in Fig. 1(c). These backgrounds are sig-
nificantly reduced by removing all events that lie in
the mass regions [0.10, 0.16]GeV/c2, [0.50, 0.60]GeV/c2,
and [0.90, 1.00]GeV/c2. Contributions from these back-
grounds which lie outside these mass regions are estimat-
ed from simulation. Simulations of these processes are
validated by comparing the line shapes of the M(γγ)lg
and M(γγ)sm distributions and their yields with those in
the control samples in data.
Another source of background is J/ψ → γe+e− events

in which the electron and positron tracks fail to be recon-
structed in the MDC, with the associated EMC clusters
then being misidentified as photon candidates. To reject
this background, the number of hits in the MDC within
an opening angle of five EMC crystals around the center
of each photon shower is counted and the total number
of hits from the three photons is required to be less than
40.
Background from J/ψ → γπ0π0 events can still pass

4

the selection requirements if the two photons from one
π0 decay are nearly collinear or if one of the π0s is
very soft. Since the J/ψ → γπ0π0 branching frac-
tion is large, this remains a large source of background.
In order to model this background, taking advantage
of the structure of intermediate resonances, a partial
wave analysis (PWA) [18] is performed on a γπ0π0

sample based on 2.25 × 108 J/ψ events recorded at
the J/ψ resonance at BESIII [19]. The intermediate
states f0(600), f2(1270), f0(1500), f ′

2(1525), f0(1710),
f2(1950), f0(2020), f2(2150) and f2(2340) are probed
and measured in the γπ0π0 final states of J/ψ de-
cays. For the control samples of J/ψ → γπ0π0 in
ψ(3686) → π+π−J/ψ decays, looking at the distributions
of M(π0π0) and cos θ, Fig. 2 shows excellent agreement
between data and MC simulation which incorporates the
PWA results. Here, M(π0π0) is the invariant mass of two
π0 and θ is the polar angle of the π0 with respect to the
beam axis. Decays of J/ψ → γfJ , fJ → γγ are negligible
because of their extremely small branching fractions [8].
The χ2

4C value can be used to separate the 3γ from
the γπ0π0 final states, and the M(γγ)lg distribution can
be used to distinguish J/ψ → γ(γγ)ηc from the direct
process J/ψ → 3γ. A two-dimensional maximum likeli-
hood fit is therefore performed on the M(γγ)lg and χ2

4C
distributions to estimate the yields of J/ψ → 3γ and
J/ψ → γ(γγ)ηc . For the fit, the shapes of both signal
and background processes are taken from MC simula-
tion; the normalization of J/ψ → γ(γγ)π0/η/η′ is fixed
to the expected density based on MC simulation as list-
ed in Table I; and the normalization of J/ψ → γπ0π0

is allowed to float. Backgrounds of non-J/ψ decays
are estimated using the M(π+π−)recoil sidebands within
[2.994, 3.000]GeV/c2 and [3.200, 3.206]GeV/c2. Figure 3
shows the projections of the two-dimensional fit results
and Table II lists the numerical results. The χ2 per de-
gree of freedom corresponding to the fit is 318/349. The
statistical significance of J/ψ → 3γ (J/ψ → γ(γγ)ηc) is
8.3σ (4.1σ), as determined by the ratio of the maximum
likelihood value and the likelihood value for a fit under
the null hypothesis. When the systematic uncertainties
are included, the significance becomes 7.3σ (3.7σ). The
branching fraction is calculated using

B =
nobs

Nψ(3686) × B(ψ(3686)→ π+π−J/ψ)× ε
(2)

where nobs is the observed number of events, Nψ(3686)

is the number of ψ(3686) events [11], and ε is the de-
tection efficiency. The branching fraction for ψ(3686)→
π+π−J/ψ is taken from the PDG [8]. Simulation of di-
rect J/ψ → 3γ decay assumes the lowest order matrix
element is similar to the decay of ortho-positronium to
three photons [20].
Sources of systematic uncertainty in the measurement

are listed in Table III. For the process J/ψ → 3γ, there
is no explicit theoretical input for the matrix element.
The signal model used in the simulation determines the
uncertainty in estimating the detection efficiency. In the
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FIG. 3. (color online) Projection of the two-dimensional fit
to χ2

4C (left) and M(γγ)lg (right) for data (points with er-
ror bars) and the fit results (thick solid line). The (dark
red) dotted-dashed, (red) dashed and (blue) dotted lines show
contributions from J/ψ → 3γ, J/ψ → γηc → 3γ, and
J/ψ → γπ0π0, respectively. The stacked histogram repre-
sents the backgrounds from J/ψ → γπ0/η/η′ (light shaded
and green) and non-J/ψ decays (dark shaded and violet).

kinematic phase space in the Dalitz-like plot of Fig. 1(e),
the detection efficiency, ε, is formulated as

ε =
∑

i,j

N ij

∑
i,j N

ij
εij =

∑
i,j n

ij

∑
i,j

nij

εij

(3)

where N ij = nij

εij is the number of acceptance-corrected
signals, nij is the number of observed signals, and εij is
the detection efficiency in kinematic bin (i, j). MC stud-
ies show that εij ranges from 34.0% to 39.1%. Given a
sufficient yield, Eq. (3) would provide a realistic unbi-
ased ε from the weighted sum of εij . However, this is
not applicable in this work due to the low statistics of
the signal yield. With a reasonable assumption that sig-
nal yields are continuously distributed over the full phase
space in Fig. 1(d), the maximum relative change of εij ,
15%, is taken as the systematic uncertainty. For the case
of J/ψ → γηc, its decay mechanism is well understood
and the corresponding uncertainty is negligible.
The invariant mass of the ηc in the J/ψ → γηc decay is

assumed to have a relativistic Breit-Wigner distribution,
weighted by a factor of E∗3

γ multiplied by a damping

2
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The decay of J/ψ to three photons is studied using ψ(3686) → π+π−J/ψ in a sample of 1.0641×
108 ψ(3686) events collected with the BESIII detector. Evidence of the direct decay of ηc to two
photons, ηc → γγ, is reported, and the product branching fraction is determined to be B(J/ψ →

γηc, ηc → γγ) = (4.5 ± 1.2 ± 0.6) × 10−6, where the first error is statistical and the second is
systematic. The branching fraction for J/ψ → 3γ is measured to be (11.3 ± 1.8 ± 2.0) × 10−6 with
improved precision.

PACS numbers: 14.40.Pq, 13.20.Gd, 12.38.Aw

Decays of positronium to more than one photon are re-
garded as an ideal test-bed for quantum electrodynamics
(QED) [1], while the analogous processes in charmonia
act as a probe of the strong interaction [2]. For example,
the decay J/ψ → 3γ has a relatively simple theoreti-
cal description, and the experimental measurements al-
low for a fundamental test of non-perturbative quantum
chromodynamics (QCD) [3]. The decay rate of J/ψ → 3γ
is approximately proportional to the cube of the QED
coupling constant α3 ≈ ( 1

137 )
3. To reduce model depen-

dence, the branching fraction for J/ψ → 3γ is normalized
by the branching fraction for J/ψ → e+e−. The ratio

R ≡
B(J/ψ → 3γ)

B(J/ψ → e+e−)
=

64(π2 − 9)

243π
α(1−7.3

αs(r)

π
) (1)

is calculated with first-order QCD corrections, where
B(X) denotes the branching fraction of decay X, αs(r)
is the QCD running coupling constant, and r is the
distance between the c and c̄ quarks. From the ratio
B(J/ψ → 3g)/B(J/ψ → e+e−) [4], a value of αs ≈ 0.19

can be obtained; inserting this into Eq. (1) then gives
R ≈ 2.96× 10−4. This ratio is sensitive to QCD correc-
tions only. It is still unclear, though, how radiative and
relativistic QCD corrections should be treated [5] and
how they may affect this ratio. Experimental constraints
on this ratio can help us to understand the behavior of
non-perturbative QCD, which would shed light on the
dynamics of charmonium. In addition, the photon ener-
gy spectrum in J/ψ → 3γ reveals the internal structure
of the J/ψ, since the photon spectrum at energy ω is
sensitive to the distance r ∼ 1/

√
mcω [6].

The CLEO collaboration was the first to report the
observation of J/ψ → 3γ, measuring its branching frac-
tion to be B(J/ψ → 3γ) = (12 ± 3 ± 2) × 10−6 [7].
This corresponds to a value of R = (2.0 ± 0.6) × 10−4,
which disagrees with the prediction given by Eq. (1).
Looking at the J/ψ → γηc, ηc → γγ mode, the analysis of
B(ηc → γγ) is determined mainly from two-photon fusion
γγ(∗) → ηc [8], because of low statistics for direct mea-
surements of the decay. The most precise direct measure-

• Leading order:  R = 5.3 x 10-4;  
Using αs = 0.19: R = 3.0 x 10-4

• Suppress EM bkg. by using J/ψ from ψ’→ππJ/ψ 
Measure:  B(J/ψ → γγγ) = (11.3±1.8±2.0) x 10-6

• Combine w/CLEO-c [PRL 101, 101801 (2008)]  
From experiment:  R = (1.95±0.37) x 10-4

BESIII, PRD 87, 032003 (2013)
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Bottom Quarks

• Similar production

• All state below 2 MB  with L ≤ 1 
experimentally established (recently)

• Probe of QCD at different mass scale
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ψ’→γχc2 ψ’→γχc1
ψ’→γχc0

χcJ→γJ/ψ

ψ’→γηc
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Magnetic transitions flip the quark spin. Transitions that
do not change the orbital angular momentum are called mag-
netic dipole, or M1, transitions. In the nonrelativistic limit,
the spin-flip transition decay rate between an initial state
i = n 2s+1lJ and a final state f = n′ 2s′+1lJ ′ is:

Γ
(
i

M1−→ γ + f
)

= 16
3

αe2
Q

E3
γ

m2
i

(2J ′ + 1)SM
if |Mif |2, (90)

where eQ is the electrical charge of the heavy quark Q

(eb = −1/3, ec = 2/3), α the fine-structure constant, Eγ =
(m2

i − m2
f )/(2mi) is the photon energy, and mi , mf are the

masses of the initial- and final-state quarkonia, respectively.
The statistical factor SM

if = SM
f i reads

SM
if = 6(2s + 1)(2s′ + 1)

×
{

J 1 J ′

s′ l s

}2 {
1 1

2
1
2

1
2 s′ s

}2

. (91)

For l = 0 transitions, SM
if = 1. For equal quark masses m,

the overlap integral Mif is given by

Mif = (1 + κQ)

×
∫ ∞

0
drunl(r)u

′
n′l(r)j0

(
Eγ r

2

)
, (92)

where jn are spherical Bessel functions and κQ is the anom-
alous magnetic moment of a heavy quarkonium QQ̄. In pN-
RQCD, the quantity 1 + κQ is the Wilson coefficient of the
operator S†σ · eQBem/(2m)S, where Bem is the magnetic
field and S is a QQ̄ color-singlet field.

Electric transitions do not change the quark spin. Transi-
tions that change the orbital angular momentum by one unit
are called electric dipole, or E1, transitions. In the nonrela-
tivistic limit, the spin-averaged electric transition rate be-
tween an initial state i = n 2s+1lJ and a final state f =
n′ 2s′+1l′J ′ (l = l′ ± 1) is

Γ
(
i

E1−→ γ + f
)
= 4

3
αe2

QE3
γ (2J ′ + 1)SE

if |Eif |2, (93)

where the statistical factor SE
if = SE

f i is

SE
if = max (l, l′)

{
J 1 J ′

l′ s l

}2

. (94)

The overlap integral Eif for equal quark masses m is given
by

Eif = 3
Eγ

∫ ∞

0
drunl(r)un′l′(r)

×
[

Eγ r

2
j0

(
Eγ r

2

)
− j1

(
Eγ r

2

)]
. (95)

Since the leading-order operator responsible for the elec-
tric transition does not undergo renormalization, the elec-
tric transition rate does not depend on a Wilson coefficient,
analogous to the case of the quarkonium magnetic moment
appearing in the magnetic transitions.

If the photon energy is smaller than the typical inverse
radius of the quarkonium, we may expand the overlap in-
tegrals in Eγ r , generating electric and magnetic multipole
moments. At leading order in the multipole expansion, the
magnetic overlap integral reduces to Mif = δnn′ . Transi-
tions for which n = n′ are called allowed M1 transitions,
transitions for which n ≠ n′ are called hindered transitions.
Hindered transitions happen only because of higher-order
corrections and are suppressed by at least v2 with respect to
the allowed ones. At leading order in the multipole expan-
sion the electric overlap integral reduces to

Eif =
∫ ∞

0
drunl(r)run′l′(r). (96)

Note that E1 transitions are more copiously observed than
allowed M1 transitions, because the rates of the electric
transitions are enhanced by 1/v2 with respect to the mag-
netic ones. Clearly, the multipole expansion is always al-
lowed for transitions between states with the same princi-
pal quantum numbers (Eγ ∼ mv4 or mv3 ≪ mv) or with
contiguous principal quantum numbers (Eγ ∼ mv2 ≪ mv).
For transitions that involve widely separated states, the hi-
erarchy Eγ ≪ mv may not be realized. For example, in
Υ (3S) → γ ηb(1S), we have Eγ ≈ 921 MeV, which is
smaller than the typical momentum transfer in the ηb(1S),
about 1.5 GeV [175], but may be comparable to or larger
than the typical momentum transfer in the Υ (3S). On the
other hand, in ψ(2S) → γχc1, we have Eγ ≈ 171 MeV,
which is smaller than the typical momentum transfer in both
the ψ(2S) and the χc1.

Beyond the nonrelativistic limit, (90) and (93) get cor-
rections. These are radiative corrections counted in powers
of αs(m) and relativistic corrections counted in powers of v.
These last ones include proper relativistic corrections of the
type (mv)2/m2, recoil corrections and, for weakly coupled
quarkonia, also corrections of the type ΛQCD/(mv). Finally,
we also have corrections of the type Eγ /(mv) that involve
the photon energy. In the charmonium system, v2 ≈ 0.3, and
corrections may be as large as 30%. Indeed, a negative cor-
rection of about 30% is required to bring the nonrelativistic
prediction of B(J/ψ → γ ηc(1S)), which is about 3%, close
to the experimental value, which is about 2%. We will see
that this is actually the case. In the bottomonium system,
v2 ≈ 0.1 and corrections may be as large as 10%.
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Discovery of ηb
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FIG. 2: (a) Inclusive photon spectrum in the region 0.50 <
Eγ < 1.1 GeV. The component PDFs determined from the fit
are overlaid on the data points. A prominent χbJ (2P ) peak is
clearly seen. The dashed line corresponds to the non-peaking
background component. (b) Inclusive photon spectrum af-
ter subtracting the non-peaking background, with PDFs for
χbJ (2P ) peak (solid), ISR Υ (1S) (dot), ηb signal (dash) and
the sum of all three (solid). (c) Inclusive photon spectrum
after subtracting all components except the ηb signal. The
CB function shape describes the data points well.

from the fit is 147/113 = 1.3. Finally Figure 2(c) shows
the data points with all components except the ηb signal
subtracted, overlaid with the ηb signal PDF. The fitted ηb

signal yield is 19200±2000±2100 events, where the first
error is statistical and the second systematic. A total
systematic uncertainty of 11% is estimated by varying
the Breit-Wigner width in the ηb PDF to 5, 15, and 20
MeV, setting the ISR Υ (1S) component to ±1 σ of the
nominal rate, and varying the PDF parameters fixed in
the fit by ±1 σ. The largest contribution (10%) is from
the ηb width variation.

The ηb signal significance is estimated using the ratio
log(Lmax/L0), where Lmax and L0 are the likelihood val-
ues obtained from the nominal fit and from a fit with the
ηb PDF removed, respectively. Fits have been performed
where the parameters entering the systematic uncertain-
ties have been varied within their errors. Data have then
been fitted with all parameters simultaneously moved by
one standard deviation in the direction of lower signifi-
cance. This conservative approach yields a signal signif-
icance greater than 10 standard deviations.

As a cross check, we also perform a fit where the yield
of the ISR Υ (1S) component is left free, and we obtain
24800±2300 events for this component. This is consistent
with the estimate using the below-Υ (4S) data and pro-
vides an important validation of the χbJ (2P ) line shape
parameterization. The yield and peak position of the ηb

signal from this fit are unchanged.
The Eγ signal peak value from the fit is 917.4+2.1

−2.8 MeV.
We apply a photon energy calibration shift of 3.8 ± 2.0
MeV, obtained by comparing the fitted position of the
χbJ(2P ) peak to the known PDG value. After including
an additional systematic uncertainty of 1.3 MeV from
the fit variations described above, we obtain a value of
Eγ = 921.2+2.1

−2.8 ± 2.4 MeV for the ηb signal.
The ηb mass derived from the Eγ signal is M(ηb) =

9388.9+3.1
−2.3 ± 2.7 MeV/c2. Using the PDG value of

9460.3 ± 0.3 MeV/c2 for the Υ (1S) mass, we determine
the Υ (1S)-ηb mass splitting to be 71.4+2.3

−3.1±2.7 MeV/c2.
The value we measure for the splitting is larger than

most predictions based on potential models [2], but rea-
sonably in agreement with predictions from lattice calcu-
lations [13]. The mass splitting between the Υ (1S) and
the ηb(1S) is a key ingredient in many theoretical cal-
culations. The precision of our measurement will allow,
among others, a more precise determination of the lattice
spacing [13] and new precision determinations of αs [14].

We estimate the branching fraction by correcting the
signal yield with the reconstruction efficiency (ϵ) from
simulated signal MC events, and then dividing it by the
number of Υ (3S) events in the data sample. The branch-
ing fraction of the decay Υ (3S) → γ ηb is found to be
(4.8±0.5±1.2)×10−4, where the first uncertainty is sta-
tistical and the second systematic. The systematic uncer-
tainty of 25% comes from uncertainties in the signal yield
(11%) and ϵ (22%). The latter is obtained by comparing

BaBar Collaboration, PRL 101, 071801 (2008)
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Emerging Message

• Heavy quarkonia systems provide an opportunity to study the 
QCD interaction between two quarks 

• There is little debate about the quark content and spin 
configuration of the lowest lying heavy quarkonium states

• Puzzles:

• Strong decays of quarkonium to light quarks

• Excited spectrum of quarkonium

14
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• Directly produce J/ψ or ψ’ in  
e+e- collisions

• study spectrum and 
transitions

• spectrum of low-lying 
charmonium states and 
transitions between them 
seem understandable

• Surprises:

• decays to light quarks 

• excited charmonium 
spectrum

• Handling light quark degrees of 
freedom in QCD is challenging

15
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Surprises in Strong Decays

• Naive picture of strong decay

• J/ψ and ψ’ are very similar

• same JPC

• ψ’ is a radial excitation of  
J/ψ

• How does the initial state 
influence which light quark 
hadrons are produced in the 
final state?

16

J/ψ or ψ’

J/ψ or ψ’
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• Measure:

• Existing measurements of R1 consistent 
with expected mechanism and known η/
η’ mixing

• R2 expected to be equal to R1

17

J/ψ,ψ’→γ(η, η’)

Rn �
B(⇤(nS)⇥ �⇥)
B(⇤(nS)⇥ �⇥�)

CLEO Collaboration
PRD 79, 111101(R) (2009)

“Cut and count” analysis in region of meson mass

η or η’J/ψ or ψ’
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J/ψ,ψ’→γ(η, η’)

Results:

Why is ψ(2S)→γη strongly suppressed?
CLEO Collaboration

PRD 79, 111101(R) (2009)
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3π Decays of J/ψ and ψ’

• In the naive picture both decays should be very 
similar

• cc annihilation

• same parent JPC

• hadronization into 3π at about the same 
energy scale

• The two Dalitz plots couldn’t look any more 
different!

• J/ψ is dominated by ρ

• ψ’ is strongly populated by higher mass 
states absent in J/ψ decay

19

J/ψ→π+π-π0

ψ’→π+π-π0

J/ψ or ψ’

ρ

?

cut to remove 
background

BESIII, PLB 710, 594 (2012)
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Outline

1. Overview and Motivation

2. Spectroscopy of Heavy Quark Systems

2.1. Low lying quarkonium:  a QCD laboratory

2.2. Excited quarkonium:  a QCD puzzle

3. Spectroscopy of Light Quark Systems

4. Summary and Outlook:  Present and Future Facilities
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Excited Charmonium Spectrum

• Center of spectroscopy 
activity in the last 
decade

• Simplicity of 
charmonium system 
makes it easy to notice 
unusual states

21
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Table 9 As in Table 4, but for new unconventional states in the cc̄ and
bb̄ regions, ordered by mass. For X(3872), the values given are based
only upon decays to π+π−J/ψ . X(3945) and Y (3940) have been sub-

sumed under X(3915) due to compatible properties. The state known
as Z(3930) appears as the χc2(2P ) in Table 4. See also the reviews in
[81–84]

State m (MeV) Γ (MeV) J PC Process (mode) Experiment (#σ ) Year Status

X(3872) 3871.52 ± 0.20 1.3 ± 0.6 1++/2−+ B → K(π+π−J/ψ) Belle [85, 86] (12.8), BABAR [87] (8.6) 2003 OK

(<2.2) pp̄ → (π+π−J/ψ) + · · · CDF [88–90] (np), DØ [91] (5.2)

B → K(ωJ/ψ) Belle [92] (4.3), BABAR [93] (4.0)

B → K(D∗0D̄0) Belle [94, 95] (6.4), BABAR [96] (4.9)

B → K(γ J/ψ) Belle [92] (4.0), BABAR [97, 98] (3.6)

B → K(γψ(2S)) BABAR [98] (3.5), Belle [99] (0.4)

X(3915) 3915.6 ± 3.1 28 ± 10 0/2?+ B → K(ωJ/ψ) Belle [100] (8.1), BABAR [101] (19) 2004 OK

e+e− → e+e−(ωJ/ψ) Belle [102] (7.7)

X(3940) 3942+9
−8 37+27

−17 ??+ e+e− → J/ψ(DD̄∗) Belle [103] (6.0) 2007 NC!

e+e− → J/ψ (. . .) Belle [54] (5.0)

G(3900) 3943 ± 21 52 ± 11 1−− e+e− → γ (DD̄) BABAR [27] (np), Belle [21] (np) 2007 OK

Y (4008) 4008+121
− 49 226 ± 97 1−− e+e− → γ (π+π−J/ψ) Belle [104] (7.4) 2007 NC!

Z1(4050)+ 4051+24
−43 82+51

−55 ? B → K(π+χc1(1P )) Belle [105] (5.0) 2008 NC!

Y (4140) 4143.4 ± 3.0 15+11
− 7 ??+ B → K(φJ/ψ) CDF [106, 107] (5.0) 2009 NC!

X(4160) 4156+29
−25 139+113

−65 ??+ e+e− → J/ψ(DD̄∗) Belle [103] (5.5) 2007 NC!

Z2(4250)+ 4248+185
− 45 177+321

− 72 ? B → K(π+χc1(1P )) Belle [105] (5.0) 2008 NC!

Y (4260) 4263 ± 5 108 ± 14 1−− e+e− → γ (π+π−J/ψ) BABAR [108, 109] (8.0) 2005 OK

CLEO [110] (5.4)

Belle [104] (15)

e+e− → (π+π−J/ψ) CLEO [111] (11)

e+e− → (π0π0J/ψ) CLEO [111] (5.1)

Y (4274) 4274.4+8.4
−6.7 32+22

−15 ??+ B → K(φJ/ψ) CDF [107] (3.1) 2010 NC!

X(4350) 4350.6+4.6
−5.1 13.3+18.4

−10.0 0,2++ e+e− → e+e−(φJ/ψ) Belle [112] (3.2) 2009 NC!

Y (4360) 4353 ± 11 96 ± 42 1−− e+e− → γ (π+π−ψ(2S)) BABAR [113] (np), Belle [114] (8.0) 2007 OK

Z(4430)+ 4443+24
−18 107+113

− 71 ? B → K(π+ψ(2S)) Belle [115, 116] (6.4) 2007 NC!

X(4630) 4634+ 9
−11 92+41

−32 1−− e+e− → γ (Λ+
c Λ−

c ) Belle [25] (8.2) 2007 NC!

Y (4660) 4664 ± 12 48 ± 15 1−− e+e− → γ (π+π−ψ(2S)) Belle [114] (5.8) 2007 NC!

Yb(10888) 10888.4 ± 3.0 30.7+8.9
−7.7 1−− e+e− → (π+π−Υ (nS)) Belle [37, 117] (3.2) 2010 NC!

chain D0 → φK0
S , φ → K+K−, K0

S → π+π−, and is lim-
ited by statistics. Despite all these advances, the D∗0D̄0

mass threshold test remains ambiguous, with m[X(3872)]−
[m(D∗0) + m(D0)] = −0.42 ± 0.39 MeV. This limits the
hypothetical D∗0D̄0 binding energy to be <0.92 MeV at
90% CL and does not foreclose the possibility that the
X(3872) is above D∗0D̄0 threshold. Further clarity here
would require much more precise mass measurements for
both the X and the D0.

Both Belle and BABAR have reported X(3872) signals
in the D∗0D̄0 final state with branching fractions about

ten times higher than for π+π−J/ψ . Both used D∗0 →
D0π0 and D0γ decays, both selected and kinematically
constrained a D∗0 candidate in each event, and both per-
formed unbinned maximum-likelihood fits to the D∗0D̄0

mass. (Belle’s fit is two-dimensional, the second dimension
being a B-meson-consistency kinematic variable; BABAR cuts
on B-meson consistency.) Both results appear in Table 10.
(An earlier Belle publication [94] used a dataset smaller by
one-third than in [95], made no D∗0-mass constraint, and
measured a mass value of 3875.2 ± 0.7+0.3

−1.6 ± 0.8 MeV.)
Belle [95] fit to a conventional Breit–Wigner signal shape
convolved with a Gaussian resolution function. BABAR [96]

EPJ, C71 1534 (2011)
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Away from flavor thresholds, measured R values are con-
sistent with the three-color quark model predictions plus
terms governed by QCD and the running of αs(Q

2). Reso-
nant states in the vicinity of flavor thresholds can be stud-
ied with fits of measured R distributions. As a part of a
study of open charm cross sections in the region from 3.97–
4.26 GeV, CLEO [16] published radiatively corrected R-
values as shown in Fig. 2. These are in good agreement
with earlier measurements [12, 13], which are also shown,
demonstrating that in this energy range R values are reason-
ably well-vetted experimentally.

The extraction of resonance parameters from such R

measurements, however, has evolved in complexity, causing
systematic movement in some of the parameters over time.
The latest BES [15] fit to their R-scan data is more sophisti-
cated than previous efforts and includes the effects of inter-
ference and relative phases, as shown in Fig. 3 and Table 1.
To take into account interference, BES relied on model pre-
dictions for branching fractions of ψ states into all possi-
ble two-body charm meson final states. Thus the measured
parameters from this fit still include some model uncertain-
ties which are difficult to estimate. Other systematic uncer-
tainties are estimated using alternative choices and combina-
tions of Breit–Wigner forms, energy dependence of the full
width, and continuum charm background. It was found that
the results are sensitive to the form of the energy-dependent
total width but are not sensitive to the form of background.

In a separate analysis, BES [19] fit their R data from
3.65–3.90 GeV, finding a 7σ preference for two interfer-
ing lineshapes peaked near 3763 and 3781 MeV relative to
a single such shape for the ψ(3770), although other sources
for the observed distortion of a pure D-wave Breit–Wigner
are possible (see also Sect. 3.4.4). A very recent preliminary
analysis of KEDR [20] e+e− scan data near the ψ(3770)

Fig. 2 Measurements of R, including radiative corrections, in the open
charm region. From Crystal Ball [12], BES [13], and CLEO [16].
Adapted from [16] with kind permission, copyright (2009) The Amer-
ican Physical Society

applies an extended vector dominance model and includes
interference with the tail of the ψ(2S) resonance, conclud-
ing that the latter interference causes a significant shift up-
ward in the fitted peak of the ψ(3770) as compared to most
previous fits, including those of BES. The KEDR measure-
ments are not consistent with the two-peak distortion seen
by BES.

For determination of the resonance parameters in the
open charm region, inclusive hadronic cross section mea-
surements appear not to supply enough information to deter-

Fig. 3 From BES [15], measured R values from data (dots with error
bars) and curves showing the best fit (solid) and the contributions of
its components: continuum background (long dashed), individual res-
onance (dotted), interference (dash-dot-dot), and the summation of the
nonbackground curves (short dashed). Adapted from [15] with kind
permission, copyright (2008) Elsevier

Table 1 The resonance parameters of the high-mass charmonia from
the BES global fit [15] together with the values from PDG04 [17],
Seth [14], and PDG08 [18]

Resonance m (MeV) Γtot (MeV) δ (◦) Ref.

ψ(3770) 3769.9 ± 2.5 23.6 ± 2.7 PDG04 [17]

3771.1 ± 2.4 23.0 ± 2.7 Seth [14]

3772.0 ± 1.9 30.4 ± 8.5 0 BES [15]

3772.92 ± 0.35 27.3 ± 1.0 PDG08 [18]

ψ(4040) 4040 ± 1 52 ± 10 PDG04 [17]

4039 ± 1.0 80 ± 10 Seth [14]

4039.6 ± 4.3 84.5 ± 12.3 130 ± 46 BES [15]

ψ(4160) 4159 ± 20 78 ± 20 PDG04 [17]

4153 ± 3 103 ± 8 Seth [14]

4191.7 ± 6.5 71.8 ± 12.3 293 ± 57 BES [15]

ψ(4415) 4415 ± 6 43 ± 15 PDG04 [17]

4421 ± 4 62 ± 20 Seth [14]

4415.1 ± 7.9 71.5 ± 19.0 234 ± 88 BES [15]
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Table 1 The resonance parameters of the high-mass charmonia from
the BES global fit [15] together with the values from PDG04 [17],
Seth [14], and PDG08 [18]

Resonance m (MeV) Γtot (MeV) δ (◦) Ref.

ψ(3770) 3769.9 ± 2.5 23.6 ± 2.7 PDG04 [17]

3771.1 ± 2.4 23.0 ± 2.7 Seth [14]

3772.0 ± 1.9 30.4 ± 8.5 0 BES [15]

3772.92 ± 0.35 27.3 ± 1.0 PDG08 [18]

ψ(4040) 4040 ± 1 52 ± 10 PDG04 [17]

4039 ± 1.0 80 ± 10 Seth [14]
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See EPJ, C71 1534 (2011) for details
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predicted, discovered

predicted, undiscovered

unpredicted, discovered

Z(3900)±

Z(4020)±

Charmonium
Landscape

• Key players:

• Y(4260):  ???

• J/ψ:  Sq=1 L=0, JPC = 1- -

• hc:  Sq=0 L=1, JPC = 1+-

• Key transitions:

• Y→ππJ/ψ

• Y→ππhc

• Study of Y(4260) led to 
discovery of charged Z(3900)± 
and Z(4020)± structures

23

Quark Model Prediction:   
Barnes et al., PRD 72, 054026 (2005)

(approximate — not all XYZ candidates shown!)
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The Y(4260)
• 1- - state produced in e+e-

• mass greater than 2M(D) so 
we expect OZI favored 
decay:

24
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c

c
u

u

D

D

c

B(Y (4260) ! DD̄)

B(Y (4260) ! ⇡⇡J/ )
< 4

CLEO Collaboration, PRD 80, 072001 (2009)

compare with ≈500 for ψ(3770)
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Belle Collaboration, PRL 110, 252002 (2013)
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Exercise:  Y(4260)→ππJ/ψ

25

TABLE I: For each mode e+e− → X, for three center-of-mass regions: the detection efficiency, ϵ;

the number of signal [background] events in data, Ns [Nb]; the cross-section σ(e+e− → X); and
the branching fraction of ψ(4040) or ψ(4160) to X, B. Upper limits are at 90% CL. ’–’ indicates
that the channel is kinematically or experimentally inaccessible.

√
s = 3970− 4060 MeV

√
s = 4120 − 4200 MeV

√
s = 4260 MeV

Channel ϵ Ns Nb σ B ϵ Ns Nb σ B ϵ Ns Nb σ

(%) (pb) (10−3) (%) (pb) (10−3) (%) (pb)

π+π−J/ψ 37 12 3.7 9+5
−4±2 < 4 38 13 3.7 8+4

−3±2 < 4 38 37 2.4 58+12
−10±4

π0π0J/ψ 20 1 1.9 < 8 < 2 21 5 0.9 6+5
−3±1 < 3 22 8 0.3 23+12

−8 ±1

K+K−J/ψ – 7 1 0.07 < 20 < 5 21 3 0.07 9+9
−5±1

ηJ/ψ 19 12 9.5 < 29 < 7 16 15 8.8 < 34 < 8 16 5 2.7 < 32

π0J/ψ 23 2 < 10 < 2 22 1 < 6 < 1 22 1 < 12

η ′J/ψ – 11 4 2.5 < 23 < 5 11 0 1.5 < 19

π+π−π0J/ψ 21 1 < 8 < 2 21 0 < 4 < 1 22 0 < 7

ηηJ/ψ – – 6 1 < 44

π+π−ψ(2S) – 12 0 < 15 < 4 19 0 < 20

ηψ(2S) – – 15 0 < 25

ωχc0 – – 9 11 11.5 < 234

γχc1 26 9 8.1 < 50 < 11 26 11 8.7 < 45 < 10 26 1 3.3 < 30

γχc2 25 6 8.0 < 76 < 17 26 10 8.6 < 79 < 18 27 4 3.3 < 90

π+π−π0χc1 6 0 < 47 < 11 8 0 < 26 < 6 9 0 < 46

π+π−π0χc2 4 0 < 141 < 32 8 0 < 56 < 13 9 0 < 96

π+π−φ 17 26 3.0 < 12 < 3 17 17 6.0 < 5 < 1 18 7 5.5 < 5

8

34. Clebsch-Gordan coefficients 010001-1

34. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS,
AND d FUNCTIONS

Note: A square-root sign is to be understood over every coefficient, e.g., for −8/15 read −
√

8/15.
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Figure 34.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The
Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957),
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Note: A square-root sign is to be understood over every coefficient, e.g., for −8/15 read −
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Figure 34.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The
Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957),
and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974). The coefficients
here have been calculated using computer programs written independently by Cohen and at LBNL.

What do the first two lines of this table
suggest about the isospin of Y(4260)?  Could Y(4260) be the 

neutral member of an isotriplet of tetraquarks?

from CLEO-c, PRL 96, 162003 (2003)
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Figure 16. Charmonium spectrum up to around 4.5 GeV showing only JPC channels in which we
identify candidates for hybrid mesons. Red (dark blue) boxes are states suggested to be members
of the lightest (first excited) hybrid supermultiplet as described in the text and green boxes are
other states, all calculated on the 243 volume. As in Fig. 14, black lines are experimental values
and the dashed lines indicate the lowest non-interacting DD̄ and DsD̄s levels.

multi-meson states [24, 37].

7.2 Exotic mesons and hybrid phenomenology

In Fig. 16 we show the charmonium spectrum for the subset of JPC channels in which,

by considering operator-state overlaps, we identify candidate hybrid mesons. A state is

suggested to be dominantly hybrid in character if it has a relatively large overlap onto an

operator proportional to the commutator of two covariant derivatives, the field-strength

tensor. We note that within QCD non-exotic hybrids can mix with conventional charmonia.

We find that the lightest exotic meson has JPC = 1�+ and is nearly degenerate with the

three states observed in the negative parity sector suggested to be non-exotic hybrids,

(0, 2)�+, 1��. Higher in mass there is a pair of states, (0, 2)+�, and a second 2+� state

slightly above this. Not shown on the figures, an excited 1�+ appears at around 4.6 GeV,

there is an exotic 3�+ state at around 4.8 GeV and the lightest 0�� exotic does not appear

until above 5 GeV.

The observation that there are four hybrid candidates nearly degenerate with JPC =

(0, 1, 2)�+, 1��, coloured red in Fig. 16, is interesting. This is the pattern of states pre-

dicted to form the lightest hybrid supermultiplet in the bag model [38, 39] and the P-wave

quasiparticle gluon approach [40], or more generally where a quark-antiquark pair in S-

wave is coupled to a 1+� chromomagnetic gluonic excitation as shown Table 5. This is not

the pattern expected in the flux-tube model [41] or with an S-wave quasigluon. In addition,

the observation of two 2+� states, with one only slightly heavier than the other, appears

to rule out the flux-tube model which does not predict two such states so close in mass.

The pattern of JPC of the lightest hybrids is the same as that observed in light meson sec-

tor [11, 31]. They appear at a mass scale of 1.2� 1.3 GeV above the lightest conventional

– 25 –

L. Liu et al. [Hadron Spectrum Collab.], JHEP07 126 (2012)
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Yð4260Þ state does not have a natural place within the
quark model of charmonium [6]. Furthermore, while being
well above the D !D threshold, the Yð4260Þ shows strong
coupling to the !þ!$J=c final state [7], but relatively
small coupling to open charm decay modes [8–12]. These
properties perhaps indicate that the Yð4260Þ state is not a
conventional state of charmonium [13].

A similar situation has recently become apparent in
the bottomonium system above the B !B threshold, where
there are indications of anomalously large couplings
between the "ð5SÞ state [or perhaps an unconventional
bottomonium state with similar mass, the Ybð10890Þ]
and the !þ!$"ð1S; 2S; 3SÞ and !þ!$hbð1P; 2PÞ final
states [14,15]. More surprisingly, substructure in these
!þ!$"ð1S; 2S; 3SÞ and !þ!$hbð1P; 2PÞ decays indi-
cates the possible existence of charged bottomoniumlike
states [16], which must have at least four constituent
quarks to have a nonzero electric charge, rather than the
two in a conventional meson. By analogy, this suggests
there may exist interesting substructure in the Yð4260Þ !
!þ!$J=c process in the charmonium region.

In this Letter, we present a study of the process eþe$ !
!þ!$J=c at a center-of-mass (c.m.) energy of

ffiffiffi
s

p ¼
ð4:260& 0:001Þ GeV, which corresponds to the peak of
the Yð4260Þ cross section. We observe a charged structure
in the !&J=c invariant mass spectrum, which we refer to
as the Zcð3900Þ. The analysis is performed with a 525 pb$1

data sample collected with the BESIII detector, which is
described in detail in Ref. [17]. In the studies presented
here, we rely only on charged particle tracking in the main
drift chamber and energy deposition in the electromagnetic
calorimeter (EMC).

The GEANT4-based Monte Carlo (MC) simulation soft-
ware, which includes the geometric description of the
BESIII detector and the detector response, is used to
optimize the event selection criteria, determine the detec-
tion efficiency, and estimate backgrounds. For the signal
process, we use a sample of eþe$ ! !þ!$J=c MC
events generated assuming the !þ!$J=c is produced
via Yð4260Þ decays, and using the eþe$ ! !þ!$J=c
cross sections measured by Belle [3] and BABAR [5].
The !þ!$J=c substructure is modelled according to the

experimentally observed Dalitz plot distribution presented
in this analysis. ISR is simulated with KKMC [18] with a
maximum energy of 435 MeV for the ISR photon, corre-
sponding to a !þ!$J=c mass of 3:8 GeV=c2.
For eþe$ ! !þ!$J=c events, the J=c candidate is

reconstructed with lepton pairs (eþe$ or "þ"$). Since
this decay results in a final state with four charged parti-
cles, we first select events with four good charged tracks
with net charge zero. For each charged track, the polar
angle in the main drift chamber must satisfy j cos#j< 0:93,
and the point of closest approach to the eþe$ interaction
point must be within &10 cm in the beam direction and
within 1 cm in the plane perpendicular to the beam direc-
tion. Since pions and leptons are kinematically well sepa-
rated in this decay, charged tracks with momenta larger
than 1:0 GeV=c in the lab frame are assumed to be leptons,
and the others are assumed to be pions. We use the energy
deposited in the EMC to separate electrons from muons.
For muon candidates, the deposited energy in the EMC
should be less than 0.35 GeV, while for electrons, it should
be larger than 1.1 GeV. The efficiencies of these require-
ments are determined from MC simulation to be above
99% in the EMC sensitive region.
In order to reject radiative Bhabha and radiative dimuon

($eþe$=$"þ"$) backgrounds associated with a photon-
conversion, the cosine of the opening angle of the pion
candidates, which are true eþe$ pairs in the case of
background, is required to be less than 0.98. In the eþe$

mode, the same requirement is imposed on the !&e'

opening angles. This restriction removes less than 1% of
the signal events.
The lepton pair and the two pions are subjected to a four-

constraint (4C) kinematic fit to the total initial four-
momentum of the colliding beams in order to improve
the momentum resolution and reduce the background.
The %2 of the kinematic fit is required to be less than 60.
After imposing these selection criteria, the invariant

mass distributions of the lepton pairs are shown in Fig. 1.
A clear J=c signal is observed in both the eþe$ and
"þ"$ modes. There are still remaining eþe$ !
!þ!$!þ!$, and other QED backgrounds, but these can
be estimated using the events in the J=c mass sideband.
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FIG. 1 (color online). The distributions ofMð"þ"$Þ (left panel) andMðeþe$Þ (right panel) after performing a 4C kinematic fit and
imposing all selection criteria. Dots with error bars are data and the curves are the best fit described in the text.
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The final selection efficiency is ð53:8" 0:3Þ% for !þ!%

events and ð38:4" 0:3Þ% for eþe% events, where the
errors are from the statistics of the MC sample. The main
factors affecting the detection efficiencies include the de-
tector acceptances for four charged tracks and the require-
ment on the quality of the kinematic fit adopted. The lower
efficiency for eþe% events is due to final-state-radiation,
bremsstrahlung energy loss of eþe% pairs, and the EMC
deposit energy requirement.

To extract the number of "þ"%J=c signal events,
invariant mass distributions of the lepton pairs are
fit using the sum of two Gaussian functions with a
linear background term. The fits yield MðJ=c Þ ¼
ð3098:4" 0:2Þ MeV=c2 with 882" 33 signal events in
the !þ!% mode, and MðJ=c Þ¼ ð3097:9"0:3ÞMeV=c2

with 595" 28 signal events in the eþe% mode. Here the
errors are statistical only. The mass resolution is
3:7 MeV=c2 in the !þ!% mode and 4:0 MeV=c2 in the
eþe% mode.

The Born cross section is determined from the relation
#B ¼ ðNfit=Lintð1þ $Þ%BÞ, where Nfit is the number of
signal events from the fit;Lint is the integrated luminosity, %
is the selection efficiency obtained from a MC simulation,
B is the branching fraction of J=c ! ‘þ‘%, and
(1þ $) is the radiative correction factor, which is 0.818
according to a QED calculation [19]. The measured Born
cross section for eþe% ! "þ"%J=c is ð64:4" 2:4Þ pb in
the !þ!% mode and ð60:7" 2:9Þ pb in the eþe% mode.
The combinedmeasurement is#Bðeþe% ! "þ"%J=c Þ ¼
ð62:9" 1:9Þ pb.

Systematic errors in the cross sectionmeasurement come
from the luminosity measurement, tracking efficiency,
kinematic fit, background estimation, dilepton branching
fractions of the J=c , and Yð4260Þ decay dynamics.

The integrated luminosity of this data sample was mea-
sured using large angle Bhabha events, and has an esti-
mated uncertainty of 1.0%. The tracking efficiency
uncertainty is estimated to be 1% for each track from a
study of the control samples J=c ! "þ"%"0 and
c ð3686Þ ! "þ"%J=c . Since the luminosity is measured
using Bhabha events, the tracking efficiency uncertainty of
high momentum lepton pairs partly cancels in the calcu-
lation of the "þ"%J=c cross section. To be conservative,
we take 4% for both the eþe% and !þ!% modes.

The uncertainty from the kinematic fit comes from the
inconsistency between the data and MC simulation of the
track helix parameters. Following the procedure described
in Ref. [20], we take the difference between the efficiencies
with and without the helix parameter correction as the
systematic error, which is 2.2% in the !þ!% mode and
2.3% in the eþe% mode.

Uncertainties due to the choice of background shape and
fit range are estimated by varying the background function
from linear to a second-order polynomial and by extending
the fit range.

Uncertainties in the Yð4260Þ resonance parameters and
possible distortions of the Yð4260Þ line shape introduce
small systematic uncertainties in the radiative correction
factor and the efficiency. This is estimated using the differ-
ent line shapes measured by Belle [3] and BABAR [5]. The
difference in ð1þ $Þ% is 0.6% in both the eþe% and!þ!%

modes, and this is taken as a systematic error.
We use the observed Dalitz plot to generate Yð4260Þ !

"þ"%J=c events. To cover possible modelling inaccura-
cies, we conservatively take the difference between the
efficiency using this model and the efficiency using a phase
space model as a systematic error. The error is 3.1% in both
the !þ!% and the eþe% modes.
The uncertainty in BðJ=c ! ‘þ‘%Þ is 1% [21]. The

trigger simulation, the event start time determination, and
the final-state-radiation simulation are well understood; the
total systematic error due to these sources is estimated to
be less than 1%.
Assuming all of the sources are independent, the total

systematic error in the "þ"%J=c cross section measure-
ment is determined to be 5.9% for the !þ!% mode and
6.8% for the eþe% mode. Taking the correlations in errors
between the two modes into account, the combined sys-
tematic error is slightly less than 5.9%.
Intermediate states are studied by examining the Dalitz

plot of the selected "þ"%J=c candidate events. The J=c
signal is selected using 3:08<Mð‘þ‘%Þ< 3:12 GeV=c2

and the sideband using 3:00<Mð‘þ‘%Þ< 3:06 GeV=c2

or 3:14<Mð‘þ‘%Þ< 3:20 GeV=c2, which is three times
the size of the signal region. In total, a sample of 1595
"þ"%J=c events with a purity of 90% is obtained.
Figure 2 shows the Dalitz plot of events in the J=c

signal region, where there are structures in the "þ"%

system and evidence for an exotic charmoniumlike struc-
ture in the ""J=c system. The inset shows background
events from J=c mass sidebands (not normalized), where
no obvious structures are observed.
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FIG. 2. Dalitz distributions of M2ð"þ"%Þ vs M2ð"þJ=c Þ for
selected eþe% ! "þ"%J=c events in the J=c signal region.
The inset shows background events from the J=c mass side-
bands (not normalized).
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Figure 3 shows the projections of the Mð!þJ=c Þ,
Mð!$J=c Þ, and Mð!þ!$Þ distributions for the signal
events, as well as the background events estimated from
normalized J=c mass sidebands. In the !%J=c mass
spectrum, there is a significant peak at around
3:9 GeV=c2 [referred to as the Zcð3900Þ hereafter]. The
wider peak at low mass is a reflection of the Zcð3900Þ as
indicated from MC simulation, and shown in Fig. 3.
Similar structures are observed in the eþe$ and "þ"$

separated samples.
The !þ!$ mass spectrum shows nontrivial structure.

To test the possible effects of dynamics in the !þ!$ mass
spectrum on the !%J=c projection, we develop a parame-
trization for the !þ!$ mass spectrum that includes a
f0ð980Þ, #ð500Þ, and a nonresonant amplitude. An MC
sample generated with this parametrization adequately
describes the !þ!$ spectrum, as shown in Fig. 3, but
does not generate any peaking structure in the !%J=c
projection consistent with the Zcð3900Þ. We have also
tested D-wave !þ!$ amplitudes, which are not apparent
in the data, and they, also, do not generate peaks in the
!%J=c spectrum.

An unbinned maximum likelihood fit is applied to the
distribution of Mmaxð!%J=c Þ, the larger one of the two
mass combinations Mð!þJ=c Þ and Mð!$J=c Þ in each
event. The signal shape is parametrized as an S-wave Breit-
Wigner function convolved with a Gaussian with a mass
resolution fixed at the MC simulated value (4:2 MeV=c2).
The phase space factor p & q is considered in the partial
width, where p is the Zcð3900Þ momentum in the Yð4260Þ
c.m. frame and q is the J=c momentum in the Zcð3900Þ
c.m. frame. The background shape is parametrized as
a=ðx$ 3:6Þb þ cþ dx, where a, b, c, and d are free
parameters and x ¼ Mmaxð!%J=c Þ. The efficiency curve
is considered in the fit and the possible interference
between the signal and background is neglected. Figure 4
shows the fit results; the fit yields a mass of ð3899:0%
3:6Þ MeV=c2, and a width of ð46% 10Þ MeV. The good-
ness of the fit is found to be $2=ndf ¼ 32:6=37 ¼ 0:9.

The number of Zcð3900Þ events is determined to be
N½Zcð3900Þ%) ¼ 307% 48. The production ratio is

calculated to be R ¼ #ðeþe$ ! !%Zcð3900Þ* !
!þ!$J=c Þ=#ðeþe$ ! !þ!$J=c Þ ¼ ð21:5 % 3:3Þ%,
where the efficiency correction has been applied. The
statistical significance is calculated by comparing the fit
likelihoods with and without the signal. Besides the nomi-
nal fit, the fit is also performed by changing the fit range,
the signal shape, or the background shape. In all cases, the
significance is found to be greater than 8#.
Fitting the Mð!þJ=c Þ and Mð!$J=c Þ distributions

separately, one obtains masses, widths, and production
rates of the Zcð3900Þþ and Zcð3900Þ$ that agree with
each other within statistical errors. Dividing the sample
into two different Mð!þ!$Þ regions [below and above
M2ð!þ!$Þ ¼ 0:7 GeV2=c4] allows us to check the
robustness of the Zcð3900Þ signal in the presence of two
different sets of interfering !þ!$J=c amplitudes. In both
samples, the Zcð3900Þ is significant and the observed mass
can shift by as much as 14% 5 MeV=c2 from the nominal
fit, and the width can shift by ð20% 11Þ MeV. We attribute
the systematic shifts in mass and width to interference
between the Zcð3900Þ! and ð!þ!$ÞJ=c amplitudes. In
fitting the !%J=c projection of the Dalitz plot, our analy-
sis averages over the entire !þ!$ spectrum, and our
measurement of the Zcð3900Þ mass, width, and produc-
tion fraction neglects interference with other !þ!$J=c
amplitudes.
The systematic errors for the resonance parameters of

the Zcð3900Þ come from the mass calibration, parametri-
zation of the signal and background shapes, and the mass
resolution. The uncertainty from the mass calibration can
be estimated using the difference between the measured
and known J=c masses (reconstructed from eþe$

and "þ"$) and D0 masses (reconstructed from K$!þ).
The differences are ð1:4% 0:2Þ MeV=c2 and $ð0:7%
0:2Þ MeV=c2, respectively. Since our signal topology has
one low momentum pion, as inD0 decay, and a pair of high
momentum tracks from the J=c decay, we assume these
differences added in quadrature is the systematic error of
the Zcð3900Þ mass measurement due to tracking. Doing a
fit by assuming a P wave between the Zcð3900Þ and the !,
and between the J=c and ! in the Zcð3900Þ system, yields
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FIG. 3 (color online). One dimensional projections of the Mð!þJ=c Þ, Mð!$J=c Þ, and Mð!þ!$Þ invariant mass distributions in
eþe$ ! !þ!$J=c for data in the J=c signal region (dots with error bars), data in the J=c sideband region (shaded histograms), and
MC simulation results from #ð500Þ, f0ð980Þ, and nonresonant !þ!$ amplitudes (red dotted-dashed histograms). The pink blank
histograms show a MC simulation of the Zcð3900Þ signal with arbitrary normalization.
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Figure 3 shows the projections of the Mð!þJ=c Þ,
Mð!$J=c Þ, and Mð!þ!$Þ distributions for the signal
events, as well as the background events estimated from
normalized J=c mass sidebands. In the !%J=c mass
spectrum, there is a significant peak at around
3:9 GeV=c2 [referred to as the Zcð3900Þ hereafter]. The
wider peak at low mass is a reflection of the Zcð3900Þ as
indicated from MC simulation, and shown in Fig. 3.
Similar structures are observed in the eþe$ and "þ"$

separated samples.
The !þ!$ mass spectrum shows nontrivial structure.

To test the possible effects of dynamics in the !þ!$ mass
spectrum on the !%J=c projection, we develop a parame-
trization for the !þ!$ mass spectrum that includes a
f0ð980Þ, #ð500Þ, and a nonresonant amplitude. An MC
sample generated with this parametrization adequately
describes the !þ!$ spectrum, as shown in Fig. 3, but
does not generate any peaking structure in the !%J=c
projection consistent with the Zcð3900Þ. We have also
tested D-wave !þ!$ amplitudes, which are not apparent
in the data, and they, also, do not generate peaks in the
!%J=c spectrum.

An unbinned maximum likelihood fit is applied to the
distribution of Mmaxð!%J=c Þ, the larger one of the two
mass combinations Mð!þJ=c Þ and Mð!$J=c Þ in each
event. The signal shape is parametrized as an S-wave Breit-
Wigner function convolved with a Gaussian with a mass
resolution fixed at the MC simulated value (4:2 MeV=c2).
The phase space factor p & q is considered in the partial
width, where p is the Zcð3900Þ momentum in the Yð4260Þ
c.m. frame and q is the J=c momentum in the Zcð3900Þ
c.m. frame. The background shape is parametrized as
a=ðx$ 3:6Þb þ cþ dx, where a, b, c, and d are free
parameters and x ¼ Mmaxð!%J=c Þ. The efficiency curve
is considered in the fit and the possible interference
between the signal and background is neglected. Figure 4
shows the fit results; the fit yields a mass of ð3899:0%
3:6Þ MeV=c2, and a width of ð46% 10Þ MeV. The good-
ness of the fit is found to be $2=ndf ¼ 32:6=37 ¼ 0:9.

The number of Zcð3900Þ events is determined to be
N½Zcð3900Þ%) ¼ 307% 48. The production ratio is

calculated to be R ¼ #ðeþe$ ! !%Zcð3900Þ* !
!þ!$J=c Þ=#ðeþe$ ! !þ!$J=c Þ ¼ ð21:5 % 3:3Þ%,
where the efficiency correction has been applied. The
statistical significance is calculated by comparing the fit
likelihoods with and without the signal. Besides the nomi-
nal fit, the fit is also performed by changing the fit range,
the signal shape, or the background shape. In all cases, the
significance is found to be greater than 8#.
Fitting the Mð!þJ=c Þ and Mð!$J=c Þ distributions

separately, one obtains masses, widths, and production
rates of the Zcð3900Þþ and Zcð3900Þ$ that agree with
each other within statistical errors. Dividing the sample
into two different Mð!þ!$Þ regions [below and above
M2ð!þ!$Þ ¼ 0:7 GeV2=c4] allows us to check the
robustness of the Zcð3900Þ signal in the presence of two
different sets of interfering !þ!$J=c amplitudes. In both
samples, the Zcð3900Þ is significant and the observed mass
can shift by as much as 14% 5 MeV=c2 from the nominal
fit, and the width can shift by ð20% 11Þ MeV. We attribute
the systematic shifts in mass and width to interference
between the Zcð3900Þ! and ð!þ!$ÞJ=c amplitudes. In
fitting the !%J=c projection of the Dalitz plot, our analy-
sis averages over the entire !þ!$ spectrum, and our
measurement of the Zcð3900Þ mass, width, and produc-
tion fraction neglects interference with other !þ!$J=c
amplitudes.
The systematic errors for the resonance parameters of

the Zcð3900Þ come from the mass calibration, parametri-
zation of the signal and background shapes, and the mass
resolution. The uncertainty from the mass calibration can
be estimated using the difference between the measured
and known J=c masses (reconstructed from eþe$

and "þ"$) and D0 masses (reconstructed from K$!þ).
The differences are ð1:4% 0:2Þ MeV=c2 and $ð0:7%
0:2Þ MeV=c2, respectively. Since our signal topology has
one low momentum pion, as inD0 decay, and a pair of high
momentum tracks from the J=c decay, we assume these
differences added in quadrature is the systematic error of
the Zcð3900Þ mass measurement due to tracking. Doing a
fit by assuming a P wave between the Zcð3900Þ and the !,
and between the J=c and ! in the Zcð3900Þ system, yields
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FIG. 3 (color online). One dimensional projections of the Mð!þJ=c Þ, Mð!$J=c Þ, and Mð!þ!$Þ invariant mass distributions in
eþe$ ! !þ!$J=c for data in the J=c signal region (dots with error bars), data in the J=c sideband region (shaded histograms), and
MC simulation results from #ð500Þ, f0ð980Þ, and nonresonant !þ!$ amplitudes (red dotted-dashed histograms). The pink blank
histograms show a MC simulation of the Zcð3900Þ signal with arbitrary normalization.
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• Structure in π+J/ψ mass that does not arise from  
π+π- interactions
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Z(3900)± → π±J/ψ

• Narrow (≈50 MeV) and charged

• Not conventional charmonium:  tetraquark?

• Evidence of neutral partner  
[T. Xiao et al., PLB 727, 366 (2013)]

28

a mass difference of 2:1 MeV=c2, a width difference of
3.7 MeV, and production ratio difference of 2.6% absolute.
Assuming the Zcð3900Þ couples strongly with D !D# results
in an energy dependence of the total width [22], and the fit
yields a difference of 2:1 MeV=c2 for mass, 15.4 MeV for
width, and no change for the production ratio. We estimate
the uncertainty due to the background shape by changing to
a third-order polynomial or a phase space shape, varying
the fit range, and varying the requirements on the !2 of the
kinematic fit. We find differences of 3:5 MeV=c2 for mass,
12.1 MeV for width, and 7.1% absolute for the production
ratio. Uncertainties due to the mass resolution are esti-
mated by increasing the resolution determined by MC
simulations by 16%, which is the difference between the
MC simulated and measured mass resolutions of the J=c
and D0 signals. We find the difference is 1.0 MeV in the
width, and 0.2% absolute in the production ratio, which are
taken as the systematic errors. Assuming all the sources of
systematic uncertainty are independent, the total system-
atic error is 4:9 MeV=c2 for mass, 20 MeV for width and
7.5% for the production ratio.

In Summary, we have studied eþe% ! "þ"%J=c at a
c.m. energy of 4.26 GeV. The cross section is measured to
be ð62:9& 1:9& 3:7Þ pb, which agrees with the existing
results from the BABAR [5], Belle [3], and CLEO [4]
experiments. In addition, a structure with a mass of
ð3899:0& 3:6& 4:9Þ MeV=c2 and a width of ð46& 10&
20Þ MeV is observed in the "&J=c mass spectrum. This
structure couples to charmonium and has an electric
charge, which is suggestive of a state containing more
quarks than just a charm and anticharm quark. Similar
studies were performed in B decays, with unconfirmed
structures reported in the "&c ð3686Þ and "&!c1 systems
[23–26]. It is also noted that model-dependent calculations
exist that attempt to explain the charged bottomonium-
like structures which may also apply to the charmonium-
like structures, and there were model predictions of

charmoniumlike structures near the D !D# and D# !D#

thresholds [27].
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In summary, the cross section of eþe" ! !þ!"J=c is
measured from 3.8 to 5.5 GeV. The Yð4260Þ resonance is
observed and its resonant parameters are determined. In
addition, the Yð4008Þ state is confirmed. The intermediate
states in Yð4260Þ ! !þ!"J=c decays are also investi-
gated. A Zð3900Þ% state with a mass of ð3894:5% 6:6%
4:5Þ MeV=c2 and a width of ð63% 24% 26Þ MeV=c2 is
observed in the !%J=c mass spectrum with a statistical
significance larger than 5:2". This state is close to theD !D&

mass threshold; however, no enhancement is observed near
the D& !D& mass threshold. As the Zð3900Þ% state has a
strong coupling to charmonium and is charged, we con-
clude it cannot be a conventional c !c state.
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Note added.—Recently, we became aware of a Letter
from the BESIII Collaboration [23] that also reports on the
Zð3900Þ% at the same time.
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Study:
e+e-→π+π-J/ψ
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e+e-→π±(DD*)∓ at Ecm = 4260 MeV

• π angular distribution 
establishes JP = 1+

29

BESIII Collaboration, PRL 112, 022001 (2013)
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What is Z(3900)?

30
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How is it connected to Y(4260)?
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What is a Resonance?

31
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Y(4260) hybrid test?

• Lattice QCD predicts the hybrid 1- - state to have spin S = 0

32

Using LQCD Dudek et al. predict [PRD 79, 094504 (2009)]

rate is comparable 
or larger than

Potential “hybrid test” for Y(4260), but no experimental sensitivity…yet

??

Two decays that we can attempt to compare instead:

??

Y (4260) ! ⇡⇡J/ Y (4260) ! ⇡⇡hc

Yhybrid ! ��c0Yhybrid ! �⌘c



M. R. Shepherd 
NNPSS at MIT 

July 2016 (GeV)cmE
3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4

) (
pb

)
ψ

J/- π+ π(
σ

0
10
20
30
40
50
60
70
80

e+e-→π+π-hc

33

where a clear hc ! !"c signal is observed. To extract the
number of #þ#"hc signal events, the !"c mass spectrum
is fitted by using the MC simulated signal shape convolved
with a Gaussian function to reflect the mass resolution
difference (around 10%) between the data and MC simu-
lation, together with a linear background. The fit to the
4.26 GeV data is shown in Fig. 1. The tail in the high mass
side is due to the events with initial state radiation (ISR),
which is simulated well in MC, and its fraction is fixed in
the fit. At the energy points with large statistics (4.23, 4.26,
and 4.36 GeV), the fit is applied to the 16 "c decay modes
simultaneously, while, at the other energy points, we fit the
mass spectrum summed over all the "c decay modes. The
number of signal events (nobshc

) and the measured Born cross

section at each energy are listed in Table I. The #þ#"hc
cross section appears to be constant above 4.2 GeV with a
possible local maximum at around 4.23 GeV. This is in
contrast to the observed energy dependence in the eþe" !
#þ#"J=c channel which revealed a decrease of cross
sections at higher energies [2,17].

Systematic errors in the cross section measurement
mainly come from the luminosity measurement, the
branching fraction of hc ! !"c, the branching fraction
of "c ! Xi, the detection efficiency, the ISR correction
factor, and the fit. The integrated luminosity at each energy
point is measured by using large angle Bhabha events, and
it has an estimated uncertainty of 1.2%. The branching
fractions of hc ! !"c and "c ! Xi are taken from
Refs. [11,13]. The uncertainties in the detection efficiency
are estimated in the same way as described in
Refs. [13,16], and the error in the ISR correction is esti-
mated as described in Ref. [1]. Uncertainties due to the
choice of the signal shape, the background shape, the mass
resolution, and the fit range are estimated by varying the hc

and "c resonant parameters and line shapes in the MC
simulation, varying the background function from linear to
a second-order polynomial, varying the mass resolution
difference between data and MC simulation by one stan-
dard deviation, and by extending the fit range. Assuming
all of the sources are independent, the total systematic error
in the#þ#"hc cross section measurement is determined to
be between 7% and 9% depending on the energy, and to be
conservative we take 9% for all the energy points. The
uncertainty in Bðhc ! !"cÞ is 15.7% [14], common to all
energy points, and quoted separately in the cross section
measurement. Altogether, about 95% of the total system-
atic errors are common to all the energy points.
Intermediate states are studied by examining the

Dalitz plot of the selected #þ#"hc candidate events.
The hc signal is selected by using 3:518<M!"c

<
3:538 GeV=c2 and the sideband by using 3:490<M!"c

<
3:510 GeV=c2 or 3:560<M!"c

< 3:580 GeV=c2, which
is twice as wide as the signal region. Figure 2 shows the
Dalitz plot of the #þ#"hc candidate events summed over
all energies. While there are no clear structures in the
#þ#" system, there is clear evidence for an exotic char-
moniumlike structure in the #%hc system. Figure 3 shows
the projection of the M#%hc (two entries per event) distri-

bution for the signal events, as well as the background
events estimated from normalized hc mass sidebands.
There is a significant peak at around 4:02 GeV=c2 [the
Zcð4020Þ], and the wider peak at low masses is the reflec-
tion of the Zcð4020Þ. There are also some events at around
3:9 GeV=c2, which could be the Zcð3900Þ. The individual
data sets at 4.23, 4.26, and 4.36 GeV show similar
structures.
An unbinned maximum likelihood fit is applied to the

M#%hc distribution summed over the 16 "c decay modes.

The data at 4.23, 4.26, and 4.36 GeV are fitted simulta-
neously with the same signal function with common mass
and width. The signal shape is parametrized as a constant
width relativistic Breit-Wigner function convolved with a
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Z(4020)± → π±hc

• No Y(4260)-like peaking structure in π+π-hc cross section, 
which is comparable to peak in σ(π+π-J/ψ)

• Very narrow charged π±hc structure near DD* threshold

• Not conventional charmonium

34

Study:
e+e-→π+π-hc

Gaussian with a mass resolution determined from the data
directly. Assuming the spin parity of the Zcð4020Þ JP ¼
1þ, a phase space factor pq3 is considered in the partial
width, where p is the Zcð4020Þ momentum in the eþe%

c.m. frame and q is the hc momentum in the Zcð4020Þ c.m.
frame. The background shape is parametrized as an
ARGUS function [18]. The efficiency curve is considered
in the fit, but possible interferences between the signal and
background are neglected. Figure 4 shows the fit results;
the fit yields a mass of ð4022:9& 0:8Þ MeV=c2 and a width
of ð7:9& 2:7Þ MeV. The goodness of fit is found to be
!2=n:d:f: ¼ 27:3=32 ¼ 0:85 by projecting the events into

a histogram with 46 bins. The statistical significance of the
Zcð4020Þ signal is calculated by comparing the fit like-
lihoods with and without the signal. Besides the nominal
fit, the fit is also performed by changing the fit range, the
signal shape, or the background shape. In all cases, the
significance is found to be greater than 8:9".
The numbers of Zcð4020Þ events are determined to be

N½Zcð4020Þ&( ¼ 114& 25, 72& 17, and 67& 15 at 4.23,
4.26, and 4.36 GeV, respectively. The cross sections are
calculated to be"½eþe% ! #&Zcð4020Þ) ! #þ#%hc( ¼
ð8:7& 1:9& 2:8& 1:4Þ pb at 4.23 GeV, ð7:4&1:7&2:1&
1:2Þ pb at 4.26 GeV, and ð10:3& 2:3& 3:1& 1:6Þ pb at
4.36 GeV, where the first errors are statistical, the second
ones systematic (described in detail below), and the third
ones from the uncertainty in Bðhc ! $%cÞ [14]. The
Zcð4020Þ production rate is uniform at these three energy
points.
Adding a Zcð3900Þ with the mass and width fixed to the

BESIII measurement [1] in the fit results in a statistical
significance of 2:1" (see the inset in Fig. 4). We set upper
limits on the production cross sections as "½eþe% !
#&Zcð3900Þ) ! #þ#%hc(< 13 pb at 4.23 GeV and
<11 pb at 4.26 GeV, at the 90% confidence level (C.L.).
The probability density function from the fit is smeared by
a Gaussian function with a standard deviation of "sys to

include the systematic error effect, where "sys is the rela-

tive systematic error in the cross section measurement
described below. We do not fit the 4.36 GeV data, as the
Zcð3900Þ signal overlaps with the reflection of the
Zcð4020Þ signal.
The systematic errors for the resonance parameters of

the Zcð4020Þ come from the mass calibration, parametri-
zation of the signal and background shapes, possible exis-
tence of the Zcð3900Þ and interference with it, fitting range,
efficiency curve, and mass resolution. The uncertainty
from the mass calibration is estimated by using the differ-
ence between the measured and known hc masses and D0

masses (reconstructed from K%#þ). The differences are
(2:1& 0:4) and %ð0:7& 0:2Þ MeV=c2, respectively. Since
our signal topology has one low momentum pion and many
tracks from the hc decay, we assume these differences
added in quadrature, 2:6 MeV=c2, is the systematic error
due to the mass calibration. Spin parity conservation for-
bids a zero spin for the Zcð4020Þ, and, assuming that
contributions from D wave or higher are negligible, the
only alternative is JP ¼ 1% for the Zcð4020Þ. A fit under
this scenario yields a mass difference of 0:2 MeV=c2 and a
width difference of 0.8 MeV. The uncertainty due to the
background shape is determined by changing to a second-
order polynomial and by varying the fit range. A difference
of 0:1 MeV=c2 for the mass is found from the former, and
differences of 0:2 MeV=c2 for mass and 1.1MeV for width
are found from the latter. Uncertainties due to the mass
resolution are estimated by varying the resolution differ-
ence between the data and MC simulation by one standard
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Questions

• Have we discovered some 
new bound state of QCD?

• What does it tell us about 
the state we set out to 
study:  Y(4260)?

• Can we observe similar 
physics in other systems?
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b-quark system

• Do we see similar 
physics for a different set 
of heavy quarks?

36
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What about b quarks?

• Same story, heavier characters

• Y(4260) → Y or Υ(10860)

• J/ψ → Υ

• hc → hb

• at 10890 MeV:  peak in ππ 
transitions to Υ(nS) states

• Study πΥ and πhb structure in 
transitions

37
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FIG. 2. RΥππ data for Υ(1S) (top), Υ(2S) (center), and Υ(3S) (bottom), with results of fit C.

Error bars are statistical only.

The total of the above is found to be P = 0.42 ± 0.04. Preliminary evidence for Zb via
Υ(5S) → Z±

b [→ B∗B(∗)]π∓ [17] indicates that [B∗B(∗)]±π∓ is consistent with being exclu-
sively Z±

b π
∓, and we assume again that [B∗B(∗)]0π0 contributes at half the rate. The total,

including [B∗B(∗)]π, is P = 1.09± 0.15.

We have considered the following sources of systematic uncertainty: integrated luminosity,
event selection efficiency, energy calibration, reconstruction efficiency, secondary branching
fractions, and fitting procedure. The effects of the uncertainties in Rb and RΥππ on M5S, Γ5S,
and P depend on whether they are correlated or not over the data sets at different energy
points. The overall uncertainty in the integrated luminosity is 1.3%, while the uncorrelated
variation is 0.1%-0.2%. The overall uncertainty in

√
s is 1 MeV. The uncertainty in the Rb

event selection efficiency, ϵbb̄, stems from uncertainties in the mix of event types, containing
Bq, Bs, bottomonia, tau pairs, two-photon events, and qq̄ continuum, and is estimated to
be 1.1%. The systematic effects in fitting due to uncertainties in the measurements of

√
s,

fixed parameters, and fitting range are determined by varying each source by the value of
the uncertainty and refitting, noting the shifts in M5S[RΥππ], M5S[R′

b], Γ5S, and P. The
uncertainty on the rate of RΥππ for each Υ(nS) is dominated by those of the branching
fractions, B(Υ(nS) → µ+µ−) [8]: ±2%, ±10%, and ±10% for n = 1, 2, and 3, respectively.
The uncertainties from possible non-zero Ar and/or Anr in RΥππ are obtained by allowing
them to float in the fit and taking the variation of the fitted values of the other parameters
with respect to default results. The event-by-event efficiency correction to obtain RΥππ is
insensitive, but not immune, to intermediate states in the three-body decay. MC studies of

8

Belle Collaboration, arXiv:1501.01137

Υ(1S)ππ

Υ(2S)ππ

Υ(3S)ππ
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Production of ππΥ(nS) and ππhb(mP)
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Table II represent the sum in quadrature of all the contri-
butions listed in Table III. The signal for the !ð1DÞ is
marginal, and therefore systematic uncertainties on its
related measurements are not listed in the table. The sig-
nificances of the hbð1PÞ and hbð2PÞ signals, with system-
atic uncertainties accounted for, are 5:5! and 11:2!,
respectively.

The measured masses of hbð1PÞ and hbð2PÞ
are M ¼ ð9898:2þ1:1þ1:0

%1:0%1:1Þ MeV=c2 and M ¼ ð10259:8&
0:6þ1:4

%1:0Þ MeV=c2, respectively. Using the world average
masses of the "bJðnPÞ states, we determine the
hyperfine splittings to be "MHF ¼ ðþ1:7& 1:5Þ and
ðþ0:5þ1:6

%1:2Þ MeV=c2, respectively, where statistical and
systematic uncertainties are combined in quadrature.

We also measure the ratio of cross sections for eþe% !
!ð5SÞ ! hbðnPÞ#þ#% to that for eþe% ! !ð5SÞ !
!ð2SÞ#þ#%. To determine the reconstruction efficiency,
we use the results of resonant structure studies reported in
Ref. [12] that revealed the existence of two charged

bottomoniumlike states, Zbð10610Þ and Zbð10650Þ,
through which the #þ#% transitions we are studying pri-
marily proceed. These studies indicate that the Zb most
likely have JP ¼ 1þ, and therefore in our simulations the
#þ#% transitions are generated accordingly. To estimate
the systematic uncertainty in our reconstruction efficien-
cies, we use Monte Carlo samples generated with all
allowed quantum numbers with J ' 2.
We find that the reconstruction efficiency for the !ð2SÞ

is about 57% and that those for the hbð1PÞ and hbð2PÞ
relative to that for the !ð2SÞ are 0:913þ0:136

%0:010 and
0:824þ0:130

%0:013, respectively. The efficiency of the R2 < 0:3
requirement is estimated from data by measuring signal
yields with R2 > 0:3. For !ð2SÞ, hbð1PÞ, and hbð2PÞ
we find 0:863& 0:032, 0:723& 0:068, and 0:796&
0:043, respectively. From the yields and efficiencies

FIG. 3 (color online). The inclusive Mmiss spectrum with the combinatoric background and K0
S contribution subtracted (points with

errors) and signal component of the fit function overlaid (smooth curve). The vertical lines indicate boundaries of the fit regions.

TABLE II. The yield, mass, and statistical significance from
the fits to the Mmiss distributions. The statistical significance is
calculated from the difference in "2 between the best fit and the
fit with the signal yield fixed to zero.

Yield, 103 Mass, MeV=c2 Significance

!ð1SÞ 104:9& 5:8& 3:0 9459:4& 0:5& 1:0 18:1!
hbð1PÞ 50:0& 7:8þ4:5

%9:1 9898:2þ1:1þ1:0
%1:0%1:1 6:1!

3S ! 1S 55& 19 9973.01 2:9!
!ð2SÞ 143:7& 8:7& 6:8 10 022:2& 0:4& 1:0 17:1!
!ð1DÞ 22:4& 7:8 10 166:1& 2:6 2:4!
hbð2PÞ 83:9& 6:8þ23:

%10: 10 259:8& 0:6þ1:4
%1:0 12:3!

2S ! 1S 151:3& 9:7þ9:0
%20: 10 304:6& 0:6& 1:0 15:7!

!ð3SÞ 45:5& 5:2& 5:1 10 356:7& 0:9& 1:1 8:5!

TABLE III. Absolute systematic uncertainties in the yields and
masses from various sources.

Polynomial
order

Fit
range

Signal
shape

Selection
requirements

N½!ð1SÞ), 103 &1:4 &1:7 &2:0 * * *
N½hbð1PÞ), 103 &2:4 &3:6 þ1:2

%8:0 * * *
N½!ð2SÞ), 103 &3:4 &3:2 &5:0 * * *
N½hbð2PÞ), 103 &2:2 &2:6 þ23:

%9:0 * * *
N½2 ! 1), 103 &3:0 &8:0 þ0

%18 * * *
N½!ð3SÞ), 103 &1:0 &3:0 &4:0 * * *
M½!ð1SÞ), MeV=c2 &0:04 &0:06 &0:03 &0:18
M½hbð1PÞ), MeV=c2 &0:04 &0:10 þ0:04

%0:20
þ0:20
%0:30

M½!ð2SÞ), MeV=c2 &0:02 &0:08 &0:06 &0:03
M½hbð2PÞ), MeV=c2 &0:10 &0:20 þ1:0

%0:0 &0:08
M½2 ! 1), MeV=c2 &0:20 &0:10 &0:06 &0:10
M½!ð3SÞ), MeV=c2 &0:15 &0:24 &0:10 &0:20
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Why are production of hb (S=0) and Υ (S=1) of the same scale?
Seems impossible starting from vector bottomonium (S=1).
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Observation of Zb(10610)
±
 and Zb(10650)

±

• Belle observes two charged 
states in the bottomonium 
spectrum

• couple to π±hb and π±Υ

• consistent masses and widths in 
five different decay modes

• masses at or just above BB* and 
B*B* thresholds

• decays to B(*)B* :  
[Belle Collaboration  
arXiv:1209.6450]
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where Mmissð!þ!#Þ is the missing mass recoiling

against the !þ!# system calculated as Mmissð!þ!#Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEc:m: # E&

!þ!#Þ2 # p&2
!þ!#

q
, Ec:m: is the center-of-mass

(c.m.) energy, and E&
!þ!# and p&

!þ!# are the energy

and momentum of the !þ!# system measured in the
c.m. frame. Candidate !ð5SÞ ! !ðnSÞ!þ!# events
are selected by requiring jMmissð!þ!#Þ #m!ðnSÞj<
0:05 GeV=c2, where m!ðnSÞ is the mass of an !ðnSÞ state
[7]. Sideband regions are defined as 0:05 GeV=c2 <
jMmissð!þ!#Þ #m!ðnSÞj< 0:10 GeV=c2. To remove
background due to photon conversions in the innermost
parts of the Belle detector we require M2ð!þ!#Þ>
0:20; 0:14; 0:10 GeV=c2 for a final state with an !ð1SÞ,
!ð2SÞ, !ð3SÞ, respectively.

Amplitude analyses of the three-body !ð5SÞ !
!ðnSÞ!þ!# decays reported here are performed by means
of unbinned maximum likelihood fits to two-dimensional
M2½!ðnSÞ!þ( vs M2½!ðnSÞ!#( Dalitz distributions.
The fractions of signal events in the signal region are
determined from fits to the corresponding Mmissð!þ!#Þ
spectrum and are found to be 0:937) 0:015ðstatÞ, 0:940)
0:007ðstatÞ, 0:918) 0:010ðstatÞ for final states with!ð1SÞ,
!ð2SÞ,!ð3SÞ, respectively. The variation of reconstruction
efficiency across the Dalitz plot is determined from a
GEANT-based MC simulation [8] and is found to be small
except for the higherM½!ðnSÞ!)( region. The distribution
of background events is determined using events from the
!ðnSÞ sidebands and found to be uniform (after efficiency
correction) across the Dalitz plot.

Dalitz distributions of events in the!ð2SÞ sidebands and
signal regions are shown in Figs. 1(a) and 1(b), respec-
tively, where M½!ðnSÞ!(max is the maximum invariant
mass of the two !ðnSÞ! combinations. This is used to
combine !ðnSÞ!þ and !ðnSÞ!# events for visualization
only. Two horizontal bands are evident in the !ð2SÞ!
system near 112:6 GeV2=c4 and 113:3 GeV2=c4, where
the distortion from straight lines is due to interference with
other intermediate states, as demonstrated below. One-
dimensional invariant mass projections for events in the

!ðnSÞ signal regions are shown in Fig. 2, where two peaks
are observed in the !ðnSÞ! system near 10:61 GeV=c2

and 10:65 GeV=c2. In the following we refer to these
structures as Zbð10 610Þ and Zbð10 650Þ, respectively.
We parametrize the !ð5SÞ ! !ðnSÞ!þ!# three-body

decay amplitude by

M ¼ AZ1
þ AZ2

þ Af0 þ Af2 þ Anr; (1)

where AZ1
and AZ2

are amplitudes to account for contribu-
tions from the Zbð10 610Þ and Zbð10 650Þ, respectively.
Here we assume that the dominant contributions come
from amplitudes that preserve the orientation of the spin
of the heavy quarkonium state and, thus, both pions in the
cascade decay !ð5SÞ ! Zb! ! !ðnSÞ!þ!# are emitted
in an S wave with respect to the heavy quarkonium system.
As demonstrated in Ref. [9], angular analyses support this
assumption. Consequently, we parametrize the observed
Zbð10 610Þ and Zbð10 650Þ peaks with an S-wave Breit-

Wigner function BWðs;M;"Þ ¼
ffiffiffiffiffiffi
M"

p

M2#s#iM"
, where we do

not consider possible s dependence of the resonance width.
To account for the possibility of !ð5SÞ decay to both
Zþ
b !

# and Z#
b !

þ, the amplitudes AZ1
and AZ2

are symme-
trized with respect to !þ and !# transposition. Using
isospin symmetry, the resulting amplitude is written as
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FIG. 1. Dalitz plots for !ð2SÞ!þ!# events in the (a) !ð2SÞ
sidebands; (b) !ð2SÞ signal region. Events to the left of the
vertical line are excluded.
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FIG. 2. Comparison of fit results (open histogram) with ex-
perimental data (points with error bars) for events in the !ð1SÞ
(a),(b), !ð2SÞ (c),(d), and !ð3SÞ (e),(f) signal regions. The
hatched histogram shows the background component.
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suppressed by a requirement on the ratio of the second to
zeroth Fox-Wolfram moments R2 < 0:3 [13]. The fit func-
tion is a sum of peaking components due to dipion
transitions and combinatorial background. The positions
of all peaking components are fixed to the values measured
in Ref. [3]. In the case of the hbð1PÞ the peaking compo-
nents include signals from !ð5SÞ ! hbð1PÞ and !ð5SÞ !
!ð2SÞ transitions, and a reflection from the !ð3SÞ !
!ð1SÞ transition, where the !ð3SÞ is produced inclusively
or via initial state radiation. Since the !ð3SÞ ! !ð1SÞ
reflection is not well constrained by the fits, we determine
its normalization relative to the !ð5SÞ ! !ð2SÞ signal
from the exclusive !þ!$"þ"$ data for every Mmissð"Þ
bin. In case of the hbð2PÞ we use a smaller Mmissð"þ"$Þ
range than in Ref. [3], Mmissð"þ"$Þ< 10:34 GeV=c2,
to exclude the region of the K0

S ! "þ"$ reflection.
The peaking components include the !ð5SÞ ! hbð2PÞ
signal and a !ð2SÞ ! !ð1SÞ reflection. To constrain the
normalization of the !ð2SÞ ! !ð1SÞ reflection we use
exclusive !þ!$"þ"$ data normalized to the total yield
of the reflection in the inclusive data. Systematic uncer-
tainty in the latter number is included in the error
propagation. The combinatorial background is parame-
trized by a Chebyshev polynomial. We use orders between
6 and 10 for the hbð1PÞ [the order decreases monotonically
with the Mmissð"Þ] and orders between 6 and 8 for the
hbð2PÞ.

The results for the yield of !ð5SÞ ! hbðmPÞ"þ"$

(m ¼ 1, 2) decays as a function of the Mmissð"Þ are shown
in Fig. 3. The distribution for the hbð1PÞ exhibits a clear
two-peak structure without a significant nonresonant con-
tribution. The distribution for the hbð2PÞ is consistent with
the above picture, though the available phase space is
smaller and uncertainties are larger. We associate the two
peaks with the production of the Zbð10 610Þ and
Zbð10 650Þ. To fit the Mmissð"Þ distributions we use the
expression

jBW1ðs;M1;"1Þ þ aei#BW1ðs;M2;"2Þ þ beic j2 qpffiffiffi
s

p :

(4)

Here
ffiffiffi
s

p & Mmissð"Þ; the variablesMk, "k (k ¼ 1, 2), a,#,
b, and c are free parameters; qpffiffi

s
p is a phase-space factor,

where p (q) is the momentum of the pion originating from
the !ð5SÞ (Zb) decay measured in the rest frame of the
corresponding mother particle. The P-wave Breit-Wigner

amplitude is expressed as BW1ðs;M;"Þ ¼
ffiffiffiffiffiffi
M"

p
Fðq=q0Þ

M2$s$iM"
.

Here F is the P-wave Blatt-Weisskopf form factor F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðq0RÞ2
1þðqRÞ2

r
[14], q0 is a daughter momentum calculated with

pole mass of its mother, R ¼ 1:6 GeV$1. The function
[Eq. (4)] is convolved with the detector resolution function
($ ¼ 5:2 MeV=c2), integrated over the 10 MeV=c2 histo-
gram bin and corrected for the reconstruction efficiency.
The fit results are shown as solid histograms in Fig. 3
and are summarized in Table I. We find that the nonreso-
nant contribution is consistent with zero [significance is
0:3$ both for the hbð1PÞ and hbð2PÞ] in accord with
the expectation that it is suppressed due to heavy-quark
spin flip. In case of the hbð2PÞ we improve the stability
of the fit by fixing the nonresonant amplitude to zero.
The C.L. of the fit is 81% (61%) for the hbð1PÞ [hbð2PÞ].
The default fit hypothesis is favored over the phase-space
fit hypothesis at the 18$ [6:7$] level for the hbð1PÞ
[hbð2PÞ].
To estimate the systematic uncertainty we vary the order

of the Chebyshev polynomial in the fits to the
Mmissð"þ"$Þ spectra; to study the effect of finite
Mmissð"Þ binning we shift the binning by half bin size; to
study the model uncertainty in the fits to the Mmissð"Þ
distributions we remove [add] the nonresonant contribu-
tion in the hbð1PÞ [hbð2PÞ] case; we increase the width of
the resolution function by 10% to account for possible
difference between data and MC simulation. The maxi-
mum change of parameters for each source is used as
an estimate of its associated systematic error. We estimate
an additional 1 MeV=c2 uncertainty in mass measure-
ments based on the difference between the observed
!ðnSÞ peak positions and their world averages [3]. The
total systematic uncertainty presented in Table I is the sum
in quadrature of contributions from all sources. The sig-
nificance of the Zbð10 610Þ and Zbð10 650Þ including sys-
tematic uncertainties is 16:0$ [5:6$] for the hbð1PÞ
[hbð2PÞ].
In conclusion, we have observed two charged bottomo-

niumlike resonances, the Zbð10 610Þ and Zbð10 650Þ, with
signals in five different decay channels, !ðnSÞ"' (n ¼ 1,
2, 3) and hbðmPÞ"' (m ¼ 1, 2). The parameters of the
resonances are given in Table I. All channels yield consis-
tent results. Weighted averages over all five channels give
M ¼ 10 607:2' 2:0 MeV=c2, " ¼ 18:4' 2:4 MeV for
the Zbð10 610Þ and M ¼ 10 652:2' 1:5 MeV=c2, " ¼
11:5' 2:2 MeV for the Zbð10 650Þ, where statistical
and systematic errors are added in quadrature. The
Zbð10 610Þ production rate is similar to that of the
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FIG. 3. The (a) hbð1PÞ and (b) hbð2PÞ yields as a function of
Mmissð"Þ (points with error bars) and results of the fit (histo-
gram).
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suppressed by a requirement on the ratio of the second to
zeroth Fox-Wolfram moments R2 < 0:3 [13]. The fit func-
tion is a sum of peaking components due to dipion
transitions and combinatorial background. The positions
of all peaking components are fixed to the values measured
in Ref. [3]. In the case of the hbð1PÞ the peaking compo-
nents include signals from !ð5SÞ ! hbð1PÞ and !ð5SÞ !
!ð2SÞ transitions, and a reflection from the !ð3SÞ !
!ð1SÞ transition, where the !ð3SÞ is produced inclusively
or via initial state radiation. Since the !ð3SÞ ! !ð1SÞ
reflection is not well constrained by the fits, we determine
its normalization relative to the !ð5SÞ ! !ð2SÞ signal
from the exclusive !þ!$"þ"$ data for every Mmissð"Þ
bin. In case of the hbð2PÞ we use a smaller Mmissð"þ"$Þ
range than in Ref. [3], Mmissð"þ"$Þ< 10:34 GeV=c2,
to exclude the region of the K0

S ! "þ"$ reflection.
The peaking components include the !ð5SÞ ! hbð2PÞ
signal and a !ð2SÞ ! !ð1SÞ reflection. To constrain the
normalization of the !ð2SÞ ! !ð1SÞ reflection we use
exclusive !þ!$"þ"$ data normalized to the total yield
of the reflection in the inclusive data. Systematic uncer-
tainty in the latter number is included in the error
propagation. The combinatorial background is parame-
trized by a Chebyshev polynomial. We use orders between
6 and 10 for the hbð1PÞ [the order decreases monotonically
with the Mmissð"Þ] and orders between 6 and 8 for the
hbð2PÞ.

The results for the yield of !ð5SÞ ! hbðmPÞ"þ"$

(m ¼ 1, 2) decays as a function of the Mmissð"Þ are shown
in Fig. 3. The distribution for the hbð1PÞ exhibits a clear
two-peak structure without a significant nonresonant con-
tribution. The distribution for the hbð2PÞ is consistent with
the above picture, though the available phase space is
smaller and uncertainties are larger. We associate the two
peaks with the production of the Zbð10 610Þ and
Zbð10 650Þ. To fit the Mmissð"Þ distributions we use the
expression

jBW1ðs;M1;"1Þ þ aei#BW1ðs;M2;"2Þ þ beic j2 qpffiffiffi
s

p :

(4)

Here
ffiffiffi
s

p & Mmissð"Þ; the variablesMk, "k (k ¼ 1, 2), a,#,
b, and c are free parameters; qpffiffi

s
p is a phase-space factor,

where p (q) is the momentum of the pion originating from
the !ð5SÞ (Zb) decay measured in the rest frame of the
corresponding mother particle. The P-wave Breit-Wigner

amplitude is expressed as BW1ðs;M;"Þ ¼
ffiffiffiffiffiffi
M"

p
Fðq=q0Þ

M2$s$iM"
.

Here F is the P-wave Blatt-Weisskopf form factor F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðq0RÞ2
1þðqRÞ2

r
[14], q0 is a daughter momentum calculated with

pole mass of its mother, R ¼ 1:6 GeV$1. The function
[Eq. (4)] is convolved with the detector resolution function
($ ¼ 5:2 MeV=c2), integrated over the 10 MeV=c2 histo-
gram bin and corrected for the reconstruction efficiency.
The fit results are shown as solid histograms in Fig. 3
and are summarized in Table I. We find that the nonreso-
nant contribution is consistent with zero [significance is
0:3$ both for the hbð1PÞ and hbð2PÞ] in accord with
the expectation that it is suppressed due to heavy-quark
spin flip. In case of the hbð2PÞ we improve the stability
of the fit by fixing the nonresonant amplitude to zero.
The C.L. of the fit is 81% (61%) for the hbð1PÞ [hbð2PÞ].
The default fit hypothesis is favored over the phase-space
fit hypothesis at the 18$ [6:7$] level for the hbð1PÞ
[hbð2PÞ].
To estimate the systematic uncertainty we vary the order

of the Chebyshev polynomial in the fits to the
Mmissð"þ"$Þ spectra; to study the effect of finite
Mmissð"Þ binning we shift the binning by half bin size; to
study the model uncertainty in the fits to the Mmissð"Þ
distributions we remove [add] the nonresonant contribu-
tion in the hbð1PÞ [hbð2PÞ] case; we increase the width of
the resolution function by 10% to account for possible
difference between data and MC simulation. The maxi-
mum change of parameters for each source is used as
an estimate of its associated systematic error. We estimate
an additional 1 MeV=c2 uncertainty in mass measure-
ments based on the difference between the observed
!ðnSÞ peak positions and their world averages [3]. The
total systematic uncertainty presented in Table I is the sum
in quadrature of contributions from all sources. The sig-
nificance of the Zbð10 610Þ and Zbð10 650Þ including sys-
tematic uncertainties is 16:0$ [5:6$] for the hbð1PÞ
[hbð2PÞ].
In conclusion, we have observed two charged bottomo-

niumlike resonances, the Zbð10 610Þ and Zbð10 650Þ, with
signals in five different decay channels, !ðnSÞ"' (n ¼ 1,
2, 3) and hbðmPÞ"' (m ¼ 1, 2). The parameters of the
resonances are given in Table I. All channels yield consis-
tent results. Weighted averages over all five channels give
M ¼ 10 607:2' 2:0 MeV=c2, " ¼ 18:4' 2:4 MeV for
the Zbð10 610Þ and M ¼ 10 652:2' 1:5 MeV=c2, " ¼
11:5' 2:2 MeV for the Zbð10 650Þ, where statistical
and systematic errors are added in quadrature. The
Zbð10 610Þ production rate is similar to that of the
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FIG. 3. The (a) hbð1PÞ and (b) hbð2PÞ yields as a function of
Mmissð"Þ (points with error bars) and results of the fit (histo-
gram).
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Summary

• Similar unconventional spectroscopy (?) in both bottom and 
charm systems

• Signs of new states bound of QCD?

• Meson meson interactions?  Complications from light quark 
degrees of freedom?

• (Many more results from more experiments than shown here, 
including candidates for unconventional baryons.)

• Need tools to try to probe the complete scattering amplitude:  
magnitude and phase

• more about this tomorrow

40


