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Fundamental questions in nuclear physics

Physics of nuclei:

How do nucleons interact?

How are nuclei formed? How can their properties be so different for
different A?

What’s the nature of closed shell numbers, and what’s their
evolution for neutron rich nuclei?

What is the equation of state of dense matter?

Can we describe simultaneously 2, 3, and many-body nuclei?
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Uniform nuclear and neutron matter

What is nuclear matter? Easy, an infinite system of nucleons!

Infinite systems

Symmetric nuclear matter:
equal protons and neutrons

Pure neutron matter: only
neutrons

W/o Coulomb: homogeneous

Nuclear matter saturates
(heavy nuclei, “bulk”)

Neutron matter positive
pressure

Properties of infinite matter
important to constrain energy
density functionals
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Neutron Matter

Low-density neutron matter
and Cold atoms

“Low-density” means ρ << ρ0
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Ultracold Fermi atoms

Dilute regime → mainly s-wave interaction

T fraction of TF → T ∼0

Experimentally tunable interaction

Crossover from weakly interacting Fermions (paired) to weakly
repulsive Bosons (molecules)
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Scattering length

Two-body system with attractive interaction:
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Very Low Density Neutron Matter: cold atoms

Low density neutron matter → unitary limit:

reff � r0 � |a| , reff = 0 , |a| =∞
Only one scale: → E = ξEFG

Why neutron matter and cold atoms are so similar?

NN scattering length is large and negative, a = −18.5 fm
NN effective range is small, reff = 2.7 fm

1
a k F

BCSBCS BECBECcrossover

Low density neutron matter
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Unitary Fermi gas

Exact calculation of ξ using AFMC:
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Validation of Quantum Monte Carlo calculations
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Fermi gas and neutron matter
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Ultracold atoms very useful for nuclear physics!
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BCS and Fermi superfluidity

BCS (Bardeen-Cooper-Schrieffer) pairs: an arbitrarily small attraction
between Fermions can cause a paired state of particles and the system
has a lower energy than the normal gas.

The (condensate) pairs may then form a superfluid:

The pairing gap is basically the energy needed to ”break“ a pair, and
then excite the system to its normal energy.
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Pairing gap and neutron stars

The pairing gap is fundamental for the cooling of neutron stars.

Neutron star crust made of nuclei arranged on a lattice surrounded by a
gas of neutrons.

Specific heat suppressed by
superfluidity (similarly to the
superconducting mechanism).

Cooling dependent to the
pairing gap!

D. Page (2012)
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Dilute neutron matter

The pairing gap is the energy cost to excite one particle from a BCS
(collective) state.

Pairing gap of low–density neutron matter vs cold atoms:
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Cold atoms results confirmed by experiments!
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Neutron Matter

Dense neutron matter

“Dense” means ρ ∼ (0.5−few times)ρ0
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Fermi gas (1/2)

Non interacting two-components Fermi gas (non-relativistic):

E

N
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F = EFG (kF ) ,

where kF = (3π2ρ)1/3.

For a system made of neutrons and protons, define:

ρ = ρn + ρp , α =
ρn − ρp

ρn + ρp
,

Useful relations:

ρp =
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2
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Fermi gas (2/2)

For small asymmetries, α ≈ 0, the function f (α) can be expanded

f (α) = 1 +
5

9
α2 +

5

243
α4 + . . . ,

And thus the equation of state is given by:

E

A
(ρ, x) =

3

5
EFG (ρ)+

5

9
EFG (ρ)α2 + · · · = ESNM +α2S(ρ)+α4S4(ρ)+ . . . ,

where ESNM is the energy of symmetric nuclear matter (α = 0) and S(ρ)
is the symmetry energy given by

S(ρ) =
1

2

∂2

∂α2
[E (ρ, x)]α=0 ' EPNM (ρ)− ESNM (ρ) ,

and EPNM is the energy of pure neutron matter (α = 1).
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Symmetry energy

Around density ρ0 nuclear matter saturates, thus

∂ESNM (ρ)

∂ρ
= 0
∣∣
ρ=ρ0

and we can expand as

ESNM = E0 + α

(
ρ− ρ0

ρ0

)2

+ β

(
ρ− ρ0

ρ0

)3

+ . . . ,

Pure neutron matter instead does not saturate, thus also linear power in
ρ is fine.

Then, around ρ0 we can expand:

Esym = S0 +
L

3

ρ− ρ0

ρ0
+

Ksym

18

(
ρ− ρ0

ρ0

)2

+ . . . ,

where L is the slope of the symmetry energy, and Ksym is the symmetry
compressibility.
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Neutron matter equation of state

Why do we care?

EOS of neutron matter gives the symmetry energy and its slope.

Assume that NN is very good - fit scattering data with very high
precision.
Three-neutron force (T = 3/2) very weak in light nuclei, while
T = 1/2 is the dominant part. No direct T = 3/2 experiments.

Pure neutron systems are the probe!

Why to study symmetry energy?

Esym, L

Theory

ExperimentsNeutron stars
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Neutron matter at nuclear densities

At nuclear densities neutron matter cannot be modeled as in the dilute
regime. Nucleon-nucleon (and three-nucleon) interaction become very
important.

Let’s start from Hamiltonians used for nuclei:

-100

-90

-80

-70

-60

-50

-40

-30

-20

En
er

gy
 (M

eV
)

AV18

AV18
+UIX

AV18
+IL7 Expt.

0+

4He
0+
2+

6He 1+
3+
2+
1+

6Li
3/2−
1/2−
7/2−
5/2−
5/2−
7/2−

7Li

0+
2+

8He 2+
2+

2+
1+

0+

3+
1+

4+

8Li

1+

0+
2+

4+
2+
1+
3+
4+

0+

8Be
3/2−
1/2+
5/2−
1/2−
5/2+
3/2+

7/2−

3/2−

7/2−
5/2+
7/2+

9Be 3+
1+

2+

4+

1+

3+
2+

3+

10B

3+

1+

2+

4+

1+

3+
2+

0+

12C

Argonne v18
with UIX or Illinois-7
GFMC Calculations

 1 June 2011

Carlson, et al., RMP (2015)
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Scattering data and neutron matter

How much can we trust the nucleon-nucleon interactions?

In a scattering event with energy Elab two nucleons have

k ≈
√
Elab m/2 , → kF

that correspond to

kF → ρ ≈ (Elab m/2)3/2

2π2
.

Elab=150 MeV corresponds to about 0.12 fm−3.

Elab=350 MeV to 0.44 fm−3.

Argonne potentials useful to study dense matter above ρ0=0.16 fm−3,
other (soft) interactions not clear
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What is the Symmetry energy?

0
ρ

0
 = 0.16 fm

-3

E
0
 = -16 MeV

symmetric nuclear matter
pure neutron matter

Nuclear saturation

Symmetry energy

Assumption from experiments:

ESNM (ρ0) = −16MeV , ρ0 = 0.16fm−3 , Esym = EPNM (ρ0) + 16

At ρ0 we access Esym by studying PNM
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Neutron matter

Equation of state of neutron matter using the AV8′+UIX Hamiltonian.
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Incidentally these can be considered as ”extremes” with respect to the
measured Esym.
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Neutron matter

Three-neutron interaction uncertainty:
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Neutron matter

Main sources of uncertainties:

Experimental: Esym

Theoretical: form of three-neutron interaction not totally understood

Which one dominates?
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Neutron matter

Equation of state of neutron matter using Argonne forces:
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Symmetry energy

Many experimental efforts to measure Esym (or S0) and its slope L:
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Neutron matter and symmetry energy

From the EOS, we can fit the symmetry energy around ρ0 using

Esym(ρ) = Esym +
L

3
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Very weak dependence to the model of 3N force for a given Esym.
Knowing Esym or L useful to constrain 3N! (within this model...)
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Neutron matter and the ”puzzle” of the three-body force
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Note: AV8’+UIX and (almost) AV8’ are stiff enough to support observed
neutron stars, but AV8’+IL7 too soft. → How to reconcile with nuclei???
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Neutron matter at N2LO

EOS of pure neutron matter at N2LO, R0=1.0 fm.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

n (fm−3)

0

2

4

6

8

10

12

14

16

18

E
/A

(M
eV

)

N2LO (D2, E1)

N2LO (D2, EP)

N2LO (D2, Eτ )

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Neutron Density (fm
-3

)

0

2

4

6

8

10

12

14

16

18

E
n

e
rg

y
 p

e
r 

N
e

u
tr

o
n

 (
M

e
V

)

AV8’+UIX

AV8’

Lynn, et al., PRL (2016).

Note: the above (but not all) chiral Hamiltonian able to describe
A=3,4,5 nuclei and neutron matter reasonably.
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Summary of this lecture:

Low-density neutron matter and cold atoms

Superfluidity

Dense matter: free Fermi gas

Dense matter with interaction

End for today...
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