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Fundamental questions in nuclear physics

Physics of nuclei:

How do nucleons interact?

How are nuclei formed? How can their properties be so different for
different A?

What’s the nature of closed shell numbers, and what’s their
evolution for neutron rich nuclei?

What is the equation of state of dense matter?

Can we describe simultaneously 2, 3, and many-body nuclei?
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Many-body methods

First: How to solve the many-body Schroedinger equation?

Many methods (with pros. and cons.) available on the market.
A very incomplete list:

Quantum Monte Carlo methods, VMC, GFMC, AFDMC, lattice EFT

Coupled cluster (CC)

No core shell model (NCSM), and importance truncated (IT)-NCSM

Many body perturbation theory (MBPT)

In-medium Similarity Renormalization Group (IM-SRG)

... and several techniques used to make the Hamiltonian softer:

Lee-Suzuki

Similarity Renormalization Group (SRG)

low momentum potentials (Vlow−k)

Many of these methods are also used in other fields.

Let me spend few slides on my favorite ones: VMC, GFMC, AFDMC
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Three slides on Monte Carlo integration (1/3)

The goal of Monte Carlo integration is to
solve multi-dimensional integrals using
random numbers!
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Three slides on Monte Carlo integration (2/3)

Suppose that we want to calculate some integral of dimension D. The
easiest thing to do is a sum over discrete intervals h, something like

I =

∫ b

a

dx1 . . .

∫ b

a

dxD f (x1 . . . xD) ≈ hD
∑

f (x1 . . . xD)

It’s easy to show that if we want an error of order ε, we need to sum a
number of points

N = ε−D

so, for ε = 0.1 and a system with 20 particles
(D = 60) we have to sum N = 1060 points.

With the best available supercomputers the time
needed is greater than the age of the universe!
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Three slides on Monte Carlo integration (3/3)

Let’s have random numbers x distributed with probability P(x) with

P(x) ≥ 0 , and

∫
P(x)dx = 1 .

Let’s define the quantity

SN =
1

N

N∑
i=1

f (xi ) .

Central limit theorem: if N →∞ and for any P(x), we have that

P(SN) =
1√

2πσN
e
− (SN−<f>)2

2σN

where

< f >=

∫
f (x)P(x)dx , σN =

1

N − 1

∫
f 2(x)P(x)dx− < f >2 .

Integrals can be solved by sampling points distributed with P(x):∫
F (x)dx =

∫
F (x)

P(x)
P(x)dx =

∫
f (x)P(x)dx
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Variational Monte Carlo

We want to solve

E0 ≤ E =
〈ψ|H|ψ〉
〈ψ|ψ〉

=

∫
dr1 . . . drN ψ

∗(r1 . . . rN)Hψ(r1 . . . rN)∫
dr1 . . . drN ψ∗(r1 . . . rN)ψ(r1 . . . rN)

=

∫
dR P(R)Hψ(R)

ψ(R)∫
dR P(R)

where P(R) = ψ∗(r1 . . . rN)ψ(r1 . . . rN).

Variational wave function:

|ΨT 〉 =

∏
i<j

fc(rij)

 ∏
i<j<k

fc(rijk)

1 +
∑
i<j,p

∏
k

uijk fp(rij)O
p
ij

 |Φ〉
where Op are spin/isospin operators, fc , uijk and fp are obtained by
minimizing the energy. About 30 parameters to optimize.

|Φ〉 is a mean-field component.
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Quantum Monte Carlo (1/3)

Propagation in imaginary time:

H ψ(~r1 . . .~rN) = E ψ(~r1 . . .~rN) ψ(t) = e−(H−ET )tψ(0)

Ground-state extracted in the limit of t →∞:

ψ(t) = e−(H−ET )tψ(0) =
∑
n

e−(H−ET )tφn =
∑
n

e−(En−ET )tφn → c0φ0

then:

〈R ′|ψ(t)〉 =

∫
dR G (R,R ′, t)〈R|ψ(0)〉

where G (R,R ′, t) is the propagator of the Hamiltonian.
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Quantum Monte Carlo (2/3)

Let’s define the propagator as the matrix element between two points in
the volume:

G (R,R ′, t) = 〈R ′|e−(H−ET )t |R〉

The expression above is very difficult to calculate. What is easy instead is:

G (R,R ′, t) ≈
∏
n

G (Rn,Rn−1,∆t) ≈
[
e−T∆te−V∆t

]n
and 〈R ′|e−T∆te−V∆t |R〉 is easy to sample.

Then we need to iterate the integral in previous slide many times to
reach the limit t →∞.

Other more details (importance sampling, sign problem, ...), ask if
interested!

Ground–state obtained in a non-perturbative way. Systematic
uncertainties within 1-2 %.
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Quantum Monte Carlo (3/3)

An example: 1D harmonic oscillator, projection in imaginary time.
Energy as a function of the imaginary time τ :

0 1 2 3 4 5

τ [ω
-1

]

0.49

0.5

0.51

0.52

0.53

0.54
E

 [
ω

]

1D harmonic oscillator

Ground-state resolved!

Stefano Gandolfi (LANL) - stefano@lanl.gov Light and medium nuclei 10 / 34



Recap:

Hamiltonian: phenomenological, AV8′ and AV18 + three-body
forces, or chiral EFT (local versions), Gezerlis et al. PRL 111,032501
(2013), PRC 90, 054323 (2014), Lynn et al. PRL 116, 062501
(2016).

Many body machinery: GFMC and AFDMC, Carlson et al. RMP 87,
1067 (2015).

LET’S DO PHYSICS!!!
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Light nuclei spectrum computed with GFMC

-100

-90

-80

-70

-60

-50

-40

-30

-20
E

ne
rg

y 
(M

eV
)

AV18
AV18
+IL7 Expt.

0+

4He
0+
2+

6He 1+
3+
2+
1+

6Li
3/2−
1/2−
7/2−
5/2−
5/2−
7/2−

7Li

0+
2+

8He
0+

2+
2+

2+
1+
3+

1+

4+

8Li

1+

0+
2+

4+
2+
1+
3+
4+

0+

8Be

3/2−
1/2−
5/2−

9Li

3/2−
1/2+
5/2−
1/2−
5/2+
3/2+

7/2−

3/2−

7/2−
5/2+
7/2+

9Be

1+

0+
2+
2+
0+
3,2+

10Be 3+
1+

2+

4+

1+

3+
2+

3+

10B

3+

1+

2+

4+

1+

3+
2+

0+

2+
0+

12C

Argonne v18
with Illinois-7

GFMC Calculations

Carlson, et al., Rev. Mod. Phys. 87, 1067 (2015)

Note the importance of three-body force!
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Light nuclei excited states computed with GFMC
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Carlson, et al., Rev. Mod. Phys. 87, 1067 (2015)

Again, three-body force essential in many cases!
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NCSM calculation

P. Navratil, V.G. Gueorguiev, J. P. Vary, W. E. Ormand and A. Nogga,
PRL 99, 042501(2007)

Hamiltonian: NN at N3LO (Entem, Machleidt) and NNN at N2LO
(Navratil)
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Charge form factor of 12C

|F (q)| = 〈ψ|ρq|ψ〉 ρq =
∑
i

ρq(i) +
∑
i<j

ρq(ij)

0 1 2 3 4

q (fm
-1

)

10
-4

10
-3

10
-2

10
-1

10
0

|F
(q

)|

exp
ρ

1b
ρ

1b+2b

0 2 4
r (fm)

0.00

0.04

0.08

ρ
ch

 (
r)

Lovato, Gandolfi, Butler, Carlson, Lusk, Pieper, Schiavilla, PRL (2013)
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Energy, rms radii, and magnetic moment of light nuclei

E (MeV) rp [rn] (fm) µ (µN )
AZ(Jπ ; T ) GFMC exp. GFMC exp. GFMC exp.
2H(1+; 0) -2.225 -2.2246 1.98 1.96 0.8604 0.8574
3H( 1

2
+; 1

2 ) -8.47(1) -8.482 1.59 [1.73] 1.58 2.960(1) 2.979
3He( 1

2
+; 1

2 ) -7.72(1) -7.718 1.76 [1.60] 1.76 -2.100(1) -2.127
4He(0+; 0) -28.42(3) -28.30 1.43 1.462(6)
6He(0+; 1) -29.23(2) -29.27 1.95(3) [2.88] 1.93(1)
6Li(1+; 0) -31.93(3) -31.99 2.39 2.45(4) 0.835(1) 0.822
7He( 3

2
−; 3

2 ) -28.74(3) -28.86 1.97 [3.32(1)]
7Li( 3

2
−; 1

2 ) -39.15(3) -39.25 2.25 [2.44] 2.31(5) 3.24(1) 3.256
7Be( 3

2
−; 1

2 ) -37.54(3) -37.60 2.51 [2.32] 2.51(2) -1.42(1) -1.398(15)
8He(0+; 2) -31.42(3) -31.40 1.83(2) [2.73] 1.88(2)
8Li(2+; 1) -41.14(6) -41.28 2.10 [2.46] 2.20(5) 1.48(2) 1.654
8Be(0+; 0) -56.5(1) -56.50 2.40(1)
8B(2+, 1) -37.51(6) -37.74 2.48 [2.10] 1.11(2) 1.036
8C(0+; 2) -24.53(3) -24.81 2.94 [1.85]
9Li( 3

2
−, 3

2 ) -45.42(4) -45.34 1.96 [2.33] 2.11(5) 3.39(4) 3.439
9Be( 3

2
−, 1

2 ) -57.9(2) -58.16 2.31 [2.46] 2.38(1) -1.29(1) -1.178
9C( 3

2
−, 3

2 ) -38.88(4) -39.04 2.44 [1.99] -1.35(4) -1.391
10Be(0+; 1) -64.4(2) -64.98 2.20 [2.44] 2.22(2)
10B(3+; 0) -64.7(3) -64.75 2.28 2.31(1) 1.76(1) 1.801
10C(0+; 1) -60.2(2) -60.32 2.51 [2.25]
12C(0+; 0) -93.3(4) -92.16 2.32 2.33

Carlson, et al., Rev. Mod. Phys. 87, 1067 (2015)
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Fundamental questions in nuclear physics

Physics of nuclei:

How do nucleons interact?

How are nuclei formed? How can their properties be so different for
different A?

What’s the nature of closed shell numbers, and what’s their
evolution for neutron rich nuclei?

What is the equation of state of dense matter?

Can we describe simultaneously 2, 3, and many-body nuclei?
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A bigger picture

Credit: Witek Nazarewicz
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The nuclear shell model

Clear experimental evidence of magic numbers.

N or Z = 2, 8, 20, 28, 50, 82, 126

Signatures (incomplete list) of properties of magic nuclei:

Nuclei very stable (long lasting)

Large separation energy (energy needed to extract a nucleon)

Neutron-capture cross-sections very low (nuclei like to stay in those
configurations)

hyperphysics.phy-astr.gsu.edu

Another similarity in nature: atoms!
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The nuclear shell model

Atoms:
Closed shells: high ionization
energy needed to remove an e−

Potential: Coulomb among
electrons, and between electrons
and a point-like nucleus (plus
spin-orbit)

Nuclei:
Magic nuclei: Large separation
energy

Potential: Nuclear forces among
nucleons and Coulomb repulsion
between protons. “Self-bound”
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The shell model

Let’s assume:

The potential acting on a single nucleon is generated from the other
(A-1) nucleons

The potential is proportional to the density, V (r) ∝ ρ(r)

Spherical symmetry: the w.f. can be factorized as
ψ(~r) = Rnl(r)Ym

l (θ, φ)

Let’s try with the Harmonic Oscillator potential:

E =

(
N +

3

2

)
~ω =

[
2(n − l) + l +

3

2

]
~ω
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The shell model

E =

(
N +

3

2

)
~ω =

[
2(n − l) + l +

3

2

]
~ω

Shells:

N nl states total states
0 1s 2 2
1 1p 6 8
2 1d 10 18
2 2s 2 20
3 1f 14 34
3 2p 6 40
4 1g 18 58
4 2d 10 68
4 3s 2 70
. . . . . . . . . . . .

Observed shell numbers: 2,8,20,28,50,82

What about the others???
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Nuclear densities

Observed and calculated charge densities:

“Flat” region needed in the center for medium and large nuclei.

Harmonic Oscillator qualitatively good only for small nuclei!
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Wood-Saxon potential and spin-orbit coupling

Wood-Saxon potential:

density described by the
Fermi-distribution:

v(r) =
−V0

1 + e(r−R)/a

typical values:

V0 ' 50MeV,

R ' 1.27fmA1/3,

a ' 0.67fm.

→ L-S coupling:

the energy levels of nuclei strongly
depend to the spin S .

~J = ~L+~S , (cf. atoms ~j =~l+~s)
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Magic numbers finally explained!

Observed shell numbers: 2,8,20,28,50,82,126!
Wigner, Geoppert-Mayer, Jensen, Nobel Prize in 1963.
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Magic numbers

Magic numbers explain a lot of stable configurations, high separation
energies, low cross-sections, quadrupole deformations, etc.

End of the story??? Of course not!

There is experimental evidence suggesting that magic numbers can
disappear for some particular nucleus!

Example: 12Be
Z = 4, N = 8 (1s1/2, 1p3/2, 1p1/2)

Experimentally it has been demonstrated
that there is a strong 2s1/2 component in
the ground state and hence the breakdown
of the N=8 shell closure.

Navin et al., PRL 85, 266 (2000).

There are many other examples where magic numbers disappear for
particular Z or N. Also some evidence of new magic numbers!
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The drip line

From Wikipedia:

The nuclear drip line is the boundary delimiting the zone in
which atomic nuclei lose stability due to the transmutation of
neutrons, causing an isotope of one element to mutate into an
element with one more proton.
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The Oxygen dripline

Example, Z=8 (Oxygen) drip line:

M. Thoennessen, et al., Acta Phys. Pol. B 44, 543 (2013)
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The Oxygen dripline

Effect of three-body forces to the drip line of Oxygen:

Otsuka, et al., PRL, 105, 032501 (2010).
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The Calcium dripline

Example, theoretical prediction of Z=20 (Calcium) drip line:
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Forssén, et al., Phys. Scr. T152, 014022 (2013).
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The bigger picture

Theoretical prediction of nuclear drip lines:

Erler, et al., Nature 486, 509 (2012).
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Brad Sherrill for the FRIB project team
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How many nuclei?

How many protons and neutrons can form a bound nucleus?

Theory predictions: 6,900±500 nuclei with Z <120 are bound.

FRIB expected limits:

Balantekin, et al., Mod. Phys.Lett. A29, 1430010 (2014).
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Summary of this lecture:

Many-body methods (QMC)

Role of three-nucleon force in light nuclei

Close shell numbers

Nuclear dripline

End for today...
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