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The Nuclear Landscape and the Big Questions (NAS report)

How did visible matter come into being and how does it
evolve? (origin of nuclei and atoms)

How does subatomic matter organize itself and what
phenomena emerge? (self-arganization)

Are the fundamental interactions that are basic to the
structure of matter fully understood?

How can the knowledge andtechnological progress
provided by nuclear physics best be used to beneflt society?

D transition (color singlets formed): 10ms
after Big Bang (13.8 billion years ago)
D, 2He, "Be/’Li formed 3-50 min after Big Bang
Other nuclei born later in heavy stars and
supernovae
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The big picture of the microscopic world
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Neutron stars

Neutron star is a wonderful natural laboratory, rich of physics!

ANEUTRON STAR: SURFACE and INTERIOR

@ Atmosphere: atomic and
plasma physics
@ Crust: physics of superfluids
Wi (neutrons, vortex), solid state
physics (nuclei)
@ Inner crust: deformed nuclei,
pasta phase

@ QOuter core: nuclear matter

@ Inner core: hyperons? quark

matter? 7w or K condensates?
?
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Fundamental questions in nuclear physics

Physics of nuclei:

Nuclear astrophysics:

Very incomplete list... Many questions will arise during these lectures!
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Nuclear astrophysics:
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Fundamental questions in nuclear physics

Physics of nuclei:
@ How do nucleons interact?

@ How are nuclei formed? How can their properties be so different for
different A?

Nuclear astrophysics:

Very incomplete list... Many questions will arise during these lectures!
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Physics of nuclei:
@ How do nucleons interact?
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Fundamental questions in nuclear physics

Physics of nuclei:
@ How do nucleons interact?

@ How are nuclei formed? How can their properties be so different for
different A?

What's the nature of closed shell numbers, and what's their
evolution for neutron rich nuclei?

What is the equation of state of dense matter?

Can we describe simultaneously 2, 3, and many-body nuclei?

Nuclear astrophysics:
@ What's the relation between nuclear physics and neutron stars?
@ What are the composition and properties of neutron stars?
@ How do supernovae explode?
@ How are heavy elements formed?

Very incomplete list... Many questions will arise during these lectures!
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Fundamental questions in nuclear physics

Let's start!

Physics of nuclei:
@ How do nucleons interact?

@ How are nuclei formed? How can their properties be so different for
different A?

@ What's the nature of closed shell numbers, and what's their
evolution for neutron rich nuclei?

@ What is the equation of state of dense matter?
@ Can we describe simultaneously 2, 3, and many-body nuclei?
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How do we describe nuclear systems?

Energy (MeV)

LQCD Degrees of Freedom
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Degrees of freedom?

How are nuclei made?
Origin of elements, isotopes

Hot and dense quark-gluon matter

Hadron structure

Resolution

4= Hadron-Nuclear interface

Nuclear structure
Nuclear reactions
New standard model

Applications of nuclear science

Effective Field Theory
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Tom Banks: "only a fool would imagine that one should try to
understand the properties of waves in the ocean in terms of
Feynman-diagram calculations in the standard model, even if the latter
understanding is possible 'in principle’.”
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Tom Banks: "only a fool would imagine that one should try to
understand the properties of waves in the ocean in terms of
Feynman-diagram calculations in the standard model, even if the latter

1

understanding is possible 'in principle’.

Weinberg's Laws of Progress in Theoretical Physics

From: " Asymptotic Realms of Physics” (ed. by Guth, Huang, Jaffe, MIT
Press, 1983). Third Law: " You may use any degrees of freedom you like
to describe a physical system, but if you use the wrong ones, you'll be
sorry!”
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Tom Banks: "only a fool would imagine that one should try to
understand the properties of waves in the ocean in terms of
Feynman-diagram calculations in the standard model, even if the latter

1

understanding is possible 'in principle’.

Weinberg's Laws of Progress in Theoretical Physics

From: " Asymptotic Realms of Physics” (ed. by Guth, Huang, Jaffe, MIT
Press, 1983). Third Law: " You may use any degrees of freedom you like
to describe a physical system, but if you use the wrong ones, you'll be
sorry!”

Doctor, it
hurts when |
do this, this,
or this!
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Quantum chromodynamics (QCD) is THE theory.

n

this (unrealistic) picture is already complicated. Calculations even more!
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Lattice QCD calculations of single hadron mass spectrum,
A. S. Kronfeld, arXiv:1209.3468.
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Nucleon-nucleon binding energy from lattice QCD as a function of m,

30, 20,
. NPLQCD, anisotropic . NPLQCD, anisotropic
25 ‘Yamazaki et al. 15 ‘Yamazaki et al.
20 @ NPLQCD, isotropic @ NPLQCD, isotropic
3 2 10
s s
15 } -
Q G
10 5
5 0 . i
[ ]
00 200 400 600 800 0 200 400 600 800
My (MeV) My (MeV)
Deuteron binding energy Di-neutron binding energy

K. Orginos, et. al, Phys. Rev. D 92, 114512 (2015).

The problem is the sign problem.
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One possible solution: change the degrees of freedom!

p .. r__ﬂ—)"‘ﬁr.. p
'M
n

The goal: use effective nucleon dof’s systematically.
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One possible solution: change the degrees of freedom!

P ST — - N%’—V*‘F*op p\/p

Wfr 3
fr Y

sy

The goal: use effective nucleon dof’s systematically.

n
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One possible solution: change the degrees of freedom!

P fu’a’*ﬂr..p p\/p

Wfr 3
fr Y

T

.M n /\n
The goal: use effective nucleon dof’s systematically.

@ Seek model independence and theory error estimates
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One possible solution: change the degrees of freedom!

P fu’a’_'—)/(r..p p\/p

Wfr 3
fr Y

fp@r[

..W @——%“({(\ n /‘\ .

n n

The goal: use effective nucleon dof’s systematically.

@ Seek model independence and theory error estimates

o Future: Use lattice QCD to match via "low-energy
constants”
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One possible solution: change the degrees of freedom!

P f:r?—_")”(r..p p\/p

Wfr 3
,, Y

fp@r[

o ..W @—3 “% n /‘\n
The goal: use effective nucleon dof’s systematically.

@ Seek model independence and theory error estimates

o Future: Use lattice QCD to match via "low-energy
constants”

o Need quark dof’s at higher densities or at high
momentum transfers, where phase transitions happen
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@ Nucleon-nucleon interaction not fundamental ‘

Ey

(c.f. Lennard-Jones for noble gases)

6

|\ +—— Repuisive +ir'2
\

27T Aitractive e
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@ Nucleon-nucleon interaction not fundamental |
(c.f. Lennard-Jones for noble gases) = ¢

]
|\ +—— Repuisive +ir'2
\

@ Range ~ 1/m; ~ 1.4 fm vs nucleon rms ~ 0.9 fm
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@ Nucleon-nucleon interaction not fundamental |
(c.f. Lennard-Jones for noble gases) = ¢

]
|\ +—— Repuisive +ir'2
\

@ Range ~ 1/m; ~ 1.4 fm vs nucleon rms ~ 0.9 fm

@ Nucleon's wave functions overlap
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Nucleon-nucleon interaction not fundamental |
(c.f. Lennard-Jones for noble gases) = ¢

]
|\ +—— Repuisive +ir'2
\

Range ~ 1/m; ~ 1.4 fm vs nucleon rms ~ 0.9 fm

Nucleon's wave functions overlap

Nucleon's composite objects: expect three- and
many-body forces important
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Nucleon-nucleon interaction not fundamental |
(c.f. Lennard-Jones for noble gases) = ¢

]
|\ +—— Repuisive +ir'2
\

Range ~ 1/m; ~ 1.4 fm vs nucleon rms ~ 0.9 fm

Nucleon's wave functions overlap

Nucleon's composite objects: expect three- and
many-body forces important

But, many nucleon-nucleon data available!
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Let's describe the (many-body) system using a non-relativistic
Hamiltonian. The d.o.f. are nucleons, described as interacting point-like

particles:
n &
H:—ﬂzv,?—FZv,-j—l— > Vit
i=1 i<j i<j<k
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Let's describe the (many-body) system using a non-relativistic
Hamiltonian. The d.o.f. are nucleons, described as interacting point-like

particles:
n &
H:—ﬂzv,?—FZv,-j—l— > Vit
i=1 i<j i<j<k

@ The kinetic energy can corrected to account for the proton vs
neutron mass difference
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Let's describe the (many-body) system using a non-relativistic

Hamiltonian. The d.o.f. are nucleons, described as interacting point-like
particles:

n &
H:—ﬂ;V?—Fij—I— > Vit

i<j i<j<k

@ The kinetic energy can corrected to account for the proton vs
neutron mass difference

@ v; is an effective two-nucleon potential including the strong
interaction and Coulomb force (with corrections due to the spin of
nucleons, form factors, etc.)
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Let's describe the (many-body) system using a non-relativistic

Hamiltonian. The d.o.f. are nucleons, described as interacting point-like
particles:

n &
H:—ﬂ;V?—Fij—I— > Vit

i<j i<j<k

@ The kinetic energy can corrected to account for the proton vs
neutron mass difference

@ v; is an effective two-nucleon potential including the strong
interaction and Coulomb force (with corrections due to the spin of
nucleons, form factors, etc.)

@ Vjj is a three-nucleon force, whose role and need will be clear later
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Let's describe the (many-body) system using a non-relativistic
Hamiltonian. The d.o.f. are nucleons, described as interacting point-like

particles:
n &
He g S g 3 vk
i=1 i<j i<j<k
@ The kinetic energy can corrected to account for the proton vs

neutron mass difference

vjj is an effective two-nucleon potential including the strong
interaction and Coulomb force (with corrections due to the spin of
nucleons, form factors, etc.)

Vijk is a three-nucleon force, whose role and need will be clear later
+ ... can include anything missing (four- five- ...-body forces)
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Let's describe the (many-body) system using a non-relativistic
Hamiltonian. The d.o.f. are nucleons, described as interacting point-like

particles:
n &
H:—ﬂZv,?jLZvﬁ > Vit
i=1 i<j i<j<k

@ The kinetic energy can corrected to account for the proton vs
neutron mass difference

@ v; is an effective two-nucleon potential including the strong
interaction and Coulomb force (with corrections due to the spin of
nucleons, form factors, etc.)

@ Vjj is a three-nucleon force, whose role and need will be clear later

@ +... can include anything missing (four- five- ...-body forces)

@ Assumption: all the nucleon's form factors, their excitations, and
other properties can be included in the potentials, and this
description is valid until nucleons overlap too much (that means

reasonably low densities and momenta), i.e. their structure don't
change much.
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Nucleon-nucleon interaction

The force between electrons (Coulomb) is the same in spin singlet and
triplet. Only the (Fermi) statistics makes a distinction.
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Nucleon-nucleon interaction

The force between electrons (Coulomb) is the same in spin singlet and
triplet. Only the (Fermi) statistics makes a distinction.

The force between nucleons strongly depends upon the spin and the
isospin.
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Nucleon-nucleon interaction

Let's consider the isospin (for the spin is the same story):

T=0 {T.=0 ()~ |pn)
=1 |pp)

T=1 T =0 5 (Inp) + |pn))
T,=-1 |nn)
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Nucleon-nucleon interaction

Let's consider the isospin (for the spin is the same story):

T=0 {T.=0 ()~ |pn)
=1 |pp)

T=1 T =0 5 (Inp) + |pn))
T,=-1 |nn)

The NN interaction in T =0 and T =1 are very different!

Example? The deuteron (T = 0) is bound, the dineutron (T =1) is
unbound!
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Nucleon-nucleon interaction

Let's consider the isospin (for the spin is the same story):

T=0 {T.=0 ()~ |pn)

;=1 \§P>
T=1 T:=0 5 (lnp) +[pn))
T,=-1 |nn)

The NN interaction in T =0 and T =1 are very different!

Example? The deuteron (T = 0) is bound, the dineutron (T =1) is
unbound!

In general:

Vv = Vis—o,7=0 + Vs=1,7=0 + Vis—0,7=1 + Vis—1,7=1

Note: Vst have different contributions in different relative angular
momental
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Traditional approach (credit D. Furnsthal, T. Papenbrock)

250 One-pion exchange
s : ' ' 1 : - by Yukawa (1935)
F S, channel
200 ] 00 00
3 E ] Multi-pions
= E by Taketani (1951
= 100 frepulsive 2 8T T Y ( )
‘: L core (p w, G) A
= E i o 0\o o
0 } + i
[ ] Repulsive core
L B ]
[ Reiggg 1 by Jastrow (1951)
-100 - AV18 8
F r[fm]
C v v v b w1y 1 olo O
0 0.5 1 1.5 2 25

From T. Hatsuda (Oslo 2008)
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Example: Argonne v (Wiringa, Stoks, Schiavilla, PRC (1995)) includes
an electromagnetic, one-pion exchange (long), and intermediate and a

short range part

—e ™ 1 S _ NP
vi = v +vi tvitvy = E vp(r,J)O,-J-
P

The operators depend on relative states of the two nucleons.

Introduction and nuclear interactions
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Example: Argonne v (Wiringa, Stoks, Schiavilla, PRC (1995)) includes
an electromagnetic, one-pion exchange (long), and intermediate and a
short range part

—e ™ 1 S _ NP
vi = v +vi tvitvy = E vp(r,J)O,-J-
P

The operators depend on relative states of the two nucleons.

There are charge independent (Cl):

of' = (1,0 0;,5;,L-S,L?,L*(g;- 0)), (L-S)’| @ [1,7; - 7]
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Example: Argonne v (Wiringa, Stoks, Schiavilla, PRC (1995)) includes
an electromagnetic, one-pion exchange (long), and intermediate and a
short range part

—e ™ 1 S _ NP
vi = v +vi tvitvy = E vp(r,J)O,-J-
P

The operators depend on relative states of the two nucleons.

There are charge independent (Cl):
05" =[1,0;-0;,5;,L-S, L2 L*(o;-0;),(L-S))| @ [L,7; - 7}]

And charge dependent (CD) and charge symmetry breaking (CSB)
terms:

OU(':D:[laa-i'o'hSij]@Tij O,-JQSB:TZ;—&—TZJ,.
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Example: Argonne v (Wiringa, Stoks, Schiavilla, PRC (1995)) includes
an electromagnetic, one-pion exchange (long), and intermediate and a
short range part

— Y I S _ P
vij = v + vi vty = Z vp(r,-J-)O,-J-
P
The operators depend on relative states of the two nucleons.

There are charge independent (Cl):
05" =[1,0;-0;,5;,L-S, L2 L*(o;-0;),(L-S))| @ [L,7; - 7}]

And charge dependent (CD) and charge symmetry breaking (CSB)
terms:

CD CSB
0j =[,0; 0,5 T;, 057" =75 + 75
where S;=30; - Ijo; - Fj—0; - 0} is the tensor
Lj = 4 (ri —r;) x (V; — V) is the relative angular momentum

S;j = 1(o/ + o;) is the total spin of the pair
and Tj; = 37,7, —7; - 7j is the isotensor operator.
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Argonne vig (Wiringa, Stoks, Schiavilla, PRC (1995))

For example, the long-range part (one pion exchange) has the form
VIO~ Y (mprj)oi - a4+ T(merj)Sil @ [1,7i - 7]

where

Y(x) = %Xg(r) is the Yukawa function,

T(x) = (1424 3) Y(x)&(r) is the tensor function,

and £(r) = 1 — exp(—cr?) is a cutoff.

The intermediate part has similar form:

18
v,-j- = Z P T2(,ur,~j)05
p=1

and the short range is
18
vy = Z [PP+ QPr+ RPF?] W(r)Of
p=1
where W(r) is a Wood-Saxon potential, and there are 42 free parameters
1P, PP, QP and RP.
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Argonne vqg (Wiringa, Stoks, Schiavilla, PRC (1995))

200 \
central 7
- ot
100 -
tensor-T
~ J
(]
2 0
s J
-100 n
Argonne v ¢
_ \ \ \ \ \
2000 0.5 1 1.5 2 2.5 3

r (fm)

Example: radial functions vy, v4 and vg that multiply respectively the
operators 1, o - o7 - T}, and S;T; - T;.
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Two slides on scattering theory (1/2)

At large distances
before the scattering, ¢ ~ e/

: ikz | £(0) jikr
after the scattering, 1 ~ €™ + —~e

(let’s assume that k ~ k')

() is the scattering amplitude, and it is
directly related to the differential
cross-section:

do
—— —If 2
o =IF®)

For a central potential f(6) can be expanded as
1 25
f(O) =5 zl:(z/ +1) (% — 1) Py(cos 0)

where ¢§; are the phase shifts, and

47 .
Ttot = 73 2(2/ + 1) sin? §,(k)
I
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Two slides on scattering theory (2/2)

In the limit of slow particles (low momenta)

1 1
kcotd(k) =~ -3 + Erek2 +...

where a is the scattering length and r, the effective range.

Very schematically (but pedagogical...), let's consider a two-body system
with attractive interaction:

a<0 o . a>0 \\\‘
N | J
' 2
No bound states Bound state with E,=0 Ep ~ TZaz

The nucleon-nucleon 3S; channel (deuteron) has a =~ 5.5 fm and is
slightly bound. The 1Sy (two neutrons) has a =~ —18 fm and is slightly
unbound.
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Argonne vig (Wiringa, Stoks, Schiavilla, PRC (1995))

The parameters are fit to nucleon-nucleon scattering data up to lab
energies of 350 MeV with very high precision, x? ~1. Phase shifts:

3 (deg)

3 (deg)

— Argonnev,, np
— Argonnev,; pp
Argonne v, nn

e SAID 7/06 np

— Argonnev,, np
e SAID 7/06 np

200 300 400
E,, (MeV)
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1\‘\‘\.\.
- L L L L L L - L L L L L L
40 00300 400 AT 200300 400 500
E,, (MeV) E,, (MeV)
20 : 0
i 3 &
10- PO 4 — Argonne v, np
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There are also other (simpler) versions of Argonne potentials, AV,
AVE’, ..., but also others like those of the Nijmegen group, CD-Bonn
potentials, and many others.
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There are also other (simpler) versions of Argonne potentials, AV,
AVE’, ..., but also others like those of the Nijmegen group, CD-Bonn
potentials, and many others.

Another more recent approach, consists in developing nucleon-nucleon
interactions within the framework of chiral effective field theory.
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Chiral EFT interactions

Main idea of EFT: identify scales of the problem that are different, and
expand in the ratio.

= “Ideal” systematic improvements possible!
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expand in the ratio.

= “Ideal” systematic improvements possible!

In the nucleon-nucleon interaction, what are the d.o.f. involved?
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Chiral EFT interactions

Main idea of EFT: identify scales of the problem that are different, and
expand in the ratio.

= “Ideal” systematic improvements possible!

In the nucleon-nucleon interaction, what are the d.o.f. involved?
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Chiral EFT interactions

Main idea of EFT: identify scales of the problem that are different, and
expand in the ratio.

= “Ideal” systematic improvements possible!

In the nucleon-nucleon interaction, what are the d.o.f. involved?

P—u_ "

n/)/%:\)‘\n

Pretend that m,(~ 140MeV) — 0 (soft scale) and
mpy(~ 939MeV') — oo (hard scale).

In the low-energy (low-momentum) limit, we can expand the interaction
in powers of (Q/A)”, where @ ~soft scale, and A ~hard scale.
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Chiral EFT interactions

One possible power counting (Weinberg) v in (Q/A)” is given by

n;

v= 4+2N+2L+ZV’ (d,+ > 2)
where
N=nucleons involved in the process,
L=pion loops,
Vi=vertices of type i,
d;=derivatives and or insertions of m,,
n;j=nucleonic fields operators.

Note:
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One possible power counting (Weinberg) v in (Q/A)” is given by

n;

v= 4+2N+2L+ZV’ (d,+ > 2)
where
N=nucleons involved in the process,
L=pion loops,
Vi=vertices of type i,
d;=derivatives and or insertions of m,,
n;j=nucleonic fields operators.

Note:

e Adding one nucleon increases one order in Q/A
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Chiral EFT interactions

One possible power counting (Weinberg) v in (Q/A)” is given by

n;

v= 4+2N+2L+ZV’ (d,+ > 2)
where
N=nucleons involved in the process,
L=pion loops,
Vi=vertices of type i,
d;=derivatives and or insertions of m,,
n;j=nucleonic fields operators.

Note:
e Adding one nucleon increases one order in Q/A

@ Expect many-body forces! “Natural” expectation that
Vo> V> V...
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Chiral EFT interactions

One possible power counting (Weinberg) v in (Q/A)” is given by

y:74+2N+2L+Z\/,-(d,-+%—2)

where

N=nucleons involved in the process,
L=pion loops,

Vi=vertices of type i,

d;=derivatives and or insertions of m,,
n;j=nucleonic fields operators.

Note:
e Adding one nucleon increases one order in Q/A

@ Expect many-body forces! “Natural” expectation that
Vo> V> V...

@ Some coupling constants from experiments, some need to be fit
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Chiral EFT interactions

Example (1), one-pion exchange (N =2, L = 0):
Two identical vertices: Vi=2, di=1, m=2,
— v =0 (LO) N

Stefano Gandolfi (LANL) - stefano@lanl.gov Introduction and nuclear interactions



Chiral EFT interactions

Example (1), one-pion exchange (N =2, L = 0):
Two identical vertices: Vi=2, di=1, m=2,
— v =0 (LO) N

Example (1), contact interactions (N = 2, L = 0):
One vertex: V=1, d;=0, n;=4,
— v =0 (LO)
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Chiral EFT interactions

Example (1), one-pion exchange (N =2, L = 0):
Two identical vertices: Vi=2, di=1, m=2,

— v =0 (LO) N ; N
l |7
i :
N —»—L—»— N N N
Example (1), contact interactions (N = 2, L = 0):
One vertex: Vi=1, d1=0, n1=4, One vertex: Vi=1, di=2, n1=4,
—v=0(LO) — v =2 (NLO)
N N N N
N N N N
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Chiral EFT interactions

So at each order, draw all the possible diagrams, and that’s it!

2N force 3N force 4N force

N'LO

Several versions available on the market up to N3LO (maybe higher).
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Chiral EFT interactions

NN phase shifts up to 300 MeV

Green dash-dotted line: NNLO Potential, and
blue dashed line: NLO Potential
by Epelbaum et al., Eur. Phys. J. A19, 401 (2004).
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Chiral EFT interactions

Other possible expansions are possible, i.e. pionless
theory, delta-full, ...

In the same way also electroweak currents and other
operators can be constructed that are consistent
with the Hamiltonian.
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Summary of this lecture:
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Summary of this lecture:

o Introduction: nuclear physics in a big contest
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Summary of this lecture:
o Introduction: nuclear physics in a big contest
o Questions in nuclear physics
o Degrees of freedom

o Nucleon-nucleon interactions

End for today...
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