
La�ice QCD for hadron and nuclear physics: sca�ering and

many-particle systems

Sinéad M. Ryan

Trinity College Dublin

National Nuclear Physics Summer School, MIT July 2016



Plan

A look at the spectrum of single-particle states

Resonances

Two particles in a box

Accessing resonance information from finite volume calculations

Toy models

Recent simulations

Spectrosopy at finite temperature

Summary



The spectrum of light states

Using the technology we have discussed, the spectra of mesons and baryons can be

determined precisely.
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Is this everything?



Resonances and scattering states

We have assumed that all particles in the spectrum are stable

Many (the majority) are not.

A resonance is a state that forms eg when colliding two particles and then decays

quickly to sca�ering states.

They respect conservation laws: if isospin of the colliding particles is 3/2, resonance

must have isospin 3/2 (∆ resonance)

Usually indicated by a sharp peak in a cross section as a function of c.o.m. energy of

the collision.

Can la�ice qcd distinguish resonances and sca�ering states?



Mesons and Isospin Strange particles Resonances The quark model

Resonances in e
+
e
−

→ hadrons

σee→hadrons(Eee)

Note the more or less sharp
resonances on a comparably flat
“continuum”, coming from
e+e− → qq̄

(We will discuss this in more detail!)

They are (apart from the Z ) all
related to qq̄-bound states.

Zoom into J/Ψ

Note: Here width around 3
MeV completely determined
by detector (ΓJ/Ψ = 87
keV)

F. Krauss IPPP

Introduction to particle physics Lecture 4



Maiani-Testa no-go theorem

In

States

Out

States

Importance sampling Monte-carlo simulations rely on a path integral with positive

definite probability measure: Euclidean space

Maiani-Testa: sca�ering matrix (S-matrix) elements cannot be extracted from

infinite-volume Euclidean-space correlation functions (except at threshold)

Michael 1989 and Maiani, Testa (1990)



Maiani-Testa (2)

Can understand this since:

Minkowski space: S-matrix elements complex functions above kinematic thresholds

Euclidean space: S-matrix elements are real for all kinematics - phase information lost

La�ice simulations with dynamical fermions admit strong decays eg for light-enough

up and down dynamical quarks ρ→ ππ
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Maiani-Testa (3)

Can the la�ice get around the no-go theorem to extract the masses and widths of

such unstable particles?

Yes - use the finite volume.

Computations done in a periodic box

momenta quantised

discrete energy spectrum of stationary states→ single hadron, 2 hadron ...

sca�ering phase shi�s→ resonance masses, widths deduced from finite-box spectrum

B. DeWi�, PR 103, (1956) - sphere

M. Lüscher, NPB (1991) - cube

Two-particle states and resonances identified by examining the behaviour of energies in

finite volume

For elastic two-body resonances (Lüscher): M1M2 → R→ M1M2

−→ Volume dependence of energy spectrum

−→ Phase shi� in infinite volume

−→Mass and width of resonance - parameterising the phase shi� e.g. with Breit Wigner.

Note: This is a rapidly developing field. I will add some refs for recent work or see La�ice
Conf talks.



Particles in a box

Spatial la�ice of extent L with periodic boundary conditions

Allowed momenta are quantized: p = 2π
L (nx , ny , nz ) with ni ∈ {0, 1, 2, . . . L− 1}

Energy spectrum is a set of discrete levels, classified by p: Allowed energies of a

particle of mass m

E =

√

√

√

m2 +

�

2π

L

�

2

N2
with N2 = n2

x + n2

y + n2

z

Can make states with zero total momentum from pairs of hadrons with momenta

p,−p.

“Density of states” increases with energy since there are more ways to make a

particular value of N2
e.g. {3, 0, 0} and {2, 2, 1}→ N2 = 9



Avoided level crossings

Consider a toy model with two states (a resonance and a two-particle decay mode) in

a box of side-length L

Write a mixing hamiltonian:

H =

�

m g

g 4π
L

�

Now the energy eigenvalues of this hamiltonian are given by

E± =
(m + 4π

L )±
Ç

(m− 4π
L )2 + 4g2

2



Avoided level crossings
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Avoided level crossings

Ground-state smoothly changes from resonance to two-particle state

Need a large box. This example, levels cross at mL = 4π ≈ 12.6

Example: m = 1 GeV state, decaying to two massless pions - avoided level crossing is

at L = 2.5fm.

If the decay product pions have mπ = 300 MeV, this increases to L = 3.1fm



Lüscher’s method

Relates the spectrum in a finite box to the sca�ering phase shi� (and so resonance

properties)

Lüscher’s formula

det

�

cot δ(E∗n ) + cotϕ(En, ~P, L)
�

= 0

and cotϕ a known function (containing a generalised zeta function).

The idea dates from the quenched era. To use it in a dynamical simulation need

energy levels at extraordinary precision. This is why it has taken a while ....

An alternative approach called the potential method by HALQCD is also in use [PRL99

(2007), 022001] - less robust, certainly less widely used.



Lüscher’s method

Z00 is a generalised Zeta function:

Zjs(1, q2) =
∑

n∈Z 3

r jYjs(θ,ϕ)

(n2 − q2)s

[Commun.Math.Phys.105:153-188,1986.]

With the phase shi�, and for a well-defined resonance, can fit a Breit-Wigner to

extract the resonance width and mass.

δ(p) ≈ tan
−1

�

4p2 + 4m2

π − m2

σ

mσΓσ

�



Lüscher (3): considering ρ→ ππ

For non-interacting pions, the energy levels of a 2 pion system in a periodic box of

length L are

E = 2

Ç

m2

π + p2 p = 2π|~n|/L

and ~n has components ni ∈ N.

In the interacting case the energy levels are shi�ed

E = 2

Ç

m2

π + p2 p = (2π/L)q

where q is no longer constrained to orginate from a quantised momentum mode.

In the presence of the interaction, energy eigenvalues deviate from the

noninteracting case

These deviations contain the information on the underlying strong interaction -

yielding resonance information via Luscher formulism.



Schrödinger equation

Exercise: find the phase shi� for a 1-d potential

V(x) = V0δ(x − a) + V0δ(x + a)

Now compute the spectrum in a finite box and use Lüscher’s method to compare the

two

L

E
n



Test: O(4) Sigma model
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ρ→ ππ

Start with an “easy” system, I = 2ππ and test methods there. Interaction not strong

enough to form a resonance, but is weak and repulsive.

In the real world want to study rho→ ππ in isospin I = 1

This involves disconnected diagrams which is already a complication - although in

principle doable.

I = 1 case is now studied (distillation has helped a lot here)



I=2 ππ scattering
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Dashed lines: non-interacting pion pairs



I=2 ππ scattering - not physical pions
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towards physical pions in I=2 ππ.
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NPLQCD, 1107.5023. Combines chiral perturbation theory and la�ice results at

mπ ∼ 396MeV to predict phase shi� at the physical pion mass.



ππ in I=1



The inelastic threshold

Lüscher’s method is based on elastic sca�ering.

Since mπ is small, most resonances are above this threshold

It will be crucial to ensure we have a comprehensive basis of operators that create
multi-hadron states.

Going beyond elastic. The method is generalised for: moving frames; non-identical

particles; multiple two-particle channels, particles with spin, by many authors.

det

�

t−1(E) + iρ(E)− M(E, L)
�

= 0

relates the sca�ering t matrix to the discrete spectrum of states in finite volume

(coupled channels).

The precision and robustness of some numerical implementations is now very

impressive. [See e.g. talks at La�ice 2015 & 2016]

First coupled-channel resonance in a la�ice calculation

πK → ηK by D. Wilson et al 1406.4158 and 1507.02599



Recent (and very recent) results
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More coupled channels!

Is a0 a qq̄ state or dominated by a KK̄ molecular configuration?
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Find an S-wave resonance in a two-coupled channel region - πη,KK̄ , includes limited

3-channel sca�ering - (πη,KK̄ , πη′). Resonance pole has large coupling to KK̄ .



H-Dibaryon

A bound 6-quark state (udsuds) first proposed by Ja�e (1977) in MIT bag-model - at

81MeV below ΛΛ threshold.

La�ice calculations [NPLQCD, HALQCD] find H-dibaryon bound but at quark

masses larger than physical pion.

Extracting resonance parameters from ΛΛ

A linear chiral extrapolation does not discriminate between bound/unbound at the

physical pion mass. Does suggest a state in I=0, J=0, s=-2 (ΛΛ) that is just

bound/unbound.

More work to be done for good understanding



X(3872) - a first look

Prelovsek & Leskovec 1307.5172

ground state: χc1(1P)

DD̄∗ sca�ering mx: pole just below thr.

Threshold ∼ mu,d and mc discretisation?

Padmanath, Lang, Prelovsek 1503.03257
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Z+
c

An “exotic” hadron i.e. does not fit in the quark model picture.

There are a number of exploratory calculations on the la�ice.

Challenges:
The Z+

c (and most of the XYZ states) lies above several thresholds and so decay to

several two-meson final states

requires a coupled-channel analysis for a rigorous treatment

on a la�ice the number of relevant coupled-channels is large for high energies.

State of the art in coupled-channel analysis:
Lüscher: Kπ,Kη [HSC 2014,2015]

HALQCD: Zc [preliminary results]



Z+
c
- First look on the lattice

Prelovsek, Lang, Leskovec, Mohler: 1405.7615

Lattice
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no additional state below 4.2GeV

no Z+
c candidate below 4.2GeV

Similar conclusion from Lee et al [1411.1389] and Chen et al [1403.1318]

Why no eigenstate for Zc? Is Z+
c a coupled channel e�ect? What can other groups say?

Work needed!



Many other states being investigated

Tetraquarks:

Double charm tetraquarks (JP = 1
+, I = 0) by HALQCD [PLB712 (2012)]

a�ractive potential, no bound tetraquark state

Charm tetraquarks: variational method with DD∗,D∗D∗ and tetraquark operators

finds no candidate.

Y(4140)

Ozaki and Sasaki [1211.5512] - no resonant Y(4140) structure found

Padmanath, Lang, Prelovsek [1503.03257] considered operators:

cc̄, (c̄s)(̄sc), (c̄c)(̄ss), [c̄s̄][cs] in JP = 1
+

. Expected 2-particle states found and χc1,X(3872)

not Y(4140).

.

.

.

See Prelovsek @ Charm2015 for more



Exploratory studies of scattering/many-body systems

Characterised by:

New methods (developed/applied in last 5 years)

algorithmic: distillation allows access to all elements of propagators and construction of

sophisticated basis of operators.

theoretical: spin-identification; construction of multi-hadron operators etc

Generally high statistics, improved actions etc - results can be very precise.

Systematic errors not all controlled in exploratory studies: e.g. no continuum

extrapolation, relatively heavy pions ...



A di�erent frontier: finite temperature and density QCD



Spectroscopy at finite temperature

We have heard about finite temp QCD.

One avenue of investigations: States made from heavy quarks are expected to act as

a probe of dynamics of the QGP

There are interesting results coming from RHIC and CERN for the melting and

suppresion of such states.

Can la�ice say anything? It is a challenge!

(Without details here) the thermal correlator is

C(τ) ∼
∫ ∞

0

dωρ(ω,T)K(ω, τ,T), (p = 0).

C(τ) sampled discretely but ρ has values for continuous ω

An ill-posed problem!

Maximum entropy methods (MEM) can be used but can be unstable and

model-dependent

New ideas needed!



Effective masses at finite T
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Results: maximum entropy analysis
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Finite density QCD

Would like to explore in finite μ with

la�ice qcd

μ 6= 0⇒ M not γ5 hermitian.

No longer have a (positive) probability

weight for Monte Carlo simulations -

sign problem
There are “work-arounds” but no

solutions (yet!)



Executive Summary & Outlook

There is much that I did not cover in these lectures

I chose to focus on methods, new and old, for the “basic” building blocks of

spectroscopy

... and described their successful applications as well as some pitfalls

La�ice hadron/nuclear physics is moving rapidly at the moment as new techniques

emerge

Many challenges remain e.g. no general framework for extracting sca�ering

amplitudes involving more than two hadrons. Clever ideas needed!

There will be lots more experimental data in the near future and to keep pace will be

challenging

Thanks for listening and enjoy the rest of the school!


