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Plan

A short recap of this morning.

A look at results from di�erent la�ice formulations.

Extracting physics - energy from correlation functions.

Discretising QCD - what the consequences (and compromises) for physics.

Making progress - two routes and how to use and/or understand the resulting la�ice

data.



Recap

QCD - a theory of the strong interaction that is confining and asymptotically free.

La�ice QCD - a formulation of the theory on a 4-dimensional space-time la�ice.

provides a regulator for the theory

facilitates numerical simulations via Monte Carlo evaluation of path integrals in the

Euclideanised theory.

Fermions “live” on la�ice sites and gluons on the links. There is no unique

discretisation framework but the continuum theory should be recoverable in a formal

way.



Validation:
can we reproduce known results and make verified

predictions?



How are we doing?

C. Hoelbling, arXiV.1102.0410
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How are we doing (2)?

C. Hoelbling, arXiV.1102.0410
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Nf = 2 + 1 simulations at the physical point

First Nf = 2 + 1 simulations at physical quark mass.

PACS-CS computer, U Tsukuba. 14.3 Tflops peak

La�ice spacing: a = 0.08995(40)fm (from mΩ).

PACS-CS Collaboration [arXiv:0911.2561]
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Validation

The running coupling, αs

Baryon electromagnetic mass spli�ings

QED + QCD

BMW Collab. Science 347 (2015) 1452



Convergence through universality

BMW Collaboration
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The QCD spectrum

Goal is to extract the energy of (colourless) states of QCD .

This information is encoded in the 2-point correlation functions

C(t) = 〈ϕi(t)|ϕ†
i
(0)〉

where ϕ† and O are operators acting on the quark fields to create a state at t = 0

and annihilate at t = t .

Euclidean time evolution: ϕ(t) = eHtϕe−Ht
and inserting a complete set of states

1 =
∑

n |n〉〈n| gives

C(t) =
∞
∑

n=0

|〈ϕ|n〉|2

2mn
e−Ent

we work in the low-temp limit ie β = 1/kT = Lt large.

Now as t →∞C(t) = Ze−E0t

At large times the exponential fall o� of C(t) gives the ground state energy.



From correlators to energies

In general works well for extracting ground states

Higher excitation energies hard to extract by just fi�ing to exponentials.
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The correlator and e�ective mass of the J/Ψ meson.

For Oi = Oj the correlation function is positive definite and atme�ective converges

monotonically from above.



The QCD spectrum (2)

The la�ice has finite extent - impose (anti)-periodic boundary conditions. Then

meson correlators are symmetric about the midpoint of the la�ice i.e.

e−mt → e−mt + e−m(T−t)
where T is the time extent.

Want to optimise O to get a large overlap with the wavefunction of the state of

interest i.e. make

Zn(~p) ≡
|〈0|Oi |n〉|2

2En(~p)

the spectral weight of the nth
state large for state of interest and small for the rest.



What about excitations?

One approach: variational method

If we can measure Cij(t) = 〈0|ϕi(t)ϕ†
j
(0)|0〉 for all i, j and solve generalised eigenvalue

problem:

C(t) v = λC(t0) v,

then

lim

t−t0→∞
λk = e−Ek t + O

�

e−∆Ent
�

For this to be practical, we need:

a ‘good’ basis set that resembles the states of interest.

all elements of this correlation matrix measured.

[see Blossier et.al. JHEP 0904 (2009) 094]



Extracting Energies
aka

The Dark Art of Fi�ing Data



The effective mass

A useful quantity is the e�ective mass

atMe�(t) = ln

�

C(t)

C(t + 1)

�

A useful quantity to see ground state dominance: atme� → constant - the plateau

The onset and length of the plateau depends on O
The hadron mass is extracted from a fit to correlator data in the plateau region

statistical errors grow exponentially with t , except for the pion



An effective mass plot

At large times, e�ective mass converges to the ground state energy - see a plateau in the

e�ective mass plot as a function of time.
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An effective mass plot (2)

At large times, e�ective mass converges to the ground state energy - see a plateau in the

e�ective mass plot as a function of time.
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fit in this range: C(t) = Ae
-mt

Plateau

The correlator data is fi�ed to the expected C(t) = Ae−E0t
form. Eg using a χ2

minimisation algorithm with A and E0 free parameters and for some “reasonable”

choice of time range.

Errors are estimated by bootstrap or jackknife.



Resampling techniques

Two methods: Bootstrap and Jackknife

Jackknife from �enouille (1956) and Tukey (1957)

Consider N measurements, remove the first

leaving a jackknifed set of N − 1 “resampled”

measurements.

Repeat analysis (fits) on this reduced set, giving

parameters αJ(1) .

Repeat resampling, throwing out 2nd

measurement etc to get αJi , i = 1, . . . ,N .

Then

σ2

J
=

(N − 1)

N

N
∑

i=1

(αJ(i) − α)2

where α is the result from fi�ing the full dataset.

John Tukey: also gave

us FFT and box plots!



Resampling techniques (2): bootstrap

Bootstrap from Efron (late ’70s). See Numerical Recipes and Efron’s book An Introduction

to the Bootstrap

A resampling technique.

Create a new dataset by drawing N datapoints with replacement

from the original dataset, size N .

Replacement means you do not get the original set each time - but

a set with a random fraction of the original points.

As for jackknife repeat analysis on each new set.

Bradley Efron

Numerical Recipes in C says

O�ered the choice between mastery of a five-foot shelf of analytical statistics books and
middling ability at performing statistical Monte Carlo simulations, we would surely choose to
have the la�er skill.



How to choose a fit range

When fi�ing the correlator data we are looking for:

a good χ2/Nd.o.f .

a “reasonable” range in t

a “reasonable” fit error

a fit that is stable with respect to the choice of t . In particular with respect to small

changes in tmin the minimum timeslice included in the fit.

Common quantities to look at

a sliding window: plot the fi�ed mass as a function of tmin

a fit-histogram: plot QNdof /(∆m) for each (tmin, tmax ) and

Q = Γ[(interval − Nparam)/2, χ2/2]. Choose the (tmin, tmax ) that maximises this

quantity.

A good idea to check your fit range looks reasonable on the e�ective mass plot

Homework

Have some fun with data! See homework exercise on web page.



Effective mass plots

BMW Collaboration (Dürr et al) 0906.3599v1
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The effective mass (again)

At large times, e�ective mass converges to the ground state energy - see a plateau in the

e�ective mass plot as a function of time.
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excited states dominating here

ground state dominating here

How can we determine excited state energies?

First guess: fit to 2 exponentials - C(t) = Ae−E0t + Be−E1t
, where A,B, E0, E1 are fit

parameters.

Since the regions where E0 and E1 are relevant are di�erent: fit for E0 and freeze its

value in a fit for E1.

Notoriously unstable fits.

Di�erent approach needed



Extracting excited state energies

There are a number of ideas on the market

Bayesian analysis

χ2
-histogram analysis

Variational analysis

.

.

.



Variational analysis - the most successful method

Consider a basis of operators Oi, i = 1, . . . ,N in a given la�ice irrep.

Form a matrix of correlators

Cij(t) = 〈Oi(t)O†
j
(0)〉

Treat as a generalised eigenvalue problem (GEVP):

C(t)vn(t, t0) = λn(t, t0)C(t0)vn(t, t0)

where t0 is a refence timeslice (you choose)

The vectors vn diagonalise C(t)

For finite N one can prove [Lüscher & Wol� 1990]

Ee�
n

(t, t0) = −∂t logλn(t, t0) = En + O(e−∆Ent)



Fitting principal correlators

Typical fits for a set of excited states in the T−−
1

irrep in charmonium (26 operators!)

are
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with t0 = 15.

Expect a plateau at 1.0 if single-exp dominates.



Improving resolution: anisotropic la�ices



Improving resolution - the anisotropic lattice

If we can build a good basis of operators, we can extract energies of low-lying states

from the correlator at short distances.

The la�ice correlator can only be sampled at discrete values of t and signal falls

quickly for a massive state, while the statistical noise does not. Reducing the la�ice

spacing is extremely computationally expensive

Mitigate this cost by reducing just the temporal la�ice spacing, keeping the spatial

mesh coarser; the anisotropic la�ice.

Unfortunately this reduces the symmetries of the theory from the hypercubic to the

cubic point group. The dimension four operators on the la�ice now split;

Tr FμνFμν →
�

Tr FijFij,Tr Fi0Fi0

	

ψ̄γμDμψ →
�

ψ̄γiDiψ, ψ̄γ0D0ψ
	

On 3⊕ 1 anisotropic la�ices, spatial symmetries unchanged.



QCD and the anisotropic lattice

The space-time symmetry breaking in QCD introduces extra bare parameters in the

lagrangian, that must be tuned to restore Euclidean rotational invariance in the

continuum limit.

For QCD, both the quarks and gluons must “feel” the same anisotropy; this requires

tuning a priori.

Two physical conditions are satisfied simultaneously, derived from the “sideways”

potential and the pion dispersion relation.
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Further thoughts on la�ice calculations
Compromises and the Consequences



1. Working in a finite box at finite grid spacing

Further notes on RGE and asymptotic scaling in notes on line.

Identify a “scaling window” where physics

doesn’t change/changes weakly with a or V .

Recover continuum QCD by extrapolation.

La�ice spacing small enough to resolve

structures induced by strong dynamics

Volume large enough to contain lightest particle

in spectrum: mπL ≥ 2π

a0

a(fm)

V  inf.

L(fm)

A costly procedure but a regular feature in la�ice calculations now



2. Simulating at physical quark masses: light quarks

Light quarks in gauge generation through fermion determinant M.

Computational cost grows rapidly with decreasing quark mass→ mq = mu,d costly.

C ∝
�

mπ

mρ

�−6

(L)5 (a)−7

Work horse is Hybrid Monte Carlo

(HMC) Duane et al 1987

Many improvements over the years for

all fermion discretisations

The wall has come down - Physical point can be reached!

Care needed vis location of decay thresholds and identification of resonances.



2. Simulating at physical quark masses: heavy quarks

Discretisation errors grow as O(amq) becoming large for reasonable a and heavy

quarks

Bo�om quarks treated with E�ective Field Theories - NRQCD, Fermilab etc

Continuum limits and EFTs can be tricky - not always possible e.g. with NRQCD

Controlling systematics important for precision CKM physics

Charm quarks can be handled relativistically

Anisotropic la�ices useful here: as 6= at and atmc < 1. Care needed to ensure errors

O(asmc) are not large.

Be�er algorithms for physical light quarks and/or chiral extrapolation. Relativistic mb is in

reach.

Turn a weakness into a strength by using la�ice simulations to study quark mass
dependence!



2. Simulating at physical quark masses: heavy quarks
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3. Breaking symmetry la�ice
−−−−−−−−−→

O(3) Oh

Almost all symmetries of QCD are preserved. But Lorentz symmetry broken at a 6= 0

so SO(4) rotation group broken to discrete rotation group of a hypercube.

Angular momentum and parity JP
correspond to irreducible representations of the

rotation group O(3)

A spatially isotropic la�ice breaks O(3)→ Oh, the cubic point group.

Eigenstates of the la�ice H transform under irreps of Oh so states are classified by

these irreps and not by JP
.

Classify states by irreps of Oh and relate by subduction to J values of O3.

5 irreps of O(3) and an infinite number for JP
so values are distributed across la�ice

irreps.

Lots of degeneracies in subduction for J ≥ 2 and physical near-degeneracies.

Complicates spin identification.



Connecting lattice and continuum groups

A1 A2 E T1 T2

J = 0 1
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In principle then to identify a J = 2 state, results from E and T2 at finite a should

extrapolate to the same result.

an expensive business(!)

Even then, is this enough information to disentangle high-spin states eg

4 = 0⊕ 1⊕ 2 ?

In charmonium a radial excitation of the near-degenerate (0
++, 1++, 2++) could be

close in energy to the 4
++

ground state.

A solution - Spin identification at finite la�ice spacing: 0707.4162, 1204.5425



4. Making propagators - Wick revisited

Recall that to calculate particle properties the fermion matrix M - a large

(∼ 10
8 × 10

8
) matrix is inverted followed by Wick contractions of quark fields.

C(t,x) = 〈Tr(γ5M−1

a
(x, 0)†γ5ΓM−1

b
(x, 0)Γ†)〉

Mesons e.g. a pion

〈ū(x)γ5d(x)d̄(y)γ5u(y)〉 = Tr{γ5M−1

dd
(x, y; U)†γ5M−1

uu
(y, x; U)Γ†)}

Baryons e.g. a proton:

2 up quarks, 1 down quark. Must keep track

of which u quark from x goes to which u

quark at y - 2 contractions: (Nu!× Nd !)
Now, for proton-proton sca�ering have

4!× 2! = 48 contractions

For He3 (ppn) 5!× 4! = 2880 and for He4

(ppnn) 6!× 6! = 518400.

Symmetries reduce the problem and be�er algorithms

Yamazaki et al, PRD81 2010; Orginos& Detmold PRD87 2013

.



5. Making propagators - signal-to-noise

Particularly severe for nucleons.

Signal for a proton correlation function ∼ Ze−mN t
�

1 + δZne−(En−mN )t
�

.

Signal to noise for a proton is then ∼
p

Ncfge−(mN− 3

2
mπ)t

with mN ∼ 939MeV and

mπ ∼ 135MeV .

Signal to noise for A nucleons is ∼
p

Ncfge−A(mN− 3

2
mπ)t

To solve this extract information from the correlators at early Euclidean time i.e. before

the noise becomes dominant. Requires “be�er” operators for nucleons (which also

increases the Wick contraction problem!).



Se�ing the scale
La�ice quantities are computed in la�ice units e.g. amN . Convert to physical units to

compare to experiment/make predictions of physical observables e.g. masses and form

factors.

Choose an observable O that is relatively easy to calculate and insensitive to e.g. up and

down quark masses (which may not be correct in the simulation) and match to its

experimental value to determine a. This quantity is no longer a prediction!

Stable masses e.g. Mω,MK

Force between static quarks: F (r) = − B
r2

+ σ and r2

0

F (r0) = 1.65 with r0 ∼ 0.5fm
from experiment/phenomenology of charmonium bo�omonium systems.

Wilson flow. A new idea that is precisely and easily calculated from the gauge action.

Many reasonable choices and discretisation errors mean there is some uncertainty from

this procedure.



7. Working in Euclidean time.

In

States

Out

States

Sca�ering matrix elements not directly accessible from Euclidean QFT [Maiani-Testa
theorem]. Sca�ering matrix elements: asymptotic |in〉, |out〉 states:

〈out|eiĤt |in〉 → 〈out|e−Ĥt |in〉. Euclidean metric: project onto ground state. Analytic

continuation of numerical correlators an ill-posed problem.

Lüscher and generalisations of: method for indirect access. See more on this later.

8. �enching
A computational expedient to set det M = 1 in gauge configuration generation.

Rarely necessary now, results in a non-unitary theory so not a good approximation of

nature.

Sometimes useful for investigating new methods.

No longer an issue: Simulations with Nf = 2, 2 + 1, 2 + 1 + 1.



Two strategies for progress

In la�ice calculations there are complementary e�orts

Gold-plated quantities

e.g. single hadron states, or decays

below thresholds

phenomenologically relevant

incremental progress

robust/well-tested methods

careful error budgeting

New directions

new ideas - theoretical and algorithmic

that open new avenues

recent examples are sca�ering states,

nuclear physics, g-2, ...

also improves gold-plated

pioneering, error budgets not yet

“robust”

Look at “gold-plated” results first

Review new ideas for pioneering calculations next.



Strategies for progress: gold plated quantities - a selection

A. Kronfeld, Ann.Rev.Nucl.Part.Sci. 62 (2012)



Strategies for progress: gold plated quantities - a selection
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Stable single-hadron states, below thresholds

Including continuum extrapolation, realistic quark masses, renormalisation etc



Summary

Reviewed la�ice results showing convergence of results from di�erent methods.

Understood how to extract information from correlators and some details of fi�ing.

Discussed the e�ects of discretisation and consequences.

Next: Review new ideas enabling progress and recent results.


