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Housekeeping

Web page for these lectures at h�p://www.maths.tcd.ie/~ryan/MIT2016

lectures, homework problems and data as well as references will all be there
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Lecture Plan
Lecture 1:

Theory and experiment motivation for hadron and nuclear physics.
QCD overview.
Why consider la�ice calculations.
Introduction to la�ice framework including the path integral and discretisation.

Lecture 2:
Convergence through universality - how well to la�ice calculations do?
Fi�ing data - tricks and pitfalls
Some aspects of discretisation to consider.
Strategies for precision calculations

Lecture 3:
New ideas enabling precision physics
Recent results - the state-of-the-art.

Lecture 4:
New frontiers - sca�ering and resonances in a la�ice calculation.
Open challenges in hadronic and nuclear physics.
The exascale era.

Aim: a pedagogic introduction to la�ice QCD - to understand methods, the di�iculties and
the results and errors in a calculation.
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Introduction

There are many interesting questions in hadronic and nuclear physics that we would like
to answer from first principles:

What is the nature of the X,Y,Z states in charmonium and bo�omonium?

What is the dynamics and structure of exotic and hybrid states?

How sensitive are “fine-tuned” quantities like Mn − Mp to the values of fundamental
parameters?

What is the equation of state of dense nuclear ma�er in neutron stars?
Can we test/break the Standard Model at low energies

relevant since SM complete with Higgs
no significant BSM physics observed other than g − 2 and proton radius.
Can we determine reliable inputs for Dark Ma�er searches?

Not an exhaustive list of course!



An overview of QCD
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QCD
�antum theory of the strong interaction, built from fundamental variables - gauge and
fermion fields.

from F.A. Wilczek

This doesn’t look too bad - a bit like QED which we have a well-developed toolkit to
deal with.
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Continuum QCD

In fact QCD is very di�erent to QED. Strong interactions are

asymptotically free

confining

chirally broken

A Non-perturbative theory: Observables are not analytic in the QCD coupling.

Perturbation theory will fail - a non-perturbative regulator needed to study physics
at hadronic scales in terms of fundamental fields.

a good regulator will

make the integral tractable

regulate the momentum integrals

A la�ice discretisation does both!
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A closer look at continuum QCD

The Lagrangian is given by

L = ψ̄
�

iγμDμ − m
�

−
1

4
F a
μνF

μν
b

where the gluon field strength is F a
μν = ∂μAa

ν − ∂νAa
μ + gf abcAb

μAc
ν and the covariant

derivatives are Dμ = ∂μ − igAa
μta.

�ark fields ψ have colour, flavour and spin

ψi,f ,α







i ∈ {red, blue, green}
f ∈ {u, d, s, c, b, t}
α 1/2

The gluon fields, Aμ live in the adjoint rep of
SU(3) colour
There are 8 gluons that also carry colour,
selfinteracting
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A closer look at continuum QCD

L = ψ̄
�

iγμDμ − m
�

−
1

4
F a
μνF

μν
b

Symmetries of the theory include

SU(3) local gauge symmetry ie preserved at each point in spacetime.

Lorentz, C, P and T, and global flavour

Ψ→ eiαΨ and in the m = 0 limit Ψ→ eiγ5αΨ

Preserve as much of this structure as possible in the la�ice theory.
Free parameters in the theory are

the coupling g between quarks and gluons - dimensionless.

the quark mass(es) mq - dimensionful.

If we can solve the theory, everything else is a prediction including hadronic masses e.g. the
proton mass, form factors, He binding energy, equations of state (e.g. for a neutron star) ...
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Objects of interest
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A constituent model

QCD has fundamental objects: quarks (in 6 flavours) and gluons

Fields of the lagrangian are combined in colorless combinations: the mesons and
baryons. Confinement.

quark model object structure

meson 3⊗ 3̄ = 1⊕ 8
baryon 3⊗ 3⊗ 3 = 1⊕ 8⊕ 8⊕ 10
hybrid 3̄⊗ 8⊗ 3 = 1⊕ 8⊕ 8⊕ 8⊕ 10⊕ 10

glueball 8⊗ 8 = 1⊕ 8⊕ 8⊕ 10⊕ 10
...

...

This is a model. QCD does not always respect this constituent picture! There can be
strong mixing.
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Classifying states: mesons

Recall that continuum states are classified by JPC multiplets (representations of the
poincare symmetry):

Recall the naming scheme: n2S+1LJ with S = {0, 1} and L = {0, 1, . . .}
J, hadron angular momentum, |L− S| ≤ J ≤ |L + S|
P = (−1)(L+1), parity
C = (−1)(L+S), charge conjugation. Only for qq̄ states of same quark and antiquark
flavour. So, not a good quantum number for eg heavy-light mesons (D(s),B(s)).
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Mesons

two spin-half fermions 2S+1LJ

S = 0 for antiparallel quark spins and S = 1 for parallel quark
spins;

States in the natural spin-parity series have P = (−1)J then S = 1 and CP = +1:
JPC = 0−+, 0++, 1−− , 1+− , 2−− , 2−+, . . . allowed

States with P = (−1)J but CP = −1 forbidden in qq̄ model of mesons:
JPC = 0+− , 0−− , 1−+, 2+− , 3−+, . . . forbidden (by quark model rules)
These are EXOTIC states: not just a qq̄ pair ...
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Baryons

Baryon number B = 1: three quarks in colourless combination

J is half-integer, C not a good quantum number: states classified by JP

spin-statistics: a baryon wavefunction must be antisymmetric under exchange of any
2 quarks.

totally antisymmetric combinations of the colour indices of 3 quarks

the remaining labels: flavour, spin and spatial structure must be in totally symmetric
combinations

|qqq〉A = |color〉A × |space, spin, flavour〉S

With three flavours, the decomposition in flavour is

3⊗ 3⊗ 3 = 10S ⊕ 8M ⊕ 8M ⊕ 1A

Many more states predicted than observed: missing resonance problem
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Why Lattice QCD ?

A systematically-improvable non-perturbative formulation of QCD
Well-defined theory with the la�ice a UV regulator

Arbitrary precision is in principle possible
of course algorithmic and field-theoretic “wrinkles” can make this challenging!

Starts from first principles - i.e. from the QCD Lagrangian
inputs are quark mass(es) and the coupling - can explore mass dependence and coupling
dependence but ge�ing to physical values can be hard!
in principle can calculate inputs for nuclear many-body calculations with be�er accuracy
than experimental measurements. Starting from nucleon-nucleon phase shi�s and on to
hyperon-nucleon (YN) etc.

A typical road map
Develop methods and verify calculations through precision comparison with la�ice
and with experiment.

Make predictions - subsequently verified experimentally.

Make robust, precise calculations of quantities beyond the reach of experiment.
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A potted history

1974 La�ice QCD formulated by K.G. Wilson

1980 Numerical Monte Carlo calculations by M. Creutz

1989 “and extraordinary increase in computing power (108 is I think not enough) and
equally powerful algorithmic advances will be necessary before a full interaction
with experiment takes place.” Wilson @ La�ice Conference in Capri.

Now at 100TFlops − 1PFlop

La�ice QCD contributes to development of computing QCDSP - QCDOC - BlueGene.

Learning from history ...
be�er computers help but be�er ideaas are crucial!
that’s what we will focus on ...
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Life on a lattice

�ark fields ψ(x) live on sites and carry colour, flavour and Dirac indices as in
continuum

Gauge fields are SU(3) matrices: Uμ(x), μ = 0, . . . , 3.

Under gauge transformation: ψ(x)→ Λ(x)ψ(x) and Uμ(x)→ Λ(x)Uμ(x)Λ(x + aμ̂)−1

la�ice spacing a a dimensionful parameter, not a
parameter of the discrete theory - emerges from the
dynamics.

Continuum and la�ice gauge fields:

Aμ(x)→ U(x, μ) = e
−iagAb

μ
(x)tb

and make derivatives
gauge invariant e.g

∇fwd
μ ψ(x) =

1

a

�

Uμ(x)ψ(x + aμ̂)− ψ(x)
�

Gauge invariant quantities are closed loops
∏

P Uμ(x)

and ψ̄(x)γμUμ(x)ψ(x + aμ̂)
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A simpler theory

For a first look at discretisation consider ϕ4(x) scalar theory:

Z =

∫

Dϕe−S[ϕ] and Scontinuum[ϕ] =

∫

dd x

�

1

2

�

∂μϕ(x)
�2

+
1

2
m2ϕ(x)2 +

λ

4!
ϕ(x)4

�

Discretising on a regular la�ice with spacing a - the scalar fields live on the la�ice sites.

fields: ϕ(x)→ ϕn, x = na

integrals:
∫

dxi → a
∑

ni

∫

Dϕ→
∏

n dϕn

derivatives: ∂μϕ(x)→4μϕn = 1
a

�

ϕn+μ̂ − ϕn
�

and 4∗ϕn = 1
a

�

ϕn − ϕn−μ̂
�

So that

Slattice[ϕ] = a4
∑

n

�

1

2

�

4μϕn
�2

+
1

2
m2ϕ2

n +
λ

4!
ϕ4

n

�

= a4
∑

n

�

−
1

2
ϕn
�

4∗4μ
�

ϕn +
1

2
m2ϕ2

n +
λ

4!
ϕ4

n

�

In the functional integral the measure Dϕ involves only la�ice points⇒ a discrete set of
integration points. If the la�ice is finite⇒ finite dimensional integrals.
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Homework exercise

Derive the expression for the discretised scalar action, checking you get the correct
powers of a and coe�icients.

Repeat the steps for a complex scalar field and for a 2-component complex scalar

field ie Φ =

�

ϕ1
ϕ2

�

. This is relevant as a model for the SM Higgs.

Consider the limit λ→∞ and show that the scalar action reduces to the Ising model

- S = −K
∑

n,μ ϕnϕn+μ - with ϕn = ±1.
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Discretisation - consequences
A field theory defined on a space-time la�ice with non-zero la�ice spacing has a cut-o� in
momentum space.
Consider a fourier transformation of (discrete) ϕ using standard definitions

ϕ̃(p) = a4
∑

x
e−ipxϕ(x) and ϕ(x) =

∫ π/a

−π/a

d4p

(2π)4 eipx ϕ̃(p)

Transformed fields are periodic in momentum space and restrict to the first Brillouin
zone: ϕ(p) = ϕ(p + 2π

a nμ), nμ ∈ Z or |pμ| ≤ π/a = Λcuto� a UV cuto�.

Field theories regularised in a natural way.

On a finite la�ice with Lspatial = L and Ltemporal = T the volume is V = LT

Then momenta are discretised pμ = 2π
a

nμ
L and

∫

d4p

(2π)4 →
1

a4L3T

∑

nμ

To recover the continuum theory take L,T →∞ and a→ 0.
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Back to QCD: the discrete gauge & fermion actions
Gauge Actions

Recall that Uμ(x) = e
iagAb

μ
(x)tb

∈ SU(3) on the link (x → x + μ̂). A parallel transporter of
SU(3) colour on links. Then the field strength is represented by “plaque�es”

Uμν(x) = U†ν(x)U†μ(x + ν̂)Uν(x + μ̂)Uμ(x) = e−a2Fμν(x)

The simplest (Wilson) gauge action is built from 1× 1 plaque�es

Sg =
∑

x

∑

1≤μ<ν≤4
β
§

1−
1

3
ReTr(Uμν(x)

ª

= −
β

12

∑

xμν
a4TrFμν(x)Fμν(x) + O(a5)

where β = 6/g2. The 1/3 comes from assuming Nc = 3 and can be generalised.
Exercises

Check this reproduces the continuum limit (a→ 0)

Try to write down an action including 1× 2 planar loops
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Discrete fermion actions

The “naive” fermion action is

Sf = a4
∑

x,μ

�

ψ̄(x)γμ
�

∇∗μ + ∇μ
�

ψ(x) + mψ̄(x)ψ(x)
�

= a4
∫

p
ψ̄(−p)

�

i

a
sin(pμa)γμ + m

�

ψ(p)

Where discretisation replaces pμ → sin(pμa)/a.

Why is it naive?

Very di�erent at edges of the Brillouin zone!

Naive fermions - tried to describe 1 particle but
got 16.

Now what?
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Fermion doubling and a No-go theorem

Nilsen-Ninomiya no-go

Cannot construct a la�ice fermion action that

has the correct continuum limit

is ultra-local

is undoubled

is chirally symmetric

Note that there is no unique (or even “best”) choice for discretisation. Choose the scheme
that preserves the physics of interest or has important properties e.g. discretisation errors
or that you can a�ord!
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Choose your poison aka No Free Lunch Theorem!

ACTION ADVANTAGES DISADVANTAGES
improved Wilson computationally fast breaks chiral symmetry

needs operator improvement
twisted mass computationally fast breaks chiral symmetry

automatic improvement violations of isospin
staggered computationally fast fourth root

complicated contractions
domain wall improved chiral symmetry computationally demanding

needs tuning
overlap exact chiral symmetry computationally expensive

All actions should be O(a)-improved⇒ 〈Olatt
phys〉 = 〈Olatt

cont〉+ O(a2)



Path integrals and correlation functions
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Solving QCD
Recall we want to calculate properties of physical observables from L.

In continuum QCD the Feynman Path Integral is

Z =

∫

DAμDψDψ̄eiSQCD , SQCD =

∫

d4xLQCD

Observables O, determined from

〈O〉 =
1

Z

∫

DAμDψDψ̄OeiSQCD

In discrete (finite-size la�ice) theory do this integral numerically. How?
First idea: quadrature. A 323 × 64 la�ice means 4× 323 × 64× 8 = 67, 108, 864 variables!

Be�er idea: statistical methods. Importance Sampling is a crucial idea - motivates the last
step in our set up - Wick rotation.

Z =

∫

DAμDψDψ̄eiSQCD t→iτ−→ ZE =

∫

DAμDψDψ̄e−SQCD
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Field theory on a Euclidean lattice

Monte Carlo simulations are only practical using
importance sampling
Need a non-negative weight for each field
configuration on the la�ice

Minkowski→ Euclidean

Benefit: can isolate lightest states in the spectrum (as we will see!).

Problem: direct information on sca�ering is lost and must be inferred indirectly.

To access radial and orbital excitations and resonances need a variational method.



Introduction QCD La�ice QCD Summary

Correlators in a Lattice Euclidean Field Theory (EFT) I
In la�ice EFT physical observables O is determined from

〈O〉 =
1

Z

∫

DUDΨDΨ̄Oe−SQCD

Analytically integrate Grassman fields (Ψ, Ψ̄)→ factors of det M the fermion mx.

〈O〉
Nf =2

=
1

Z

∫

DU det M2Oe−SG

The expectation value is calculated by importance sampling of gauge fields and
averaging over ensembles.
Simulate Ncfg samples of the field configuration, then

〈O〉 = lim
Ncfg→∞

1

Ncfg

Nc fg
∑

i=1
Oi [Ui ]

At Ncfg finite correlation functions have a (improvable!) statistically uncertainty
∼ 1/

Æ

Ncfg .
Calculating det M for M a large, sparse matrix with small eigenvalues takes > 80% of
compute cycles in configuration generation. det M = 1 is the quenched approximation.
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Correlators in lattice EFT II
We are interested in two-point correlation functions built from interpolating
operators (functions of Ψ):

Eg the local meson operator O(x) = Ψ̄a(x)ΓΨb(x)
Γ an element of the Dirac algebra with possible displacements; a and b flavour indices

The two-point function is then

C(t) = 〈O(x)O†(0)〉 = 〈Ψ̄a(x)ΓΨb(x)Ψ̄b(0)Γ†Ψa(0)〉

where x ≡ (t,x); t ≥ 0
Using Wick’s theorem to contract quark fields replaces fields→ quark propagators

C(t,x) = −〈Tr(M−1
a (0, x)ΓM−1

b(x, 0)Γ†)〉

+δab〈Tr(ΓM−1
a(x, x))Tr(Γ†M−1

a(0, 0))〉

where the trace is over spin and colour.
For flavour non-singlets (a 6= b) this leads to

C(t,x) = 〈Tr(γ5M−1
a (x, 0)†γ5ΓM−1

b (x, 0)Γ†)〉

We consider the correlation function in momentum space at zero momentum

C(~p, t) =

∫

d3xei~p·~x C(~x, t, 0, 0) and C(0, t) = C(t) ∼
∑

~x

C(~x, t, 0, 0)
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Aside on Wick’s theorem

We used Wick’s theorem to contract quark fields and replace with propagators ...

Example — four field insertions: 〈ψi ψ̄jψk ψ̄l〉
the pairwise contraction can be done in two ways:
ψi ψ̄jψk ψ̄l and ψi ψ̄jψk ψ̄l

giving the propagator combination
M−1

ij M−1
kl − M−1

jk M−1
il

minus-sign from the anti-commutation in second
term.

More fields means more combinations. Important
in (eg.) isoscalar meson spectroscopy. We will see
this again later
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Notes

Fermions in lagrangian→ fermion determinant

Fermions in measurement→ propagators

The integral over gauge fields is done using importance sampling.

γ5 hermiticity: M−1(x, y) = γ5M−1(y, x)†γ5 allows us to rewrite the correlator in
terms of propagators from origin to all sites. Point (to-all) propagators

practically: M(x, 0 : U)−1 compute a singe column (in space-time indices) with linear
solvers

for flavour singlets a = b terms like M−1(x, x) - requires the inverse of the full
fermion mx on each config. More on this later

Come back later to the costs in a la�ice calculation
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propagator cartoon

The most general operator.

A restricted correlation function
accessible to one point-to-all
computation.

Saves compute time but doesn’t
use all information in the correla-
tor. Precludes disconnected contri-
butions ie flavour singlets.
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Typically size of a lattice calculation

[from D.Leinweber]

There are 2 compute intensive steps:
1. Generating Configurations -
snapshots of the QCD vacuum
Volume: 323 × 256 (sites) Uμ(x) defined by
4× 8× 323 × 256 real numbers
2. �ark Propagation
Volume: 323 × 256 (sites)→ M is a 100 million
x 100 million sparse matrix with complex
entries.

Solving QCD requires supercomputing resources worldwide.
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