National Nuclear Physics Summer School MIT, Cambridge, MA July 18-29 2016

Fundamental Symmetries - 3

Vincenzo Cirigliano Los Alamos National Laboratory

Flow of the lectures

- Review symmetry and symmetry breaking
- Introduce the Standard Model and its symmetries
- Beyond the SM: an effective theory perspective and overview
- Discuss a number of "worked examples"
 - Precision measurements: charged current (beta decays); neutral current (PVES); muon g-2, ..
 - Symmetry tests: CP (T) violation and EDMs; Lepton Flavor and Lepton Number violation

Flow of the lectures

- Review symmetry and symmetry breaking
- Introduce the Standard Model and its symmetries
- Beyond the SM: an effective theory perspective and overview
- Discuss a number of "worked examples"
 - Precision measurements: charged current (beta decays); neutral current (PVES); muon g-2, ..
 - Symmetry tests: CP (T) violation and EDMs; Lepton Flavor and Lepton Number violation

.5 lectures

Today

Precision measurements as probes of new physics

Charged Current (continued)

Summary of low energy constraints

- This table summarizes a large number of measurements and th. input
- Already quite impressive. Effective scales in the range Λ = 1-10 TeV ($\Lambda_{SM} \approx 0.2$ TeV)
- Focus on probes that depend on the ε's *linearly*

$$\tilde{Y}(E_e) = \frac{Y(E_e)}{1 + b \, m_e/E_e + \dots}$$

Non-standard coupling	Observable	Current sensitivity	Prospective sensitivity
$\operatorname{Re}(\epsilon_L + \epsilon_R)$	$\Delta_{\rm CKM}$	$\sim 0.05\%$	< 0.05% *
$\operatorname{Im}(\epsilon_R)$	D_n	$\sim 0.05\%$	
$\epsilon_P, \ ilde{\epsilon}_P$	$R_{\pi} = \frac{\Gamma(\pi \to e\nu)}{\Gamma(\pi \to \mu\nu)}$	$\sim 0.05\%$	
$\operatorname{Re}(\epsilon_S)$	$b, \ B, \ [\tilde{a}, \ \tilde{A}, \ \tilde{G}]$	$\sim 0.5\%$	< 0.3%
$\operatorname{Im}(\epsilon_S)$	R_n	$\sim 10\%$	
$\operatorname{Re}(\epsilon_T)$	$b, B, [\tilde{a}, \tilde{A}, \tilde{G}], \pi \rightarrow e \nu \gamma$	$\sim 0.1\%$	< 0.03%
$\operatorname{Im}(\epsilon_T)$	$R_{^{8}Li}$	$\sim 0.2\%$	$\sim 0.05\%$
$\tilde{\epsilon}_{\alpha \neq P}$	a, b, B, A	$\sim 5-10\%$	

High energy constraints

- The new physics that contributes to ε_{α} affects other observables!
- Relative strength of constraints depends on the specific model
- Model-independent statements possible in "heavy BSM" limit: $M_{BSM} > TeV \rightarrow new physics looks point-like at the weak scale$

<u>Vertex corrections</u> strongly constrained by Z-pole observables (Δ_{CKM} is at the same level)

 $\frac{Four-fermion\ interactions}{\sigma_{had}\ at\ LEP\ would\ allow\ \Delta_{CKM}\ \sim 0.01\ and\ non\ V-A} structures\ at\ \epsilon_i\ \sim\ 5\%.$ What about LHC?

VC, Gonzalez-Alonso, Jenkins 0908.1754

LHC constraints

Heavy BSM limit: all ε_α couplings contribute to the process

 $p p \rightarrow e v + X$

T. Bhattacharya, VC, et al, 1110.6448 VC, Gonzalez-Alonso, Graesser, 1210.4553

LHC constraints

• Heavy BSM limit: all ϵ_{α} couplings contribute to the process $p p \rightarrow e v + X$

- No excess events at high m_T \Rightarrow bounds on ε_{α}
- Current bounds at the level of 0.3%-1%, depending on the operator

β decays vs LHC reach

VC, Gonzalez-Alonso, Graesser, 1210.4553

β decays vs LHC reach

Unmatched lowenergy sensitivity and future reach

LHC limits close to low-energy. Interesting interplay in the future LHC reach already stronger than low-energy

VC, Gonzalez-Alonso, Graesser, 1210.4553

• Scalar and tensor operators: β -decays can probe deeper than the LHC!

Connection to models

- A given model \rightarrow set overall size and pattern of ϵ_{α} couplings
- Beta decays can play very useful diagnosing role. Qualitative picture:

		٤L	٤ _R	٤ _P	٤s	٤ _T	
	LRSM	x	√	x	x	x	\sim
Can be made quantitative	LQ	√	x	√	√	√	u e d LQ v
	2HDM	x	x	√	√	x	H^{+}
Bauman, Erler, Ramsey-Musolf, arXiv:1204.0035	MSSM	√	1	√	4	√	$u \xrightarrow{\chi_k^+} \nu_I$ $d_i \xrightarrow{\tilde{d}_i^-} \ell_I$ $d \xrightarrow{\chi_m^0} \ell_I$
Musolf, Tulin hep-ph/0608064	YOUR FAVORITE MODEL		•••		•••		$W^+ \chi_i^0 \qquad \nu_I$ $\chi_j^- \qquad \ell_I$

Neutral Current

Neutral analogue of V-A CC interaction?

 Speculation by Zel'dovic before the incorporation within the SU(2)xU(1) model of electroweak interactions

652	O THE EDITOR
LETTERS I	O THE EDITOR
PARITY NONCONSERVATION IN THE FIRST ORDER IN THE WEAK-INTER- ACTION CONSTANT IN ELECTRON SCATTERING AND OTHER EFFECTS	not expect an appreciable polarization of the emerg ing electrons, since the chemical potential of the electrons with spins parallel and antiparallel to the magnetization is evidently the same.
	The interaction (2) leads to a displacement of
Ya. B. ZEL' DOVICH	the electron levels of different parities in the free
Submitted to JETP editor December 25, 1958	atom.
	In the hydrogen atom the probability of the meta-
J. Exptl. Theoret. Phys. (U.S.S.R.) 36, 964-966 (March, 1959)	stable transition $2S_{1/2} \rightarrow 1S_{1/2}$, which appears on account of the admixture of $2P_{1/2}$ to the $2S_{1/2}$.
We assume that besides the weak interaction that causes beta decay,	still turns out to be even smaller that the transition probability on account of the magnetic moment of the electron, and is loss than the probability of the
$g(PON)(\hat{e}^*O*) + \text{Herm. conj.},$ (1)	two-quantum transition 25 - 18 by a factor of more than 10". Finally, the intermediate fill leads
there exists an interaction	to a rotation of the plane of polarization of visible
# (POP) (POP) (2)	light by any substance not containing molecules
with $g \approx 10^{-43}$ and the operator $O = \gamma_0 (1 + i\gamma_5)$	The rotation of the plane of polarization also occurs
characteristic1 of processes in which parity is not	because the weak interaction mixes atomic else-
conserved.*	tronic states of different parity. A calculation of
That is the continuing of alasteers he motion	tion of the form

PARITY NONCONSERVATION IN THE FIRST ORDER IN THE WEAK-INTER-ACTION CONSTANT IN ELECTRON SCATTERING AND OTHER EFFECTS fleft :

 $|\phi_F(0)|/(E_F - E_S).$ (3) fraction for circularly s the number density of dimension of an atom: light; $|\phi_S(0)| \sim 1/\pi^{3/2}$; anishing "small com-(h/2mo) σ grad φ , mponents": $|\phi_P(0)| \sim$

 $(1/mch) \sim 10^{-49}$. (

drization by 1 radian der $\frac{1}{2}/10^{-29} = 10^{15}$ cm.

so that even in the first order in g the effect obviously cannot be observed. How plausible is the assumption that the interaction (2) exists? Let us regard an an absolute Discovery of neutral currents in $V_{\mu}e \rightarrow V_{\mu}e$ would be made in 1973

1958

the cross-sections for right-hand and left-hand electrons (i.e., for electrons with $\sigma \cdot p > 0$ and $\sigma \cdot p < 0$) can differ by 0.1 to 0.01 percent Such an effect is a specific test for an interaction not conserving parity.

A magnetized iron plate can served as a source

PARITY NONCONSERVATION IN THE FIRST ORDER IN THE WEAK-INTER-ACTION CONSTANT IN ELECTRON SCATTERING AND OTHER EFFECTS

WE assume that besides the weak interaction that causes beta decay,

$$g(\overline{PON})(\overline{e}^{-}Ov) + \text{Herm. conj.},$$
 (1)

there exists an interaction

$$g(\overline{P}OP)(\overline{e}^{-}Oe^{-})$$
(2)

with $g \approx 10^{-49}$ and the operator $O = \gamma_{\mu} (1 + i\gamma_5)$ characteristic¹ of processes in which parity is not conserved.*

Then in the scattering of electrons by protons the interaction (2) will interfere with the Coulomb scattering, and the nonconservation of parity will appear in terms of the first order in the small quantity g. Owing to this it becomes possible to test the hypothesis used here experimentally and to determine the sign of g.

In the scattering of fast (~10⁹ ev) longitudinally polarized electrons through large angles by unpolarized target nuclei it can be expected that the cross-sections for right-hand and left-hand electrons (i.e., for electrons with $\sigma \cdot p > 0$ and $\sigma \cdot p < 0$) can differ by 0.1 to 0.01 percent. Such an effect is a specific test for an interaction not conserving parity.

Parity violating

$$A_{\rm PV} = \frac{\sigma_{\rm I} - \sigma_{\rm I}}{\sigma_{\rm I} + \sigma_{\rm I}}$$

• A_{PV} violates parity:

• A_{PV} violates parity:

• Expected size of the effect:

The matrix element of the Coulomb scattering is of the order of magnitude e^2/k^2 , where k is the momentum transferred ($\hbar = c = 1$). Consequently, the ratio of the interference term to the Coulomb term is of the order of gk^2/e^2 . Substituting $g = 10^{-5}/M^2$, where M is the mass of the nucleon, we find that for $k \sim M$ the parity nonconservation effects can be of the order of 0.1 to 0.01 percent.

$$A_{PV} = \frac{\sigma_{\uparrow} - \sigma_{\downarrow}}{\sigma_{\uparrow} + \sigma_{\downarrow}} \sim \frac{A_{weak}}{A_{EM}} \sim \frac{G_F Q^2}{4 \pi \alpha}$$
$$A_{PV} \sim 10^{-4} \cdot Q^{2} (\text{GeV}^2)$$

Tiny asymmetries!

• Through 4 decades of technical progress, parity-violating electron scattering (PVES) has become a precision tool

~

A_{PV} in the Standard Model

• Neutral currents predicted in the Standard Model

• Through g_V , A_{PV} provides a handle on weak mixing angle

A_{PV} in the Standard Model

• Neutral currents predicted in the Standard Model

$$\mathcal{L}_{int} = -\frac{g}{2\cos\theta} Z^{\mu} \bar{\psi}_f \left(g_V^{(f)} \gamma_{\mu} - g_A^{(f)} \gamma_{\mu} \gamma_5 \right) \psi_f \right| \stackrel{\theta = \arctan \frac{g'}{g}}{e = g\sin\theta}$$

$$g_V^{(f)} = T_3^{(f)} - 2\sin^2\theta Q^{(f)} \qquad g_A^{(f)} = T_3^{(f)} \qquad Q_W^{(f)} = 2g_V^{(f)} \qquad \text{Weak charge of the fermion}$$

$$\stackrel{e}{\longrightarrow} \stackrel{e}{\longrightarrow} \stackrel{e}{\longrightarrow$$

Processes

Impact of PVES on θ_W

Impact of PVES on θ_W

Impact on new physicsBSM $\mathcal{L}_{eq} = \sum_{i,j=L,R} \frac{g_{ij}^2}{\Lambda^2} \overline{e}_i \gamma_{\mu} e_i \overline{q}_j \gamma^{\mu} q_j$ + purely leptonic
(Moller)

Sensitivities to new physics • $\Lambda_{\text{new}} \simeq [\sqrt{2} \text{ G}_F \Delta Q_W]^{-1/2} = 246.22 \text{ G}_eV/\sqrt{\Delta}Q_W$ • $\Lambda_{\text{new}} \simeq 3.4 \text{ TeV}$ (Qw^e from E158) Anew ≃ 4.6 TeV (Qw^p from Qweak) Anew ≃ 2.5 TeV (C_{ii} from SoLID) Anew ≃ 7.5 TeV (Qw^e from MOLLER) • $\Lambda_{new} \approx 6.3 \text{ TeV} (Q_W^p \text{ from } P2@Mainz)$ • $\Lambda_{new} \approx 3.7 \text{ TeV} (g_R^2 \text{ from NuTeV})$ • $\Lambda_{new} \simeq 5.2 \text{ TeV} (Q_W^n \text{ from APV in Cs})$

J. Erler

Best contactinteraction reach for leptonic operators, at low OR high-energy

Muon "g-2"

Symmetry tests

EDMs and T (CP) violation beyond the Standard Model

• EDMs of non-degenerate systems violate P and T (CP): ${\cal H}~\sim~d\,ec{J}\cdotec{E}$

• EDMs of non-degenerate systems violate P and T (CP): ${\cal H}~\sim~{m d}\,ec{J}\cdotec{E}$

• EDMs of non-degenerate systems violate P and T (CP): ${\cal H}~\sim~m{d}\,ec{J}\cdotec{E}$

 Measurement: look for linear shift in energy due to external E field (change in precession frequency)

$$\nu = (2\mu B \pm 2\mathbf{d}E)/h$$

Sensitivity to
$$d_n \sim 10^{-13}$$
 e fm !!

• EDMs of non-degenerate systems violate P and T (CP): ${\cal H}~\sim~m{d}\,ec{J}\cdotec{E}$

- Ongoing and planned searches in several systems
 - ★ n, p
 - ★ Light nuclei: d, t, h
 - ★ Atoms: diamagnetic (¹²⁹Xe, ¹⁹⁹Hg, ²²⁵Ra, ...); paramagnetic (²⁰⁵Tl, ...)
 - ★ Molecules: YbF, ThO, ...

EDMs in the SM: CKM

• Highly suppressed "short-distance" contributions start at 3 loops

• Dominant "long-distance" contribution to nEDM still fairly small

EDMs in the SM: QCD

EDMs in the SM: QCD

Leading contribution to neutron EDM via chiral loop

$$d_n \sim \frac{m_*}{\Lambda_{\text{had}}^2} e \,\overline{\theta} \sim 10^{-17} \,\overline{\theta} \,\text{ecm} \to |\overline{\theta}| < 10^{-9}$$

Teaching us something deep about CPV. Motivated scenarios that relax dynamically θ to zero (e.g. axions)

EDMs and new physics

EDMs in $e \cdot cm$

- Essentially free of SM "background" (CKM)*
- Probe high-scales, up to ∧~1000 TeV
- Probe key ingredient for bayrogenesis (CPV in SM is insufficient)

System	current	projected	SM (CKM)
е	$\sim 10^{-28}$	10^{-29}	$\sim 10^{-38}$
μ	$\sim 10^{-19}$		$\sim 10^{-35}$
au	$\sim 10^{-16}$		$\sim 10^{-34}$
n	$\sim 10^{-26}$	10^{-28}	$\sim 10^{-31}$
p	$\sim 10^{-23}$	$10^{-29} **$	$\sim 10^{-31}$
¹⁹⁹ Hg	$\sim 10^{-29}$	10^{-30}	$\sim 10^{-33}$
¹²⁹ Xe	$\sim 10^{-27}$	10^{-29}	$\sim 10^{-33}$
²²⁵ Ra	$\sim 10^{-23}$	10^{-26}	$\sim 10^{-33}$
•••	•••		• • •

* Observation would signal new physics or a tiny QCD θ -term (< 10⁻¹⁰) Multiple measurements can disentangle the two effects
Connecting EDMs to BSM CPV

• CPV at hadronic scale, induced by leading dim=6 operators

• CPV at hadronic scale, induced by leading dim=6 operators

$$\mathcal{L}_{6}^{CPV} = -\frac{i}{2} \sum_{f=e,u,d,s} \mathbf{d}_{f} \, \bar{f} \sigma \cdot F \gamma_{5} f - \frac{i}{2} \sum_{q=u,d,s} \tilde{\mathbf{d}}_{q} \, g_{s} \, \bar{q} \sigma \cdot G \gamma_{5} q + \mathbf{d}_{W} \frac{g_{s}}{6} G \tilde{G} G + \sum_{i} C_{i}^{(4f)} O_{i}^{(4f)}$$

• Generated by a variety of BSM scenarios

• CPV at hadronic scale, induced by leading dim=6 operators

$$\mathcal{L}_{6}^{CPV} = -\frac{i}{2} \sum_{f=e,u,d,s} \mathbf{d}_{f} \, \bar{f} \sigma \cdot F \gamma_{5} f - \frac{i}{2} \sum_{q=u,d,s} \tilde{\mathbf{d}}_{q} \, g_{s} \, \bar{q} \sigma \cdot G \gamma_{5} q + \mathbf{d}_{W} \frac{g_{s}}{6} G \tilde{G} G + \sum_{i} C_{i}^{(4f)} O_{i}^{(4f)}$$

• Generated by a variety of BSM scenarios

• CPV at hadronic scale, induced by leading dim=6 operators

$$\mathcal{L}_{6}^{CPV} = -\frac{i}{2} \sum_{f=e,u,d,s} d_{f} \bar{f} \sigma \cdot F \gamma_{5} f - \frac{i}{2} \sum_{q=u,d,s} \tilde{d}_{q} g_{s} \bar{q} \sigma \cdot G \gamma_{5} q + d_{W} \frac{g_{s}}{6} G \tilde{G} G + \sum_{i} C_{i}^{(4f)} O_{i}^{(4f)}$$

• Generated by a variety of BSM scenarios

Non-standard Higgs couplings (hVV, ...), heavy quark CPV, ...

CPV at the hadronic level

• Leading pion-nucleon CPV interactions characterized by few LECs

CPV at the hadronic level

• Leading pion-nucleon CPV interactions characterized by few LECs

 $d_{N}[d_{q}]$ known with 10% uncertainty (lattice QCD) Other $d_{N}[c_{\alpha}]$ $\bar{g}_{0,1}[c_{\alpha}]$... O(100%) uncertainty

CPV at the atomic level

 Need to work against Schiff's theorem:
 no atomic EDM due to d_e, d_{nucl} (charged constituents rearrange to screen applied E_{ext})

CPV at the atomic level

- Need to work against Schiff's theorem:
 no atomic EDM due to d_e, d_{nucl} (charged constituents rearrange to screen applied E_{ext})
- Evading Schiff screening: finite size effects in diamagnetic atoms make $d_A[d_{nucl}] \neq 0$. Suppression $d_A \sim Z^2 (R_N/R_A)^2 d_{nucl}$

 Evading Schiff screening: relativistic effects in paramagnetic atoms (and molecules) make d_A[d_e] ≠0. Enhancement d_A ~ α²Z³ d_e

Sandars 1965

CPV at the atomic level

- Need to work against Schiff's theorem:
 no atomic EDM due to d_e, d_{nucl} (charged constituents rearrange to screen applied E_{ext})
- Evading Schiff screening: finite size effects in diamagnetic atoms make d_A[d_{nucl}] ≠0.
 Suppression d_A ~ Z² (R_N/R_A)² d_{nucl}

O(few 100%) uncertainties

• Evading Schiff screening: relativistic effects in paramagnetic atoms (and molecules) make $d_A[d_e] \neq 0$. Enhancement $d_A \sim \alpha^2 Z^3 d_e$

O(10%) uncertainties

EDMs and CPV Higgs couplings

- EDMs play an important role in pinning down <u>non-standard</u> CP-violating Higgs couplings
- Very competitive with LHC

Yukawa couplings to quarks

Pseudo-scalar Yukawa coupling (e.g. from dim-6 operator)

Y.-T. Chien, V. Cirigliano, W. Dekens, J. de Vries, E. Mereghetti, JHEP 1602 (2016) 011 [1510.00725]

• Pseudo-scalar Yukawas in units of SM Yukawa m_q/v :

$\mathcal{L} = rac{m_{q}}{v} \; ilde{\kappa}_{q} \; ar{q} i \gamma_{5} q \; h$	$ ilde{\kappa}_{u}$	$ ilde{\kappa}_d$	${ ilde\kappa}_s$	$\tilde{\kappa}_c$	$ ilde{\kappa}_b$	$ ilde{\kappa}_t$
	0.45	0.11	58	2.3	3.6	0.01

- <u>Complementarity</u>: best bounds come from combination of EDMs (neutron and electron) and LHC
- Future: factor of 2 at LHC; EDM constraints scale linearly
- Uncertainty in matrix elements strongly dilutes EDM constraints

Much stronger impact of n and ¹⁹⁹Hg EDM with reduced uncertainties

$$\begin{array}{c|c} d_{n,p}[\tilde{d}_{u,d}] & d_{n,p}[d_s] & d_{n,p}[d_W] & \bar{g}_{0,1}[\tilde{d}_{u,d}] & S_A[\bar{g}_{0,1}] \\ \hline \mathbf{25\%} & \mathbf{50\%} \end{array}$$

• Challenging but realistic target for LQCD and nuclear structure

Probing high-scale SUSY

• Absence of direct signals and the observation of Higgs at 125 GeV put strong constraints on the spectrum of SUSY particles

Probing high-scale SUSY

- Higgs mass at ~125 GeV points to PeV-scale super-partners
- "Split-SUSY": retain gauge coupling unification and DM candidate

Arkani-Hamed, Dimopoulos 2004, Giudice, Romanino 2004, Arkani-Hamed et al 2012, ...

EDMs among a handful of observables capable of probing such high scales!

EDMs in split SUSY (1)

For $|\mu| < 10$ TeV, $m_{\tilde{q}} > 1000$ TeV, same CPV phase controls d_e , d_n . Distinctive correlations?

EDMs in split SUSY (2)

Both d_e and d_n within reach of current searches for M₂, $\mu < 10$ TeV

Studying the ratio d_n/d_e with precise matrix elements → stringent upper bound d_n < 4 × 10⁻²⁸ e cm

Bhattacharya,VC, Gupta, Lin,Yoon Phys. Rev. Lett. 115 (2015) 212002 [1506.04196]

EDMs in split SUSY (2)

Both d_e and d_n within reach of current searches for M_2 , $\mu < 10 \text{ TeV}$

Studying the ratio d_n/d_e with precise matrix elements → stringent upper bound d_n < 4 × 10⁻²⁸ e cm

Bhattacharya,VC, Gupta, Lin, Yoon Phys. Rev. Lett. 115 (2015) 212002 [1506.04196]

EDMs in split SUSY (2)

Both d_e and d_n within reach of current searches for M_2 , $\mu < 10 \text{ TeV}$

- Studying the ratio d_n/d_e with precise matrix elements → stringent upper bound d_n < 4 × 10⁻²⁸ e cm
- Can be falsified by current nEDM searches
- Illustration of "improved matrix elements → enhanced model-discriminating power"

Bhattacharya,VC, Gupta, Lin, Yoon Phys. Rev. Lett. 115 (2015) 212002 [1506.04196]

Supersymmetric EW baryogenesis?

- MSSM: no first order phase transition
- Singlet extensions (NMSSM): first order phase transition viable

Supersymmetric EW baryogenesis?

- MSSM: no first order phase transition
- Singlet extensions (NMSSM): first order phase transition viable
- CPV phases appearing in the gaugino-higgsino mixing contribute to both baryogenesis and EDM: correlation?

EDMs and Baryogenesis: NMSSM

M. Ramsey-Musolf

- In this model, successful baryogenesis implies a "guaranteed signal" for EDM, within reach of planned experiments
- Unfortunately, this is not a generic feature (model dependent)

$0\nu\beta\beta$ and Lepton Number Violation

For a detailed discussion see Lindley Winslow's lectures

Neutrinoless double beta decay

$$(N,Z) \rightarrow (N-2,Z+2) + e^- + e^-$$

Lepton number changes by two units: $\Delta L=2$

Unique laboratory* to study lepton number violation (LNV)

Why is it a big deal?

- B-L conserved in the Standard Model ⇒ Observation of NLDBD would be direct evidence of new physics, with far-reaching implications
 - Demonstrate that <u>neutrinos are</u> <u>Majorana fermions (i.e. their own</u> <u>antiparticles!)</u>
 - Shed light on the <u>mechanism of</u> <u>neutrino mass</u> generation

• Probe the basic ingredient (LNV) needed to generate the cosmic baryon asymmetry via "leptogenesis"

Why is it a big deal?

- B-L conserved in the Standard Model ⇒ Observation of NLDBD would be direct evidence of new physics, with far-reaching implications
- The proposed ton-scale experiments will probe LNV violation at the level of T_{1/2} ~10²⁷yr (100x improvement): a discovery would have major impact on our understanding of fundamental interactions

• To assess the discovery potential, need to take a look inside the blob

(Classifying sources of LNV: organize discussion by scales)

(Classifying sources of LNV: organize discussion by scales)

• LNV dynamics at very high scale ($\Lambda >> TeV$)

This is a Majorana mass term for v's: NLDBD mediated by light v exchange

(Classifying sources of LNV: organize discussion by scales)

• LNV dynamics at very high scale ($\Lambda >> TeV$)

$$\frac{1}{\Lambda} \ \overline{\ell^c} \ell \ H H$$

LNV dynamics at lower scale (Λ~TeV)

(Classifying sources of LNV: organize discussion by scales)

• LNV dynamics at very high scale ($\Lambda >> TeV$)

$$\frac{1}{\Lambda} \ \overline{\ell^c} \ell \ H H$$

LNV dynamics at lower scale (Λ~TeV)

$$\frac{1}{\Lambda^5} \, \bar{q} q \, \bar{q} q \, \overline{e^c} e$$

• LNV dynamics at very low energy (e.g. low-scale seesaw)

$$-\frac{1}{2}M_R\overline{\nu_R^c}\nu_R + Y_\nu \,\overline{\ell}\nu_R H$$

Affects NLDBD in significant ways, depending on mass scale $M_R:eV \rightarrow 100~GeV$

• In summary: ton-scale $0\nu\beta\beta$ probes LNV from variety mechanisms, involving different scales (M) and coupling strengths (g)

Standard mechanism

Standard mechanism

- Ton-scale experiment will make a discovery if spectrum has
 - I. inverted ordering or
 - 2. m_{lightest} > 50 meV (irrespective of ordering)

TeV-scale LNV

• TeV sources of LNV may lead to significant contributions to NLDBD not directly related to the exchange of light neutrinos

Ton-scale NLDBD significantly extends mass reach (multi TeV) and covers LHC-inaccessible regions
Low-scale LNV

- Low scale seesaw: intriguing example with one light sterile V_R with mass (~eV) and mixing (~0.1) to fit short baseline anomalies
- Extra contribution to effective mass

$$m_{\beta\beta} = m_{\beta\beta}|_{\text{active}} + |U_{e4}|^2 e^{2i\Phi} m_4$$

Usual phenomenology turned around!!

Summary on NLDBD

 NLDBD is the most powerful and comprehensive probe of Lepton Number Violation, sensitive to new physics over a vast range of scales, with far reaching implications

- Demonstrate Majorana nature of neutrino
- Probe new mass mechanism
- Cosmic baryon asymmetry

Conclusion

- Through the precision frontier Nuclear Physics plays a key role in the search for the "new Standard Model" and its symmetries
- Broad and vibrant experimental program, hope to get discoveries soon

Thank you!

A drawing by Bruno Touschek Backup

See-saw mechanism for m_{ν} Type I for illustration $\mathcal{L} \supset \frac{1}{2} (M_R)_{ij} \nu_R^{Ti} C \nu_R^j - \lambda_{\nu}^{ij} \bar{\nu}_R^i (H_c^{\dagger} L_L^j) + h.c.$

 $\begin{array}{ll} M_R: L \ \ violation \\ \lambda_v \ \ : CP \ and \ L_i \ violation \end{array}$

Heavy V_R

I) CP and \downarrow out-of-equilibrium decays of N_i (T ~ M_R) \Rightarrow n_L

 $\Gamma(N_i \to l_k \, H^*) \neq \Gamma(N_i \to \bar{l}_k \, H)$

I) CP and \downarrow out-of-equilibrium decays of N_i (T ~ M_R) \Rightarrow n_L

$$\Gamma(N_i \to l_k H^*) \neq \Gamma(N_i \to \overline{l}_k H)$$

2) EW sphalerons \Rightarrow n_B =- k n_L

$$\eta_B \equiv \frac{n_B}{n_\gamma} \neq 0$$

I) CP and \downarrow out-of-equilibrium decays of N_i (T ~ M_R) \Rightarrow n_L

$$\Gamma(N_i \to l_k H^*) \neq \Gamma(N_i \to \overline{l}_k H)$$

2) EW sphalerons \Rightarrow n_B =- k n_L

$$\eta_B \equiv \frac{n_B}{n_\gamma} \neq 0$$

The role of nuclear structure

- Connecting experimental rates to parameters of LNV interactions $(m_{\beta\beta}, ...)$ requires mechanism-dependent nuclear matrix elements
- Available model results differ by factors of 2-3
- Discovery goals set by taking "pessimistic" matrix elements
- Improvement is highly desirable: the matrix elements are essential for interpretation

Matrix elements for "standard mechanism"

CPV at the hadronic level

• Leading pion-nucleon CPV interactions characterized by few LECs

$$\tilde{\mathcal{L}}_{CPV} = -\frac{i}{2} \sum_{i=n,p,e} d_i \, \bar{\psi}_i \, \sigma \cdot F \gamma_5 \, \psi_i - \bar{N} \left[\overline{g}_0 \, \vec{\tau} \cdot \vec{\pi} + \overline{g}_1 \, \pi^0 \right] N + \dots$$

Matching with lattice QCD (for quark EDM): 10% uncertainties

Lattice QCD calculation: Bhattacharya et al PRL 115 (2015) 212002 [1506.04196], PRD 92 (2015) 114026 [1506.06411]

CPV at the hadronic level

• Leading pion-nucleon CPV interactions characterized by few LECs

$$\tilde{\mathcal{L}}_{CPV} = -\frac{i}{2} \sum_{i=n,p,e} d_i \, \bar{\psi}_i \, \sigma \cdot F \gamma_5 \, \psi_i - \bar{N} \left[\overline{g}_0 \, \vec{\tau} \cdot \vec{\pi} + \overline{g}_1 \, \pi^0 \right] N + \dots$$

Matching with QCD sum rules: 50% → 200% uncertainties

$$d_n = -(0.22 \pm 0.03)d_u + (0.74 \pm 0.07)d_d + (0.0077 \pm 0.01)d_s$$

$$-(0.55 \pm 0.28)e\tilde{d}_u - (1.1 \pm 0.55)e\tilde{d}_d \pm (50 \pm 40)e\,d_W$$

$$\bar{g}_0 = (5 \pm 10)(\tilde{d}_u + \tilde{d}_d)\,\mathrm{fm}^{-1} , \qquad \bar{g}_1 = (20^{+40}_{-10})(\tilde{d}_u - \tilde{d}_d)\,\mathrm{fm}^{-1}$$

EDMs in split SUSY (1)

Quark EDMs and chromo-EDMs

Only fermion EDMs

Relative importance controlled by Higgsino mass parameter |µ|

Muon "g-2"

Lepton magnetic moments

$$\vec{\mu} = g \frac{e}{2mc} \vec{s}, \qquad \vec{s} = \frac{\hbar}{2} \vec{\sigma}$$

- Dirac predicts g=2 in 1928
- 1947: Measurements find $g_e \neq 2$
- Schwinger calculated $g_e = 2(1+a_e)$ $a_e = \frac{(g_e-2)}{2} = \frac{\alpha}{2\pi} \approx 0.00116$

Great success of QED

- Current experimental precision: $\Delta g_e = 5.2 \times 10^{-13}$ and $\Delta g_{\mu} = 1.2 \times 10^{-9}$
 - g_e used to determine the electromagnetic coupling
 - g_{μ} used to challenge the SM!

- How is $g_{\mu}(a_{\mu})$ measured?
 - Exploit the fact that momentum and spin do not precess in the same way in a B field
 - Relative frequency ω_a proportional to (g-2)*B

$$\omega_S = \frac{geB}{2mc} + (1-\gamma)\frac{eB}{\gamma mc}$$

- Current experimental precision: $\Delta g_e = 5.2 \times 10^{-13}$ and $\Delta g_{\mu} = 1.2 \times 10^{-9}$
 - g_e used to determine the electromagnetic coupling
 - g_{μ} used to challenge the SM!
- At this level of precision, $g_{\mu}(a_{\mu})$ depends on loops from all Standard Model particles that couple to the muon

Known to 5 loops! Kinoshita et al 2012

- Current experimental precision: $\Delta g_e = 5.2 \times 10^{-13}$ and $\Delta g_{\mu} = 1.2 \times 10^{-9}$
 - g_e used to determine the electromagnetic coupling
 - g_{μ} used to challenge the SM!
- At this level of precision, $g_{\mu}(a_{\mu})$ depends on loops from all Standard Model particles that couple to the muon

- Current experimental precision: $\Delta g_e = 5.2 \times 10^{-13}$ and $\Delta g_{\mu} = 1.2 \times 10^{-9}$
 - g_e used to determine the electromagnetic coupling
 - g_{μ} used to challenge the SM!
- At this level of precision, $g_{\mu}(a_{\mu})$ depends on loops from all Standard Model particles that couple to the muon

	VALUE ($\times 10^{-11}$) UNITS
QED $(\gamma + \ell)$	$116584718.853\pm 0.022\pm 0.029_{\alpha}$
HVP(lo)*	6923 ± 42
HVP(ho)	-98.4 ± 0.7
H-LBL	105 ± 26
EW	$154\pm1\pm2$
Total SM	$116591802 \pm 42_{\rm H\text{-}LO} \pm 26_{\rm H\text{-}HO} \pm 2_{\rm other}(\pm 49_{\rm tot})$

• Anatomy:

Where are we?

• Hint of new physics

Where are we?

• Hint of new physics

Dominant uncertainties: ongoing efforts to improve these results using Lattice QCD

New g-2 at Fermilab will improve uncertainty factor of 4

Where are we?

• Hint of new physics

 $a_{\mu} = (g_{\mu} - 2)/2$ $a_{\mu}(\text{Expt}) = 116592089(54)(33) \times 10^{-11} \text{ BNL E821 (2006)}$ $a_{\mu}(\text{SM}) = 116591802(42)(26)(02) \times 10^{-11} \text{ BNL E821 (2006)}$ $\Rightarrow \Delta a_{\mu} = 287(80) \times 10^{-11} \text{ 3.6}\sigma \text{ discrepancy}$ $\int_{a_{\mu}}^{b_{\mu}} \int_{a_{\mu}}^{b_{\mu}} \int_{a_{$

• Probe BSM mag. dipole operators

$$\mathcal{L} \xrightarrow{\text{EVVSB}} y_{\mu} \frac{v}{\Lambda^2} \bar{\mu} \, \sigma^{\alpha\beta} \, \mu \, F_{\alpha\beta}$$

• 3.6 σ discrepancy $\Rightarrow \Lambda/\sqrt{y_{\mu}} \sim 140 \text{ TeV}$ ($\Lambda \sim 3.5 \text{ TeV}$)

D. Hertzog

Impact on models

Weak scale baryogenesis mechanism

How does it work?

Kuzmin-Rubakov-Shaposhnikov Cohen-Kaplan-Nelson

- 1) Bubbles of broken electroweak phase nucleate and expand
- 2) Charge asymmetries (i) develop through CPV interactions with Higgs;
 (ii) diffuse in unbroken phase and get converted into L-handed fermionic charge (n_L)

How does it work?

Kuzmin-Rubakov-Shaposhnikov Cohen-Kaplan-Nelson

1) Bubbles of broken electroweak phase nucleate and expand

 $n_{\rm B} > 0$

- 2) Charge asymmetries (i) develop through CPV interactions with Higgs;
 (ii) diffuse in unbroken phase and get converted into L-handed fermionic charge (n_L)
- 3) Sphalerons convert excess of n_{L} into net baryon number
- 4) Baryon asymmetry is captured by expanding bubble wall and "freezes in"