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Some Basics of Statistical Inference



Let’s denote some test statistic T with PDF g(T).  We then define a p-value as

Hypothesis Testing

The p-value is the probability of finding a T-value corresponding to lesser 
agreement than the observed T-value if the hypothesis is true -- it is NOT the 
probability that the hypothesis is true!

If true, the p-value distribution is uniform on (0,1). One can then reject the 
hypothesis at CL a if p > 1-a; e.g., a test hypothesis is rejected at 95% CL if p 
< 0.05.  If true, 5% of experiments should be rejected!

N.b., X2 is so popular because it’s easy to calculate and g(T) does not depend 
on the hypothesis (technically only true in the n→infinity limit).

p-values

If we denote the PDF of T as g(T ), which may depend on f
0

, then the
p-value is defined as:

p =
R1
T gf

0

(T 0)dT 0.

The p-value is the probability of finding a T -value corresponding to lesser
agreement than the observed T -value if f = f

0

. It is not the probability
that f = f

0

!

If f = f
0

, then the p-value distribution is uniform on (0, 1). One can reject
the hypothesis f = f

0

at confidence level ↵ if p < 1� ↵; e.g., the test
hypothesis is rejected at 95% confidence level if p < 0.05.

If f = f
0

, p < 0.01 should happen in 1/100 experiments; rare but should happen.

p > 0.99 should also happen 1/100. Be suspicious of these too.

N.b., one of the reasons �2

is so popular is that its g does not depend on f ; however, this

is in the limit n !1. Everything you know about �2

is never strictly true on your data.

Mike Williams IDPASC, Jan 2013 7 / 30

See: MW, How good are your fits?  Unbinned multivariate GOF tests in higher energy physics, JINST 5 (2010) P09004.
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p-values

I give a physics test to 1M physics students and build g for T = score. I
give this test to somebody else to determine if they’re a physics student.

physics students, art students, math students, professors

p-value
0 0.2 0.4 0.6 0.8 1

“Good” p-values don’t mean f = f
0

. The test may be insensitive to
di↵erences. Here, I should’ve asked their age (factor into T somehow) and
asked less math questions (if these are alternatives I’m worried about).

Mike Williams IDPASC, Jan 2013 8 / 30

Consider a simple example: I give a physics test to 1M physics students and 
build g(T) where T=test score.  Then, I give this test to a student I don’t know 
and try to determine whether they are a physics student.

p-values

“Good” p-values don’t mean my hypothesis was true. The test may be 
insensitive to differences in hypotheses.

There is no uniformly most powerful test for all problems. Choose wisely for 
each application you encounter.
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The statistical significance is the probability that a given result would occur by 
chance assuming a “null” hypothesis is true. Physicists tend to quote this in 
“units” of σ, but this does NOT mean the problem is assumed to be Gaussian.

Wilks’ Theorem: For “nested” models, -2Δlog(L) is asymptotically X2 
distributed with n(dof) = Δn(par).  Physicists screw this up regularly:

Significance

❖ the models must be nested (e.g., signal Gaussian with mean and/or width 
free cannot be nested with a no signal model!);

❖ converting to nσ using √(-2Δlog(L)) is only (possibly) valid if Δn(par)=1;

❖ this is only asymptotically valid.

Alternative is to generate MC data sets and extract -2Δlog(L) on each to get 
its PDF.  P.S. Don’t forget the trials factor (look elsewhere effect).
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You will inevitably encounter this debate: Frequentist vs Bayesian.  What do 
these terms mean?  Is one of them pseudo-science/non-sense/witchcraft? 

Frequentist vs Bayesian

Frequentist vs Bayesian

In HEP we require p < 5� ⇠ 1/1.7M for discovery.

Mike Williams IDPASC, Jan 2013 5 / 26

Bayes’ Theorem

Bayes’ Theorem: P(A|B) = P(B|A)P(A)

P(B)

Simple example: My friend belongs to a cult that thinks the world will end
on Feb. 1, 2013. I am skeptical. I think there’s a 10% chance he’s right.
One of the predicted signs of the coming doom is that it will rain in
Santiago de Compostela on Jan. 31. I check historical data and find that
the probability of rain on this date is 50% (in the absence of doom).

P(doom|rain) = P(rain|doom)P(doom)

P(rain)

= 1⇥0.1
1⇥0.1+0.5⇥0.9 = 0.18

I.e., if it rains today I will think there’s an 18% he’s right. If it doesn’t rain
then 0% since his cult assigned 100% probability to it raining today.

OK, this was a stupid example, but how about “Was the universe created
by a Big Bang?”

Mike Williams IDPASC, Jan 2013 4 / 26

Has the sun exploded? Ask a machine (from a dark room) that first rolls dice, 
then if it gets two 6’s it lies; otherwise, it tells the truth.
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Let’s change the problem slightly: Replace the dice with a random number 
generator that throws numbers between 1 and 3.4M. If it gets 666, it lies; 
otherwise, it tells the truth.  We try and it says “yes”!

Frequentist vs Bayesian

Since p < 5σ, rejects the “sun has not exploded” hypothesis but (should) 
accept there is a 1 in 3.4M chance of error in this claim.  Should not claim the 
sun has exploded (but likely does anyway).

Bayes’ Theorem says P(explode | yes) = P(yes | explode) P(explode) / P(yes). 
Note that we need to input a “prior belief” for P(explode).  We could base this 
on historical astrophysics observations and solar models -- but surely it’s a 
very small number (ε).  Let’s also define P(lie) = λ.

So, P(explode | yes) = (1-λ)ε/[(1-λ)ε+λ(1-ε)] ~ ε/(ε+λ).  If ε << λ, then we 
have P(explode | yes) ~ ε/λ; i.e., our belief that the sun has exploded will be 
3.4M times bigger but still very very small.

Frequentist Physicist

Bayesian Physicist
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Some Modern Developments
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Information Criteria
Adding complexity to a model leads to an improved goodness of fit; however, 
adding unnecessary complexity decreases the predictive power of the model.

x
-1 -0.5 0 0.5 1

ca
nd

id
at

es
 / 

0.
1

0

20

40

60

80

100

polynomial order
0 2 4 6 8

B
IC

50

100

150
true

underfit
good
overfit

min(BIC)@order=2
(true: order=2)

Information criteria try to select the most predictive model by balancing 
improved GOF with increases in complexity -- and they’re simple to use!

AIC = �2 + 2npBIC = �2
+ np logN

N.b., technically these chi2 should be -2log(L), but for approx. Gaussian errors we can substitute the chi2.
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Model Selection (LASSO)
Sometimes we don’t just want a predictive model, we want to obtain estimates 
for model parameters -- including whether they’re significantly non-zero.  
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The LASSO is a simple, fast way of performing model selection without 
possibly introducing human bias into the process.
See: Hardin, Guegan, Stevens, MW, Model selection for amplitude analysis, JINST 10 (2015) P09002.
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Bayesian Optimization
Bayesian optimization refers to a family of methods that do global optimization 
of black-box functions (no derivatives required).

Start from prior for objective function, treat evaluations as data and produce a 
posterior used to determine the next point to sample. 
See https://github.com/HIPS/Spearmint for an excellent package in python (also, scikit-optimize coming soon).

Example app: Ilten, MW, Yang, Monte Carlo tuning using Bayesian Optimization, to appear August 2016.

https://github.com/HIPS/Spearmint
https://github.com/HIPS/Spearmint


(Supervised) Machine Learning



Supervised machine learning is a broad and evolving field. The most common 
usage in physics is training algorithms to classify data as signal or 
background by studying existing labeled (possibly MC) data. 

Machine Learning

teacher student

There are too many categories of algorithms to even attempt to list them here.  
In physics, most usage is either a boosted decision tree (BDT) or artificial 
neural network (ANN) -- so I’ll briefly describe these.
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Start with a labeled training data sample. These may be obtained from 
simulation, data sidebands, control modes, etc.

Decision Trees

[etc]

Repeatedly split the data to maximize some FOM trying to produce pure B or 
S “leaves”.  Stop when can’t improve FOM, or when reaching some stopping 
criteria (a subset of algorithm-specific hyper-parameters).
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Boosting is a family of methods that produce a series of “weak” classifiers that 
when combined are extremely powerful.

Boosting

training sample

weighted sample

weighted sample

weighted sample

[...]

DT

DT

DT

DT

BDT

One common approach: Each DT in the series “boosts” the weight of events 
based on trying to minimize some loss function.
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Neural Networks
ANNs send data from input neurons via synapses to a hidden layer (or 
layers) of neurons, and then to the output neurons via more synapses.

Learning is typically done via back-propagation of the cost-function gradient 
w.r.t. the NN parameters.  

ANN
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Want to avoid learning specifics of the training data 
set (overtraining). Same idea as overfitting, this 
results in a less predictive algorithm.

It is easy to spot severe overtraining by comparing 
the performance on the training data set to an 
independent (validation) data set.

If sample sizes are limited, consider k-folding.

In short, most modern algorithms are pretty good at 
avoiding this provided “good” hyper-parameters are 
chosen (these can be problem specific however).  

An enlightened way of optimizing machine learning 
hyper-parameters is Bayesian Optimization (e.g. 
the spearmint package is a very good option).

Overtraining

17
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Tools
Most physicists are using TMVA in ROOT; however, the rest of the world is 
using the python scikit-learn package (sklearn for short) or Keras.

Basics: Adaboost DT or Multilayer Perceptron NN (MLP); State-of-the-Art: 
XGBoost DT or Deep NN (e.g. Tensorflow).



❝

❞
In theory there’s no difference 
between theory and practice. In 
practice there is.

Yogi Berra
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Real-Time Processing
LHCb currently implements both hardware and software triggering stages, 
using the standard cascading feature-building approach.

~TB/s
(post zero

 suppression)
~50 GB/s

Feature-building in custom electronics (e.g. FPGAs) used to greatly reduce 
rate, but online computing systems still have herculean tasks.
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27,000 physical CPU cores (>50k 
logical cores) are used to run the full 
offline reconstruction in real time.

Real-Time Processing

Real-time reconstruction for 
all tracks with pT > 0.5 GeV.

Data buffered on disk while 
alignment/calibration done.

Real-time reconstruction for 
all tracks, final PID, etc., all 
available to select events.

50 GB/s

8 GB/s

8 GB/s

0.7 GB/s

10 PB of disk used for the buffering 
while final alignment/calibration done.

See V. Gligorov, MW, 
JINST 8 (2012) P02013.

Two ML algorithms used in this stage 
select about 70% of the output BW.

Final event selection is currently 30% 
ML based (first introduced into the 
main trigger algorithm for the start of 
2011 data taking).
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Real-Time Processing
In Run 3, LHCb will increase the post-zero-suppression data rate to 5 TB/s, 
but also remove the hardware trigger.  The full reconstruction will be done in 
real time on all events.

 5 TB/s
(post zero

 suppression)

Machine learning algorithms will play even more important roles in making it 
possible to maximize the physics output of this big-data challenge!



Charged PID

Determining whether a track originates from an e, μ, π, K, p, or fake.
23



VELO

Magnet

MUON

Tracking

CALO

RICH

stuff
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LHCb Detector

JINST 3 (2008) S08005
Int.J.Mod.Phys. A 30(2015) 1530022

LHCb is a forward Spectrometer (2 < η < 5)
(roughly 1-15o)
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Calorimeters

The primary use of the calorimeters for charged PID is in identifying electrons.  

Using electrons from photon conversions and hadrons from D0 decays, e and 
h PDFs are constructed from data vs track 3 momentum.
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Figure 33: Ratio of photon detection e�ciencies �(γ ! e+ e�)/ �(γCALO) from the decay of π0
mesons in data (red) and simulations (blue).

information is based on signal and background likelihood distributions constructed for each
sub-detector. In each case, reference histograms correlating the energy measurement with
the particle momentum are produced. For example, Figure 34 shows the E/pc distribution
in the ECAL for electrons and hadrons, produced using the first 340 pb�1 recorded in 2011.
The electron distribution has been produced using reconstructed electrons from photon
conversions and the hadron distribution using pions and kaons from D

0 meson decays.
From these distributions, the log-likelihood di↵erence between electrons and hadrons is
derived.

For the ECAL, the log-likelihood di↵erence for electron and hadron hypotheses
�logLECAL(e � h) is computed based on both E/pc and the �22D estimator defined in
Section 3.2. The electron hypothesis likelihoods for the PS, �logLPS(e�h) and the HCAL
�logLHCAL(e� h) are built using the energy deposits in each sub-detector. A combined
estimator is then formed for the calorimeter system by taking the sum of the individual
estimators from the PS, the ECAL and the HCAL,

�logLCALO(e� h) = �logLECAL(e� h) +�logLHCAL(e� h) +�logLPS(e� h) . (5)

Figure 35 shows the combined electron identification e�ciency defined above versus the
misidentification rate obtained by varying the selection criteria applied to the likelihood
di↵erence.

The electron identification performance is evaluated using the data recorded in 2011,
which are su�cient for it to be measured using a tag-and-probe method. This is applied
to B

± ! J/ K

± candidates with J/ ! e

+
e

�, where one of the electrons is required to
be identified by its electron ID (et ag) while the second electron is selected without using
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RICHs
The primary role of the RICHs is charged-hadron ID (π, K, p).

26
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RICHs
The primary role of the RICHs is charged-hadron ID (π, K, p).

Calculate the likelihood of each RICH ring pattern observed under various PID 
hypotheses, then use “DLL” to arbitrate (calibrate/validate using KS→ππ, 
Λ→pπ, and D0→Kπ data samples). 
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Figure 39: Kaon identification e�ciency and pion misidentification rate as measured using
data (left) and from simulation (right) as a function of track momentum [81]. Two di↵erent
�logL(K� ⇡) requirements have been imposed on the samples, resulting in the open and filled
marker distributions, respectively.

other minimising the misidentification rate.
For each track the likelihood that it is an electron, muon, pion, kaon or proton is

computed. In the first approach it is required that, for each track, the likelihood for the
kaon mass hypothesis is larger than that for the pion hypothesis, i.e. �logL(K� ⇡) > 0.
When averaging over the momentum range 2 – 100 GeV/c one finds the kaon e�ciency
to be ⇠ 95% with a pion misidentification rate of ⇠ 10%. A stricter PID requirement,
�logL(K� ⇡) > 5, reduces the pion misidentifiaction rate to ⇠ 3% at a modest loss in
kaon e�ciency of ⇠ 10% on average. Figure 39 also shows the performance in simulation,
for the same exclusive control channels and PID requirements as above for data. Good
agreement with data is observed for both sets of PID requirements.

The Run I conditions, with multiple interactions per bunch crossing and the resulting
high particle multiplicities, provide an insight into the RICH performance at possible future
higher luminosity running. Figure 40 shows the pion misidentification fraction versus
the kaon identification e�ciency as a function of track multiplicity and the number of
reconstructed primary vertices, as the requirement on the likelihood di↵erence�logL(K�⇡)
is varied. The results demonstrate some degradation in PID performance with increased
interaction multiplicity. However, the performance is still excellent and gives confidence
that the RICH system will continue to perform well during LHC Run II.

4.3 Muon system based particle identification

The identification of a track reconstructed in the tracking system as a muon is based on the
association of hits around its extrapolated trajectory in the muon system [82]. A search
is performed for hits within rectangular windows around the extrapolation points where
the x and y dimensions of the windows are parameterised as a function of momentum at

53
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Muon System
Muons are identified by looking for hits in the muon system, which is shielded 
by both the ECAL, HCAL, and whose stations are interleaved with iron 
absorbers.  

MisID from π,K→μ in flight, shared hits with a real muon, punch through, etc.
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Combined DLLs
By combining the likelihoods from the RICHs, calorimeter system, and the 
muon system, LHCb obtains even better PID performance.
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Consider the common case of K→μ decay in flight.  If it was still a kaon when 
it passed through the RICH, then the RICH likelihood will show this.

E.g., CombDLL reduces B→hh misID by 6x for loss of 3% of Bs→μμ signal. 



ML+PID

L i k e l i h o o d - b a s e d 
approaches provide 
amazing performance 
for each subsystem -- 
but info in each system 
is correlated. Time for 
ML!
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PID NNs
Drawbacks of CombDLL:

Advantages of an ML-based approach:

•Hard to build MVA PDFs from the data only. Could use MC -- but then not all 
subsystems may be “scaled” properly.

•Discrete info doesn’t fit well (or at all).

•DLL is of no use when neither hypothesis is correct.  

E.g., if the track is below Cherenkov threshold for both a pion and kaon, then 
their DLL = 0 by construction -- but what if there’s a nice ring in the data?

•Trivial to use discrete and continuous features.

•Train one algorithm for each track type where anything else is BKGD.

•Dimensional reduction makes validation/calibration in data much easier.
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Fake Tracks
Tracks are built using a Kalman-filter algorithm and selected based on several 
quantities, one of which is the x2/nDOF.  

Training a NN to also consider missing hits, track-segment matching x2, 
detector occupancy, etc, we are able to greatly reduce the fake-track rate. 
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PID NNs
Single-hidden-layer MLP NN trained on 32 features from all subsystems. 
Each is trained to identify a specific type of particle (or fake track). 

Typically get a factor of 2-3x less pion contamination in a muon sample than 
using the CombDLL approach -- ~5-10x less in a dimuon sample!
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Figure 43: Background misidentification rates versus muon (left) and proton (right) identification
e�ciency, as measured in the ⌃+ ! pµ

+
µ

� decay study. The variables �logL(X�⇡) (black) and
ProbNN (red), the probability value for each particle hypothesis, are compared for 5� 10GeV/c
muons and 5 � 50GeV/c protons, using data sidebands for backgrounds and Monte Carlo
simulation for the signal.

If the tracks identified as muons are also required to satisfy a selection using the combined
PID information (�logL

c o m b

(K � ⇡) < 10 and �logL
c o m b

(µ� ⇡) > �5), the B0
( s ) ! h

+
h

�

misidentification probability is reduced by a factor of ⇠ 6, whilst only ⇠ 3% of the
B

s

! µ

+
µ

� signal is lost.
The possible improvement of the multivariate approach with respect to the simple log

likelihood may also be illustrated by the ongoing search for the flavour-changing neutral
current decay ⌃+ ! pµ

+
µ

�. In Figure 43 the misidentification rates versus e�ciency curves
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Currently exploring state-of-the-art: XGBoost ~ Deep NN ~ 50% less BKGD 
than basic BDT or ANN, which again give 2-3x less BKGD than DLLs.

See: Ilten, Soreq, Thaler, MW, Xue, Proposed inclusive dark photon search at LHCb, PRL 116 (2016) 251803. 



Details

•We train our charged-particle PID NN’s on MC then measure their 
performance using data control samples. In principle, data samples could 
also be used in the training, but then one would need to deal with BKGD in 
those samples (and wait for data to be taken to do the training).

•However ML algorithms are trained, it’s vital that they be validated using a 
data-driven approach!

•There is an “art” to how to weight the various BKGD track types in the 
training.  E.g., fake tracks are a major concern when studying electrons, but 
much less so for other track types.  One could consider using a bespoke NN 
training for each measurement; however, a much simpler approach is to use 
the charged-PID NN’s as input features themselves in a channel-specific ML-
selection algorithm (stacking). 
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Heavy-Flavor Jet ID (Tagging)
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ML Jet Tagging

Put 10 features into two BDTs: one for b,c vs light, and another for b vs c. No 
feature can fully separate types, but their correlations (largely) can.

Could cut on BDT responses to obtain high-purity b-jet or c-jet samples. 
Alternatively, fit 2-D BDT distribution to extract the b-jet and c-jet yields.
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Figure 1: SV-tagger algorithm BDT(b|c) versus BDT(bc|udsg) distributions obtained from
simulation for (left) b, (middle) c and (right) light-parton jets.

3.3 Performance in simulation

Figure 1 shows the SV-tagger BDT distributions obtained from simulated W+jet events
for each jet type. The distributions in the two-dimensional BDT plane of SV-tagged b, c,
and light-parton jets are clearly distinguishable. The full two-dimensional distribution
is fitted in data to determine the jet flavor content. However, to aid in comparison to
other jet-tagging algorithms, a requirement of BDT(bc|udsg) > 0.2 is applied to display
the performance obtained from simulated events in Fig. 2. This requirement is about 90%
e�cient on SV-tagged (b, c) jets and highly suppresses light-parton jets. The (b, c)-jet
e�ciencies are nearly uniform for jet p

T

> 20GeV and for 2.2 < ⌘ < 4.2, but are lower for
low-p

T

jets and for jets near the edges of the detector. The misidentification probability of
light-parton jets is less than 0.1% for low-p

T

jets and increases to about 1% at 100GeV.
Figure 3 shows the (b, c)-jet e�ciencies versus the mistag probability of light-parton jets
obtained by increasing the BDT(bc|udsg) cut.

For the TOPO algorithm, in the trigger a BDT requirement is always applied; the
requirement is looser when the SV contains a muon. In the LHCb measurement of the
charge asymmetry in bb̄ production [23], this same looser BDT requirement was applied to
tag a second jet in the event. Figure 2 shows the performance of the TOPO algorithm,
obtained from simulated events, for both the nominal and loose BDT requirements. The
nominal trigger BDT requirement strongly suppresses c and light-parton jets, with the
misidentification probability of light-parton jets being 0.01% for low-p

T

jets. Such a strong
suppression is required during online running due to output rate limitations.

The jet-tagging performance is measured in simulated events with one pp collision and
two or more pp collisions and found to be consistent. The tagging performance is also
studied in simulation using di↵erent event types, e.g. top-quark and QCD di-jet events,
with only small changes in the tagging e�ciencies and BDT templates observed for (b, c)
jets. The mistag probability of light-parton jets is found to be higher for high-p

T

jets in
events that also contain (b, c) jets. This is discussed in detail in Sec. 5.

5

JINST 10 (2015) P06013
LHCb-PAPER-2015-016

LHCb simulation: each distribution normalized to one; 70%, 25%, 1% of b, c, light jets are tagged.

Looked at doing a single 3-class algorithm but that doesn’t seem to help here (shown to work better in other applications).
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2-D BDT Fits
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Figure 6: From a b-jet and c-jet enriched data sample of Ref. [11]: (left) SV-tagger BDT
responses observed in data (annotation added here to show roughly where jets of each type
are found); (middle) projection onto the x-axis; and (right) projection onto the y-axis. The
BDT templates shown here were obtained from simulation. This and similar data samples
were used to calibrate the BDT responses for use in physics analyses.

simulation was known to model heavy-flavor hadron decays well, whereas the description of
jet properties had not yet been fully validated using data. Figure 6 shows that despite this
simplified approach, the separation between b-jets, c-jets and light-parton jets is excellent.

For Run 2, we plan to investigate using additional information to improve the perfor-
mance. We also plan to approach this as a true 3-class problem, rather than two 2-class
ones. As part of the jet-tagging development, we will update our bb̄ charge asymmetry mea-
surement [5] and make the first such measurement for cc̄. Recall that Ref. [37] suggested
that �(cc̄)/�(bb̄) provides a good standard candle to use in c-tagging calibration; therefore,
it makes sense to add these dijet measurements into the tagging-development project.

6.2.2 Intrinsic Strangeness and Charm

Whether there is intrinsic (non-perturbative) charm (IC) content in the proton at the ⇡ 1%
level is an open (and hotly debated) question. There is theoretical interest in the role that
non-perturbative dynamics play in the nucleon sea. Furthermore, the presence of IC in
the proton would a↵ect the production cross sections of many processes at the LHC either
directly, by scattering o↵ of a large-x c or c̄; or indirectly, since altering the charm PDF
would a↵ect the gluon PDF via the momentum sum rule. Ref. [44] considers two models
where the IC is valence-like (BHPS1, BHPS2) and two where it is sea-like (SEA1, SEA2).
LHCb has direct sensitivity to IC by measuring Z + c production, which can proceed via
gc! Zc. We performed a preliminary study of how these IC models a↵ect Z + c production
at LHCb. Figure 7 shows the relative increase in Z +c production when IC is included in the
proton. These valence-like models will be easily distinguishable in Run 2 at LHCb, while the
sea-like models may be distinguishable in Run 3. We propose to perform this measurement
using our c-jet tagging algorithm.

Intrinsic strangeness in the proton is well established. The s and s̄ PDFs are typically
assumed to be identical, but they need not be. Figure 7 shows the shift in the W + c
charge asymmetry that LHCb would observe for the charge-asymmetric strangeness PDFs
from Ref. [45] (some of these models may now be ruled out; the point here, however, is that
observably large asymmetries may occur in W + c production). Phil and I measured W + c

Performance validated & calibrated using large heavy-flavor-enriched jet data 
samples (2-D data validation much easier than 10-D!).

2-D BDT plane (nearly) optimally utilizes 10-D info to ID b, c, and light jets.

JINST 10 (2015) P06013
LHCb-PAPER-2015-016
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Details

•We train our jet-tagging BDTs on MC then calibrate and measure their 
performance using data control samples. 

•To reiterate: it’s vital that ML algorithms be validated in a data-driven 
manner! (What this means varies for different applications of course.)

•Dimensional reduction achieved by such algorithms makes it possible to 
maximize performance without complicating validation. 

•This work was done using Adaboost, currently studying state-of-the-art 
algorithms (re-examining the 3-class issue).

N.b., dimensional reduction can be exploited to build GOF tests for large 
dimensionality (Weisser, MW, to appear soon). 
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Regression
ML is also now being used for regression.  For example, CMS has moved to 
ML-based jet-energy corrections (e.g., for Higgs to bb).
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Advertisement
ML schools for Ph.D. students in Lund 2016, St. Petersburg 2015.

Great hands-on experience, don’t be deterred by the HEP in the name!



The (Near) Future
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Current Work & Prospects
•Custom loss functions, e.g., response is de-correlated from some set  of 
features (Stevens, MW [1305.7248]; Rogozhnikova, Bukva, Gligorov, Ustyuzhanin, MW [1410.4140]).  Already 
used to search for a new boson (LHCb, PRL 115 (2015) 161802), and currently being 
used in many papers to appear soon.

•Deep learning is actively being explored as a way to remove the human-led 
feature-design stage (Baldi, Sadowski, Whiteson [1402.4735]).

•Parametrized classifiers to interpolate the optimal selection when only a 
discrete subset of possible signals has been simulated (Baldi, Cranmer, Faucett, 

Sadowski, Whiteson [1601.077913]).

•Autoencoders, ML-based tracking, anomaly detection, domain adaptation, 
MVA re-weighting, etc.

•N.b., beware of non-general optimizations in some purpose-built algorithms!

See also pypi.python.org/pypi/hep_ml/0.2.0 for some custom HEP algorithms.



Summary
•Machine learning algorithms are now commonplace in HEP analyses. Open-
source tools are now very good and getting better daily.

•ML algorithms exploit high-dimensional correlations to improve on cut-based 
selections (can also view them as dimensional-reduction methods). Even 
basic algorithms tend to give big improvements, and state-of-the-art 
algorithms are now easy for novices to use.

•It’s vital that such algorithms can be validated/calibrated in a data-driven 
approach---and not just because your more senior colleagues don’t like them!

•There are many great and simple data-analysis techniques out there that are 
almost unknown to physics (Bayesian optimization, BIC, LASSO, etc). Don’t 
be afraid to use them!

•The potential physics applications of many other cutting-edge ideas are now 
being studied (the future is now!).



The Future?


