Low-Energy Nuclear Experiments Lecture 3: 'Probing' Wavefunctions

Heather L. Crawford

Nuclear Science Division Lawrence Berkeley National Laboratory

The (Third) Plan

- Investigating level schemes
 - Decay spectroscopy
- Details of nuclear wavefunctions
 - Single particle 'occupancies' and spectroscopy with nuclear reactions
 - Excited state lifetimes and transition probabilities
- Example planning an experiment
 - What, where, why?

Level schemes – collective vs. single particle

Level Schemes Contain Structural Information

Back to β decay...

- The majority of nuclides on the chart decay via β^+ or β^- decay
 - $\circ \quad n \dashrightarrow p + \beta^{-} + v_{e}$
 - $\circ \quad p \dashrightarrow n + \beta^+ + \overline{\nu}_e$
- We can consider β-decay (and other decays) as a tool to populate excited states in daughter nuclei, but with a unique selectivity

Forbiddenness	ΔJ	Δπ
Superallowed	$0^+ \rightarrow 0^+$	no
Allowed	0, 1	no
First forbidden	0, 1, 2	yes
Second forbidden	1, 2, 3	no
Third forbidden	2, 3, 4	yes

Implantation β decay spectroscopy

β-Delayed Gamma Spectroscopy

 gamma rays following decay events provide information on lowlevel structure of daughter nuclei

Isomeric Decay

 depending on the production mechanism, nuclei may be produced in long-lived excited states (isomeric states)

> Office of Science

• a TAC for implantation-gamma provides the possibility for isomer lifetime determination, if you look for gammas following an implantation

Implant-decay correlation technique

The use of highly-segmented detectors (usually Si) allows temporal and spatial correlations between implanted nuclei, and their subsequent decays → detect the implant and the decay to obtain half-lives and information on levels in the daughter relative to the parent ground state

<u>β-decay</u> spectroscopy set-up: NSCL

ヨス

BERKELEY LAB

C

Science

β-decay spectroscopy: complex example

A. Look at the gamma-rays in coincidence with the nucleus of interest (⁵⁶Sc) implantations – by fitting half-lives of the isomer, and through gammagamma correlations, build up a level scheme, and can get relative spinparities for the states in ⁵⁶Sc

HLC et al., PRC 82, 014311 (2010).

β-decay spectroscopy: complex example

β-decay spectroscopy: complex example

D. Gate on implantations that came in coincidence with isomer gamma-rays and look at half-life → determine which state the isomer populates, and fix the spin/parity

Alpha decay

- α decay occurs only in heavier systems on the nuclear chart
- Alpha decay however probes different aspects of the nuclear forces

Science

 Different selectivity in the process --> favour low L alpha emission

Spectroscopy of heavy elements

Spectroscopy from element 115

BERKELEY LAB

Probing wavefunctions

Beyond excitation energies and spins?

- Information regarding the 'occupancy' of single-particle states can be investigated within a model framework
- Two energy regimes --> low-energy transfer experiments and intermediate energy knockout

- Information regarding the 'occupancy' of single-particle states can be investigated within a model framework
- Two energy regimes --> low-energy transfer experiments and intermediate energy knockout

- Information regarding the 'occupancy' of single-particle states can be investigated within a model framework
- Two energy regimes --> low-energy transfer experiments and intermediate energy knockout

Science

- Information regarding the 'occupancy' of single-particle states can be investigated within a model framework
- Two energy regimes --> low-energy transfer experiments and intermediate energy knockout

Selectivity of the reaction mechanism

- Knockout / nucleon removal
- Fusion evaporation
- Transfer
- Deep inelastic
- Scattering (elastic / inelastic)
- Capture

Fusion evaporation vs. direct transfer

- A + b = C -> D + X
 - ¹²C(¹⁸O,3n)²⁷Si*
- Compound system has NO memory of its formation
- Evaporated particle energies give excitation energies of final states

- Two-body A(b,c)D
 ¹⁶O(d,p)¹⁷O*
- Outgoing particle DO retain knowledge of transferred particles

Knockout reaction vs. direct transfer

- Two-body A(b,c)D
 ¹⁶O(d,p)¹⁷O*
- Outgoing particle DO retain knowledge of transferred particles

Transfer reactions

Single-nucleon

[e.g., (d,p), (³He,d), (α,t)] • Single-particle states

Two-nucleon

[e.g., (t,p), (³He,p), (α,d)] • Pair transfer (2n, d, etc.)

Charge exchange [e.g., (p,n), (³He,t), (t,³He)]

- Gamow Teller Strengths
- Isobaric analog states

Surrogate reactions [e.g., (6Li,d), (7Li,t), (d,n)]

 Mimics the analogous particle transfer

Heavy lon

- [e.g., (13C, 12C), (12C, 10Be), (14C, 10C)]
- Highly selective
- Exploratory

Transfer reactions: measured quantities

 Momenta and angles of outgoing light particles [or heavy-ion recoils]

Reaction: A(b,c)D [e.g., ²⁰⁸Pb(³He,d)²⁰⁹Bi]

$$BE_{D} = M_{D} + E_{D}^{*} = \sqrt{M_{c}^{2} + E_{cm}^{2} - 2 \cdot E_{cm} \cdot E_{c}^{\prime}}$$
$$E_{c}^{\prime} = f(E_{c}, \theta_{c})$$
$$Q = (BE_{c} + BE_{D}) - (BE_{A} + BE_{b})$$

Transfer reactions: measured quantities

[Q(g.s) = +2.92 MeV]

Transfer reactions: measured quantities

Cross section vs. incident beam energy

Science

Transfer reactions: extracted quantities

Sensitivity of the differential cross sections to orbital angular momenta (/) of transferred nucleon(s)

Transfer reaction: extracted quantities

Low-energy transfer experiments

Detection systems depend on kinematics of the reaction --> 'normal kinematics' with a light beam on a heavy target – spectrographs can analyze the light outgoing particle

--> 'inverse kinematics' with a heavy beam on a light target – detect the light outgoing particle, or analyze the beam-like particle

Office of Science

Nucleon knockout reactions

Intermediate energy beams (> 50 MeV/nucleon)

• Sudden approximation + eikonal approach for reaction theory

Spectroscopic strengths --> exclusive cross-sections

Populated states in A-1 residue provide detailed measure of beam structure

Neutron knockout – ⁹Be(³⁴Ar, ³³Ar)X

Excited state lifetimes

Lifetimes and transition probabilities

Transition probability for gamma-decay relates strongly to specific nuclear matrix elements --> provide a stringent test of theoretical wavefunctions

Consider the case of the first 2+ states in even-even nuclei

$$\tau_{\gamma} = 40.81 \times 10^{13} E^{-5} [B(E2) \uparrow /e^2 b^2]^{-1}$$
$$B(E2: J_i \to J_f) = \frac{1}{2J_i + 1} \langle \psi_f ||E2||\psi_i\rangle^2$$

Lifetimes are of order ps --> how do we measure these lifetimes?

Recoil-distance (plunger) method

The lifetime of excited states in the range of 10-100s of ps can be measured by populating the state via Coulomb excitation or knock-out reactions, and observing the Doppler-shift of the decay gamma-ray.

Figure: Adapted from K. Starosta

Lifetime in ^{72,74}Kr

Lifetimes are related to the reduced transition probabilities B(E2), which are an indicator for collectivity in the nuclear structure.

Here, the irregular behaviour for the 4+ and 2+ states suggest a rapid shape evolution in ⁷²Kr

H. Iwasaki et al., Phys. Rev. Lett. 112, 142502 (2014).

Coulomb excitation

Collectivity: B(E2) from excitation probability

Coulomb excitation:

- purely Coulomb interaction causes excitation of the nucleus of interest
- well described interaction, and cross-section relates to transition matrix element, i.e.
 B(E2) for 0+ --> 2+ in even-even nuclei.

$$\sigma_{\pi\lambda} \approx \left(\frac{Z_{\text{pro}}e^2}{\hbar c}\right)^2 \frac{\pi}{e^2 b_{\min}^{2\lambda-2}} B(\pi\lambda, 0 \to \lambda) \begin{cases} 1/(\lambda-1) & \text{for } \lambda \ge 2\\ 2\ln(b_a/b_{\min}) & \text{for } \lambda = 1 \end{cases}$$

Pear shaped nuclei and atomic EDM

BERKELEY LAB U.S. DEPARTMENT OF Office of Science

Intermediate-energy Coulex

• In conventional (low-energy) Coulomb excitation, bombarding energies are well below the Coulomb barrier

 At high energies (~100 MeV/A), nuclear contribution can be significant for small impact parameters, but for b > R_{int} Coulomb dominates

At a given beam velocity,
 b relates to the scattering angle
 θ, so restricting analysis to
 forward scattering angles
 ensures 'safe' Coulex

Neutron-rich Fe and Cr

Office of

Science

And what have I skipped?

- 'Exotic' decay modes
 - 1p and 2p decay at the proton dripline
 - Neutron decay --> recent sequential 2n decay at NSCL
- Resonance spectroscopy properties of unbound states (beyond the proton and neutron driplines)
- Reactions for spectroscopy and more --> deep inelastic reactions, multi-nucleon transfer, chargeexchange, etc.
- And much, much more...

Office of <u>Sc</u>ience

Example: Designing an experiment to access the physics

We read this theory paper...

J.D. Holt et al., J. Phys. G: Nucl. Part. Phys. 39, 085111 (2012).

J.D. Holt, J. Menendez, A. Schwenk, private communication.

Can we inform this physics question?

- Theory tells us there is a difference in spectroscopic factor for removal of neutrons in ⁵⁰Ca to states in ⁴⁹Ca
 - Is this observable? Can we design a measurement to test the different predictions? What could we do? What would our experiment observables be?
 - Where could we do this type of experiment? What facility could we use? What type of equipment?
 - What exactly would we measure? How would we have to interpret the data? Do we need theory to interpret the data?

