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Defining National Security Images
= 20t Century = 215t Century

= Goal : to prevent a superposition of these images
= 9/11 attacks demonstrated desire and delivery
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Fog of (cold) war begins to lift ...

COMMENTARY

A World Free of Nuclear Weapons

By GEORGE P. SHULTZ, WILLIAM J. PERRY, HENRY A. KISSINGER and
SAM NUNN
Updated Jan. 4, 2007 12:01a.m. ET

Nuclear weapons today present tremendous dangers, but also an historic
opportunity. U.S. leadership will be required to take the world to the next stage
-- to a solid consensus for reversing reliance on nuclear weapons globally as a
vital contribution to preventing their proliferation into potentially dangerous
hands, and ultimately ending them as a threat to the world.

Nuclear weapons were essential to maintaining international security during
the Cold War because they were a means of deterrence. The end of the Cold
War made the doctrine of mutual Soviet-American deterrence obsolete.
Deterrence continues to be a relevant consideration for many states with
regard to threats from other states. But reliance on nuclear weapons for this

purpose is becoming increasingly hazardous and decreasingly effective.
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The 2010 Nuclear Posture Review (NPR)
identified five key objectives

1. Prevent nuclear proliferation and
nuclear terrorism

Reduce the role of nuclear weapons
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Maintain strategic deterrence and
stability at reduced nuclear force
levels

4. Strengthen regional deterrence and
reassurance of US allies and
partners

5. Sustain a safe, secure, and effective
nuclear arsenal

For the first time, the NPR places preventing nuclear proliferation

and nuclear terrorism atop the U.S. nuclear agenda.
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The nuclear threat environment today is

challenging...

Non-State Actors
1+ nuclear devices

Proliferant Nation-States
10’s of warheads

‘M  Large, Hostile Nation-States
‘ 1000’s of highly capable military warheads
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Capabilities

Intelligence

Nonproliferation
Counterterrorism
Counterproliferation
Forensics and Attribution
Emergency Response
Consequence Management
Stockpile Stewardship
Armms Control

Treaty Verification

Our National Security programs evolved out of the capabilities and

expertise developed to support the core nuclear weapons program
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Approach to reduce/counter nuclear threats

Threat: Foreign, proliferant, stolen, or improvised nuclear devices
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|AEA also a major player in the area of Non/Counter-Proliferation

The national labs play a key role as integrators across this mission space
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US R&D Efforts Cast Wide Net

= National Labs
« LANL, LLNL, SNL, ORNL, PNNL, IDNL, LBNL, BNL, ...

= Universities

 Nuclear Physics/Chemistry/Engineering, Material
Science, Computer Science, ...

= Private Sector
« From large defense contractors to small start-ups
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This Talk (1)

= Complete review of nuclear security R&D beyond
scope of any talk

= Focus on Special Nuclear Materials (SNM)

« Convention explosive w/ radioactive debris (dirty bomb)
terrorist threat, but not WMD

« U-235 (separated from U-238)

— Natural abundance of 0.7%, less = Depleted Uranium (DU)
— Low Enriched Uranium (LEU) < 20%, reactor grade = 3-5%
— Highly Enriched Uranium (HEU) > 90%

« Pu-239

— made in reactors, U-239 with 2-beta decays
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This Talk (2)

= Reactor Monitoring = likely starting point
 neutrino detection (Bernstien, LLNL)
* high-res germanium (Burke, LLNL)

= Transit Detection
- Roadside Tracker (Ziock, ORNL)
« Muon Tomography (Morris, LANL)

= Points of Entry
« NRF (Bertozzi, Passport Systems)
« Neutron Time-Correlations

= Novel Detectors
« organic scintillators (Zeitseva, LLNL)
« nano-thermite materials (Univ. Mich.)
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Reactor Monitoring with anti-neutrinos
= U-235 and Pu-239 fission products f3-decay at

different rates

= v-rate sensitive to Pu-239 content

= Gd-doped water-Cerenkov detection

« vip 2 e+ + n > Gd(n,y)

= Bowden, et al, Nucl. Instr. Methods A572, 985 (2007)

Parameter Precision Dwell times
Operational Status (on/off) 99.99% hours
Power level 3% accuracy days
Fissile Pu/U content <10 kg Pu, core-wide, 1 3 months

sigma accuracy
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Songs Detector

Passive water shield Active shield

Central detector cells

The prototype antineutrino detector consists of three subsystems: a central
detector and two shields. Photomultiplier tubes above the central detector
cells detect the antineutrino’s signature.
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SONGS: small, deployable near field antineutrino detector

Determine reactor on/off status Measure thermal
within 5 hours with 99.9% C.L. § power to 3% in one week

Detect switch of 70 kg Pu-U
ith known power and initial fuel content
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Rate-based measurements (count rate only)
« Simple detector design

- Stable operations

« 25 m from core, outside containment
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The Roadside Tracker

= Combine visible (camera) and gamma (Csl)
detection to track radiation in highway transit

= Image reconstruction to track vehicle motion
= Coded aperture to track gamma-ray source

= Detects 37 MBqg-class at 113 km/hr over 5-lanes

Lawrence Livermore National Laboratory
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Roadside Tracker picture/schematic

Ziock, et al., IEEE Trans. Nucl. Sci., 60,, 2237 (2013)
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Roadside Tracker signals

; i T

Fig. 9. Results for a vehicle with (left) and without (right) a source. In this case Fig. 10. System results obtained with vehicles crossing in the field of view. No
the source was 1.1 MBq of 137 Cs in a vehicle traveling at 19.2 km/h. cross-talk is observed between the source and no-source vehicles.
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Roadside Tracker detection
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Muon Tomography
= Passive scanning with cosmic-ray muons

= Drift chamber detection of multiple scattering
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Self

]
e

-identifying efforts

13.6MeV [x 13.6MeV/c [x
o= —[1 + 0.038 log(x/Xp)] ~ —
716.4(g/cm?) A
Xo =

p Z(Z + 1) log(287 /vZ)
IEEE Trans. on Image Proc. 16, 1985 (2007)

= Some material ID is possible
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Muon Tomography example

= Sensitive to
shielding

= Combine with other
techniques

Fig. 13. TIllustration of major objects in a simulated passenger van.

Fig. 14. Reconstruction of 1 min of simulated muon exposure of the passenger
van via the mean method.
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Nuclear Resonance Fluorescence

= Collective nuclear oscillations (i.e. GDR) provide
unique & narrow excitations at penetrating

(MeV) gamma energies
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| Phys. Rev. C 78, 041601 (2008)
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Passport Systems NRF + EZ-3D™

= Bremsstrahlung Cargo Scanner
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3D Image Reconstruction

Bertozzi et al., Nucl. Instr. Meth. B 261, 331 (2007

00 . ; : High-Z Material
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Plastics with improved PSD

= Standard Pulse Shape Discrimination
« gamma (e- recoils) > S, excitation - photon

 neutron (p+ recoilds) - T, excitation
— photon delay depends on T, mobility

= Work with PVT (polyvinyltoluene)
- add PPO (2,5 diphenyloxazole)

- able to tune PSD separation via triplet de-excitation
— Zaitseva et al., Nucl. Instr. Meth. A 668, 88 (2012)

Lawrence Livermore National Laboratory
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Results of PPO Doping

0.5
= 04 | -
e 03 L 1% PPO i 6% PPO
% 02 - s .
=
g 01 f -
0 | WS i b
05 | | | | l l 1 l | | | | | l
5 04 I 15% PPO B 30% PPO
e 03} - dhac neutrons
%n.z- B
~ e, I~ i
<o 01 5 w ‘gamma
0r Y s
01 I I ! I ] I I il ] I I I I
0 100 200 300 400 500 600 700 O 100 200 300 400 500 600 700

Energy [keVee] Energy [keVee]

= Qq,;, = charge in delayed component

Lawrence Livermore National Laboratory *b



Scintillator Comparison
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Addition of 0.2% DPA (9,10 diphenylanthracene) further improves PSD
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Good spectral resolution is important
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GeGl (Germanium Gamma-ray Imager)

Specifications

Fold-away handle

Germanium crystal: 9cm diam x 1 cm thick Notebook PC w/ Windows
XP

planar
Spectral resolution: 2 keV at 1332 keV

180° optical camera

Imaging accuracy: ~3°

Imaging resolution: ~6°

Cool-down time: 5 hours

User interface: notebook PC w/ Windows XP

Optical: 180° panoramic camera

Power: AC power; internal battery (1 hour);
Detector

external battery (3 hours per) face
Weight: 37 Ibs
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Pinhole Image of two Pu shells

Plutonium shells

‘ £ e “ s
P e
Measurement setup: GeGl and two Pu shells at 1.5 meters Pinhole overlay: photo taken with GeGlI’s onboard panoramic
camera, overlaid with Pinhole image

* Plutonium shells each contained ~200 grams of Pu
» Isotopic composition: 94% Pu-239 and 6% Pu-240
* Pinhole imaging was able to individually image multiple sources.
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Nano-Thermite Detectors

= The new bubble-chamber detectors

= Thermites ignite above T~1000°K

= Tune grain size to match AE deposit

= One grain explosion will induce others
= Under investigation for WIMP detection

= Lopez-Suarez, Univ. Mich. http:/arxiv.org/abs/1403.8115
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Nano-thermite example

= Al, + Fe,O; 2 AlLO; + 2Fe + 851.5 kd/mole
= AT = AE/c, , ¢, = 1.5e-5 keV/K/nm?
= for 1nm sphere, 1keV deposited 2> AT =1.6e4 °K

~=1lnm
lon Also exploring
\ possible applications

for radiation detection

IIIIII

AE = ¢dE/dx
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Counting Neutron Coincidences

Count neutron pairs within a time bin
subtract random (Poisson) expectation
divide by mean
referred to as Feynman Variance
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Neutron time correlations

= Return to idea developed by Feynman,
extended by Prasad and Synderman

= Fission chains emit time-correlated neutrons

= Useful to measure object multiplication, but
passive counting requires long integration time

= Explore photo-fission to boost production of
time-correlated neutrons
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Signals and Backgrounds

ener gy
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Y = n/y scattering and conversions modify

timing, but do not reduce signal

= random radiation from non-fissile
sources is uncorrelated, does not

contribute to signal
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Conclusions

= Work in Nuclear Security remains challenging

= No silver bullet found, nor is one |i

= Achieving true nuclear security wil

Kely

require an

array of approaches and coordination among

departments and countries

= Detector R&D challenges have broad overlap

with Nuclear Science needs
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